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Список сокращений и условных обозначений 

API Application Programming Interface 

HPC High Performance Computing 

MPI Message Passing Interface 

QoS Quality of Service 

БД База данных 

ВМ Виртуальная машина 

ВП Вычислительный процессор 

ВС Вычислительная система 

ВУ Вычислительный узел 

ВЧ Вычислитель 

КТ Контрольная точка 

ЛДП Локальная дисковая память 

МВС Многопроцессорная вычислительная система 

МСЦ РАН Межведомственный суперкомпьютерный центр РАН 

ОПП Одна последовательная программа 

ОС Операционная система 

ПК Программный комплекс 

ПО Программное обеспечение 

ПУВМ Подсистема управления виртуальными машинами 

РВС Распределенная вычислительная система 

СВЧ Сервер вычислителя 

СП Связной процессор 

ССРВ Сетевая среда распределенных вычислений 

СУЗ Система управления заданиями 

СУППЗ Система управления прохождением параллельных заданий 

СХД Система хранения данных 

ТРС  Территориально распределенная вычислительная среда  
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Введение 

Суперкомпьютеры в 21 веке прочно вошли в практику научных исследова-

ний, как неотъемлемый инструмент сверхточного моделирования сложных при-

родных  явлений и общественных процессов. Примерами могут служить задачи 

гидродинамики, физики высоких энергий, астрофизические, биологические, ме-

дицинские и фармакологические исследования, наноэлектроника и синтез новых 

материалов, климатология, науки о Земле и океане, энергетика, а также задачи 

машинного обучения и искусственного интеллекта. С каждым годом сфера при-

менения суперкомпьютерных технологий расширяется, растет сложность фунда-

ментальных и прикладных вычислительных задач, увеличивается число пользова-

телей суперкомпьютерных систем.   

Уровень развития суперкомпьютерных технологий является для государства 

одним из факторов стратегического значения. Мировые лидеры в области науки, 

образования, промышленности и бизнеса – США, КНР, Европейский Союз, Япо-

ния – не первое десятилетие реализуют национальные и наднациональные проекты 

развития суперкомпьютерных технологий [1]. Целями подобных проектов являют-

ся получение конкурентных преимуществ [2, 3] за счет сокращения сроков науч-

ных исследований и разработок промышленных изделий, а также достижение тех-

нологического лидерства в таких областях, как создание новых материалов, энерге-

тика, транспорт, медицина, обеспечение безопасности государства. 

Создание инфраструктуры и условий для проведения научных исследова-

ний и разработок, внедрения наукоемких технологий, отвечающих современным 

принципам организации научной, научно-технической и инновационной деятель-

ности, на основе лучших российских и мировых практик является одной из ос-

новных задач Стратегии научно-технологического развития Российской Федера-

ции [4]. Современная научная инфраструктура немыслима без применения высо-

копроизводительных вычислительных систем, на основе которых реализуется та-

кой приоритет научно-технологического развития, как переход к передовым тех-

нологиям проектирования и создания высокотехнологичной продукции. Важность 
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и актуальность развития суперкомпьютерных технологий в полной мере осозна-

ется российским научным сообществом [1, 5, 6]. Примерами развития и использо-

вания научной инфраструктуры мирового уровня являются суперкомпьютерные 

центры коллективного пользования МГУ им. М.В. Ломоносова [7], НИЦ «Курча-

товский институт» [8], Российской академии наук [9, 10], Объединенного инсти-

тута ядерных исследований [11]. 

Основное предназначение высокопроизводительных вычислительных си-

стем – решение таких научно-технических задач, нередко называемых «большими 

задачами», для которых недостаточно вычислительной мощности отдельного 

компьютера. Для ускорения решения большая задача разделяется на части, кото-

рые могут выполняться одновременно на разных вычислительных устройствах. 

Такое разделение называют распараллеливанием задачи, а одновременно выпол-

няемые на разных устройствах вычисления соответственно называют параллель-

ными вычислениями. Результатом распараллеливания является параллельная про-

грамма, т.е. программа, содержащая части, которые могут выполняться одновре-

менно на разных устройствах. Распараллеливание больших задач, организация и 

производство параллельных вычислений образуют специальную технологию вы-

сокопроизводительных вычислений (англ. – High Performance Computing, HPC). 

В соответствии с ГОСТ Р 57700.27-2020 высокопроизводительные вычисления 

определяются как вычисления, выполнение которых требует большого объема 

расчетов и (или) обработки больших объемов данных за сравнительно небольшой 

промежуток времени, и, как правило, специальных вычислительных ресурсов. Та-

кими специальными вычислительными ресурсами являются суперкомпьютерные 

системы, они же параллельные или HPC-системы. 

В суперкомпьютерных центрах высокопроизводительные вычислительные 

системы, как дорогостоящее научное оборудование, используются главным обра-

зом в режиме коллективного пользования. Для производства высокопроизводи-

тельных расчетов пользователи формируют задания, каждое из которых включает 

расчетную параллельную программу, входные данные и требования к ресурсам. 
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Входной поток заданий последовательно проходит технологические этапы обра-

ботки, первоначально поступая в очередь одной из территориально распределен-

ных суперкомпьютерных систем. После прохождения очереди каждому заданию 

выделяются вычислительные узлы суперкомпьютера, внутри которых запускают-

ся процессы расчетной программы. В каждом узле эти процессы распределяются 

по вычислительным ядрам, а внутри ядра распараллеливаются выполняемые про-

цессом отдельные вычислительные операции.   

Таким образом, распараллеливание входного потока заданий осуществляет-

ся одновременно на нескольких иерархических уровнях, соответствующих этапам 

единой технологической цепочки обработки. Общая эффективность использова-

ния суперкомпьютерных систем очевидным образом зависит от эффективности 

управления вычислительными ресурсами на каждом технологическом этапе обра-

ботки (уровне распараллеливания) входного потока заданий. Постоянное услож-

нение архитектуры суперкомпьютеров, применение для их построения новейших 

технических решений, увеличение числа процессорных узлов и ядер, повышение 

степени их разнородности обуславливают актуальность развития существующих 

и создания новых методов и средств управления вычислительными ресурсами су-

перкомпьютерных систем коллективного пользования на разных уровнях распа-

раллеливания входного потока заданий. При этом важно не только достигнуть 

эффективного распределения вычислительной работы по имеющимся ресурсам, 

но и обеспечить надежность и отказоустойчивость параллельных вычислений, по-

скольку рост степени распараллеливания ведет к соответствующему росту числа 

сбоев и отказов. 

Поскольку доступ пользователей к вычислительным ресурсам суперкомпь-

ютера обеспечивается посредством заданий, многие методы и алгоритмы управ-

ления этими ресурсами реализуются в виде специальных программных систем 

управления заданиями (СУЗ) [12]. Как отдельный вид системного программного 

обеспечения, СУЗ начали формироваться в середине 1990-х годов [13], научное 

осмысление проблематики построения СУЗ было завершено к 2000-м годам [14]. 
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К этому времени в мировой практике применялось свыше 15 различных систем 

управления заданиями [15]. Разработка значительной части систем, рассмотрен-

ных в работе [15], к настоящему времени прекращена, но системы-лидеры, такие 

как SLURM [16] и IBM Platform LSF [17], активно развиваются, пополняя свой 

арсенал новыми функциональными возможностями. Несмотря на то, что часть ве-

дущих систем, подобно SLURM, свободно распространяются в открытых исход-

ных кодах, разработка и развитие этих систем осуществляются западными компа-

ниями. Необходимость сохранения компетенций и научно-технологического па-

ритета в области управления суперкомпьютерными ресурсами обуславливает ак-

туальность исследований и разработок по созданию и развитию отечественных 

систем управления заданиями, обладающих набором функциональных возможно-

стей, соответствующим сложившейся мировой практике. Для построения системы 

управления заданиями необходима разработка архитектуры, отражающей иерар-

хический характер распараллеливания входного потока заданий. Другими слова-

ми, в основе архитектуры СУЗ должна лежать иерархическая модель управления 

вычислительными ресурсами, которая позволит интегрировать решения частных 

научно-технических задач на каждом технологическом этапе обработки заданий в 

единый комплекс архитектурных, технических и технологических решений.  

Центральной функцией любой системы управления заданиями является их 

планирование, которое заключается в организации одной или нескольких очере-

дей поступивших заданий и формировании расписаний их запусков. Качество 

планирования оценивается рядом показателей, таких как загрузка вычислитель-

ных ресурсов, среднее время ожидания задания в очереди, средний коэффициент 

замедления заданий и другими [18]. Показатели качества планирования являются 

взаимосвязанными и противоречивыми, оптимизация системы по одному показа-

телю часто приводит к ухудшению значений другого, что делает актуальной зада-

чу поиска баланса между разными показателями.  

В большинстве суперкомпьютерных систем применяются методы планиро-

вания, базирующиеся на предоставляемых пользователями оценках времени вы-
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полнения заданий и необходимого объема ресурсов, причем эти оценки не изме-

няются на протяжении жизненного цикла задания, т.е. являются фиксированными 

параметрами. Для методов планирования заданий с фиксированными параметра-

ми характерна невытесняющая приоритетная дисциплина обслуживания с приме-

нением принципов справедливого распределения ресурсов [19, 20] и обратного 

заполнения [21-24]. Справедливое распределение означает обратную зависимость 

приоритета пользователя от объема потребленных его заданиями ресурсов. Прин-

цип обратного заполнения разрешает запуск вне очереди некоторых заданий, если 

этот запуск не повлияет на время старта заданий, стоящих в очереди выше. 

Разнообразие решаемых вычислительных задач порождает различные тре-

бования пользователей к объему и времени использования суперкомпьютерных 

ресурсов. В очереди одного суперкомпьютера могут одновременно находиться 

тестовые задания, требующие незначительного времени выполнения в целях от-

ладки, и задания, сформированные для длительных расчетов. В исследованиях  

[25, 26] отмечается, что наличие в единой очереди множества разнородных заданий 

является одной из главных проблем планирования. При этом из-за разных размеров 

заданий в расписании запусков неизбежно образуются окна, ведущие к простою 

вычислительных узлов. Неточная оценка пользователями времени выполнения 

заданий [27] повышает стохастичность образования окон и снижает эффектив-

ность таких алгоритмов, как обратное заполнение. Заполнение динамических 

окон в расписании заданий с фиксированными параметрами возможно за счет 

адаптивных заданий [28-31], размеры которых подстраиваются по размеры появ-

ляющихся окон. В этом случае адаптивные задания образуют дополнительный 

поток, который необходимо эффективно совмещать с основным потоком.  

Одним из широко распространенных методов повышения эффективности 

обработки данных  является применение облачных вычислений, в основе которых 

лежат технологии гипервизорной и контейнерной виртуализации. Известные об-

лачные платформы, такие как OpenStack, OpenNebula, предоставляют потребите-

лям и поставщикам вычислительных ресурсов широкий спектр возможностей для 



13 

построения и применения облачных сервисов – предоставляемых по сети инфор-

мационно-вычислительных услуг. Одним из важных направлений в этой области 

является создание облачных сервисов для высокопроизводительных вычислений 

[32-37]. Однако, при переносе суперкомпьютерных приложений в облачные плат-

формы возникает ряд противоречий. Многолетняя практика применения СУЗ в 

суперкомпьютерных центрах привела к образованию полноценных цифровых 

экосистем, в которых исторически сложился порядок взаимодействия пользовате-

лей и персонала, выработаны политики предоставления ресурсов и обеспечения 

информационной безопасности, пользователями и системными администраторами 

накоплен значительный багаж инструментального программного обеспечения для 

взаимодействия с СУЗ. Прямой переход на облачные платформы нарушит це-

лостность сложившейся цифровой экосистемы и повлечет значительные времен-

ные и трудовые затраты пользователей и персонала суперкомпьютерных центров. 

Выходом видится совмещение работы СУЗ и облачных платформ, однако, и те, и 

другие системы требуют монопольного управления вычислительными ресурсами, 

и это противоречие необходимо разрешать. Кроме этого, технологии виртуализа-

ции вносят существенные накладные расходы [32, 38, 39] и лишают пользователя 

непосредственного доступа к вычислительным ресурсам, что критически важно 

для большого числа суперкомпьютерных приложений. Перечисленные противо-

речия обуславливают актуальность исследований и разработок методов и средств 

совместного использования систем управления заданиями и облачных платформ. 

Таким образом, разнообразие решаемых вычислительных задач, примене-

ние облачных вычислений и связанных с ними технологий виртуализации и кон-

тейнеризации приводит к появлению разнородных потоков заданий на входе су-

перкомпьютерной системы, что обуславливает актуальность исследований и раз-

работок методов и средств повышения качества планирования заданий путем эф-

фективного совмещения разнородных потоков заданий и поиска баланса между 

противоречивыми показателями качества. 
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Не менее важной функцией системы управления является распределение 

процессов прикладной параллельной программы по вычислительным узлам супер-

компьютера. Для каждого задания необходимо найти такое отображение информа-

ционного графа прикладной программы на граф вычислительных узлов, при кото-

ром минимизируется время, затрачиваемое процессами программы на информаци-

онные обмены. Эта задача в общем случае является NP-полной [40, 41], ее слож-

ность многократно возрастает в связи с непрерывным ростом числа процессорных 

ядер и вычислительных узлов в суперкомпьютерных системах, и использование 

точных методов решения влечет высокие временные затраты даже для графов ма-

лых или средних порядков. Современные исследования [42-51] направлены на 

применение приближенных эвристических алгоритмов, при этом широко исполь-

зуются параллельные алгоритмы [49-53], а также различные комбинации базовых 

эвристик [48, 54]. В условиях режима коллективного пользования информацион-

ный граф программы и граф вычислительных узлов, как правило, неизвестны зара-

нее, и задача поиска оптимального отображения должна решаться системой управ-

ления при каждом запуске задания и за ограниченное время. В такой постановке 

задача отображения в современных исследованиях либо не рассматривается, либо 

предлагаемые решения [55] фактически нарушают иерархию уровней управления. 

Анализ научных публикаций показывает актуальность исследований и разработок 

методов и алгоритмов решения задачи поиска оптимального отображения сред-

ствами системы управления заданиями за приемлемое время. 

Повышение доступности и универсальности суперкомпьютеров расширяет 

круг пользователей. При этом возрастает доля исследователей, не являющихся 

профессиональными специалистами в области параллельных вычислений. С дру-

гой стороны, эффективная организация вычислительного процесса требует доста-

точно высокой квалификации пользователя, в распоряжении которого оказывает-

ся суперкомпьютерная система со сложной иерархической структурой. Наиболее 

ярко это противоречие проявляется для вычислительных задач с распараллелива-

нием по данным, где подготовка заданий и организация параллельных вычисле-
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ний носят рутинный характер. Известные технологии распараллеливания по дан-

ным, такие как MapReduce [56, 57], BOINC [58, 59] или разработка НИВЦ МГУ 

им. М.В. Ломоносова программный комплекс X-COM [60, 61], освобождая пользо-

вателя от организации параллельных вычислений, тем не менее, подразумевают 

разработку специальных служебных программ, от эффективности которых суще-

ственно зависит итоговое быстродействие вычислений. Кроме этого, при распа-

раллеливании по данным для учета обработанных порций данных в перечислен-

ных решениях применяются специализированные базы данных, ведение которых 

вносит существенные накладные расходы. Исследование и разработка методов и 

средств, обеспечивающих распараллеливание по данным с меньшими по сравне-

нию с известными решениями накладными расходами, также является актуальной 

научной задачей. 

Таким образом, каждый этап обработки входного потока заданий требует 

поиска, разработки и внедрения новых научно обоснованных архитектурных, тех-

нических и технологических решений по повышению эффективности использова-

ния суперкомпьютерных систем. 

Существенное влияние на развитие суперкомпьютерных технологий и их 

применение, включая создание, эксплуатацию и развитие суперкомпьютерных 

систем и центров коллективного пользования оказали работы советских и 

российских ученых Г.И. Савина, В.К. Левина, Б.М. Шабанова, Вл.В. Воеводина, 

В.Ф. Тюрина, В.В. Корнеева,  А.О. Лациса, Н.Н. Миренкова, В.В. Коренькова. 

Исследования высокопроизводительных вычислительных систем методами теории 

массового обслуживания представлены в работах И.А. Соколова, В.Ф. Матвеева, 

В.А. Балыбердина, А.И. Костогрызова, А.С. Румянцева, Р.В. Разумчика. Создание и 

развитие математических методов, алгоритмов, системного, инструментального и 

прикладного программного обеспечения для эффективного управления 

суперкомпьютерными ресурсами и организации высокопроизводительных 

вычислений широко представлено в работах Б.Н. Четверушкина, А.И. Аветисяна, 

М.В. Якобовского, А.Н. Томилина, В.В. Топоркова. 
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Цель и задачи работы. Цель работы состоит в повышении эффективности 

использования суперкомпьютерных систем коллективного пользования за счет 

разработки комплекса архитектурных, технических и технологических решений 

для управления вычислительными ресурсами. 

Для достижения поставленной цели необходимо решить следующие задачи: 

- разработать иерархическую модель управления вычислительными ресур-

сами в суперкомпьютерной системе коллективного пользования, построить архи-

тектуру и создать систему управления заданиями, обладающую качественными и 

количественными характеристиками на уровне мировых систем-лидеров; 

- разработать методы и средства планирования заданий, обеспечивающие 

распределение по вычислительным ресурсам суперкомпьютера разнородных по-

токов пользовательских заданий различных классов; 

- разработать решения по повышению быстродействия прикладных про-

грамм за счет оптимизации их отображения на структуру вычислительных узлов 

суперкомпьютера; 

- разработать методы и технические решения организации параллельных 

вычислений с распараллеливанием по данным. 

Методология и методы исследования. Результаты диссертации были по-

лучены с привлечением моделей и методов, используемых при поиске архитек-

турных и системных решений. Математическую основу исследования составляют 

методы теории массового обслуживания, теории алгоритмов, математической ло-

гики, теории графов. 

Научная новизна работы. 

Научная новизна выполненного исследования заключается в следующем: 

-  разработаны новые методы планирования, совмещающие обработку 

классов ординарных, отладочных, фоновых и адаптивных заданий, в том числе 

представленных в виде виртуальных машин и контейнеров; 

- разработан новый двухэтапный метод отображения параллельной про-

граммы на вычислительные узлы суперкомпьютера: на первом этапе производит-
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ся выделение вычислительных узлов для параллельной программы и тем самым 

сокращается размер задачи отображения, на втором этапе выделенные узлы ис-

пользуются для выполнения параллельного алгоритма поиска отображения; 

- разработан новый эвристический алгоритм выделения вычислительных 

узлов для задания, основанный на разрезании графа свободных вычислительных 

узлов на два минимально связанных друг с другом  подграфа при помощи имита-

ции отжига; 

- разработан новый параллельный алгоритм поиска отображения про-

граммного графа на граф вычислительных узлов с использованием циклической 

смены фаз имитации отжига и генетического отбора; 

- разработан новый метод иерархического деления данных для организа-

ции параллельных вычислений с распараллеливанием по данным, за счет разделе-

ния входного пула данных на наборы упорядоченных элементарных вычисли-

тельных работ обеспечивающий компактное представление состояния вычисле-

ний и низкие накладные расходы на распараллеливание; 

- разработана новая архитектура системы управления заданиями пользова-

телей, основанная на иерархической модели управления вычислительными ресур-

сами суперкомпьютерной системы коллективного пользования. 

Достоверность полученных результатов подтверждается реализацией раз-

работанных решений в составе Системы управления прохождением параллельных 

заданий (СУППЗ) и положительным опытом ее практического применения  для 

управления вычислительными ресурсами отечественных суперкомпьютерных си-

стем МВС-1000, МВС-1000/16, МВС-1000/32, МВС-1000М, МВС-15000ВМ, МВС-

6000IM, МВС-100К, МВС-10П, МВС-Экспресс, K-100, K-60. Эффективность пред-

ложенных автором методов и средств подтверждается данными статистики исполь-

зования указанных высокопроизводительных систем, результатами сравнительных 

вычислительных экспериментов и имитационного моделирования. 

Теоретическая и практическая значимость. Практическая значимость 

диссертации определяется тем, что разработанный и реализованный комплекс 
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решений по управлению вычислительными ресурсами суперкомпьютерных си-

стем коллективного пользования в течение десятилетий обеспечивает проведение 

высокопроизводительных расчетов для пользователей-исследователей суперком-

пьютерных центров коллективного пользования МСЦ РАН – НИЦ «Курчатовский 

институт», ИПМ им. М.В. Келдыша РАН, ФГУП НИИ «Квант» и других научных 

организаций. 

Разработанные автором эвристические алгоритмы наименьшего разреза 

графа и поиска отображения программного графа на граф вычислительных узлов 

суперкомпьютера вносят вклад в решение фундаментальной квадратичной задачи 

о назначениях.  

Теоретические положения и накопленный практический опыт, представ-

ленные в диссертации, могут служить основой дальнейшего развития методов и 

средств построения систем управления вычислительными ресурсами и организа-

ции параллельных вычислений в суперкомпьютерных центрах. 

Работа является развитием достижений отечественной и мировой науки и 

практики по созданию системного программного обеспечения высокопроизводи-

тельных вычислительных систем, в том числе разработок научных школ 

С.А. Лебедева, В.А. Мельникова, В.К. Левина, В.С. Бурцева, А.В. Забродина, 

В.П. Иванникова, Н.Н. Говоруна, В.В. Воеводина, Э.В. Евреинова. 

Положения, выносимые на защиту: 

- метод планирования, совмещающий обработку классов ординарных, от-

ладочных и фоновых заданий, позволяет снизить средний коэффициент замедле-

ния для отладочных и фоновых заданий при сохранении высокой загрузки вычис-

лительных ресурсов; 

- метод постпланирования, совмещающий поток заданий с фиксированны-

ми параметрами и поток адаптивных заданий, повышает загрузку суперкомпью-

терной системы и минимизирует коэффициент замедления адаптивных заданий;  

- двухэтапный метод и алгоритмы отображения параллельной программы 

на вычислительные узлы суперкомпьютера позволяют ускорить высокопроизво-
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дительные расчеты, повышают точность и быстродействие поиска отображения 

по сравнению с известными методами и алгоритмами; 

- метод иерархического деления данных позволяет организовать парал-

лельные вычисления с распараллеливанием по данным с меньшими накладными 

расходами на распараллеливание по сравнению с известными решениями; 

- система управления прохождением параллельных заданий составляет ос-

нову информационно-вычислительной среды (цифровой экосистемы) проведения 

высокопроизводительных научных расчетов в суперкомпьютерных центрах кол-

лективного пользования, обеспечивает качество решения задач управления вы-

числительными ресурсами, соответствующее мировому уровню.  

Апробация диссертации. Материалы диссертации докладывались на сле-

дующих международных и всероссийских конференциях: 

1. Всероссийская научная конференция «Высокопроизводительные 

вычисления и их приложения», 30 октября - 2 ноября 2000 года, Черноголовка. 

2. 1-я Международная научно-техническая конференция «Распределенные 

вычисления и Грид-технологии в науке и образовании (GRID’2004)», 29 июня – 

2 июля 2004 г., Дубна. 

3. 2-я Международная научно-техническая конференция «Распределенные 

вычисления и Грид-технологии в науке и образовании (GRID’2006)», 26-30 июня 

2006 г., Дубна. 

4. Всероссийская научная конференция «Научный сервис в сети Интернет: 

технологии параллельного программирования», 18-23 сентября 2006 г., 

Новороссийск. 

5. Всероссийская научная конференция «Научный сервис в сети Интернет: 

многоядерный компьютерный мир. 15 лет РФФИ», 24-29 сентября 2007 г.,  

Новороссийск. 

6. Всероссийская научная конференция «Научный сервис в сети Интернет: 

масштабируемость, параллельность, эффективность», 21-26 сентября 2009 г.,  

Новороссийск. 
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7. 4-я Международная научно-техническая конференция «Распределенные 

вычисления и Грид-технологии в науке и образовании (GRID’2010)», 28 июня - 

3 июля 2010 г., Дубна. 

8. Всероссийская научная конференция «Научный сервис в сети Интернет: 

суперкомпьютерные центры и задачи», 20-25 сентября 2010 г., Новороссийск. 

9. 5-я Международная научно-техническая конференция «Распределенные 

вычисления и Грид-технологии в науке и образовании (GRID’2012)», 16-21 июля 

2012 г., Дубна. 

10. Всероссийская научная конференция «Научный сервис в сети Интернет: 

поиск новых решений», 17-22 сентября 2012 г., Новороссийск. 

11. Всероссийская научная конференция «Научный сервис в сети Интернет: 

все грани параллелизма», 23-28 сентября 2013 г., Новороссийск. 

12. Всероссийская научная конференция «Научный сервис в сети Интернет: 

многообразие суперкомпьютерных миров», 22-27 сентября 2014 г., Новороссийск. 

13. Всероссийская научно-техническая конференция «Суперкомпьютерные 

технологии СКТ-2014», 29 сентября - 4 октября 2014 г., Дивноморское, 

Геленджик.  

14. Национальный Суперкомпьютерный Форум (НСКФ-2015), 24-27 ноября 

2015 г., Переславль-Залесский. 

15. Международная конференция «Суперкомпьютерные дни в России», 

26-27 сентября 2016 г., Москва. 

16. Национальный Суперкомпьютерный Форум (НСКФ-2016), 29 ноября - 

02 декабря 2016 г., Переславль-Залесский. 

17. 14th International Conference on Parallel Computing Technologies, 

September 4-8, 2017, Nizhni Novgorod, Russia. 

18. Международная конференция «Суперкомпьютерные дни в России», 

25-26 сентября 2017 г., Москва. 

19. 2018 IEEE Conference of Russian Young Researchers in Electrical and 

Electronic Engineering (EIConRus), 29 января - 1 февраля 2018 г., Москва. 
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20. Национальный Суперкомпьютерный Форум (НСКФ-2018), 27-30 ноября 

2018 г., Переславль-Залесский. 

21. 2019 Federated Conference on Computer Science and Information Systems, 

FedCSIS 2019, 01-04 сентября 2019 г., Leipzig. 

22. 5-я Международная научно-практическая конференция 

«Информационные технологии и высокопроизводительные вычисления», 16-19 

сентября 2019 г., Хабаровск. 

23. Международная конференция «Суперкомпьютерные дни в России», 

23-24 сентября 2019 г., Москва. 

24. 13th International Scientific Conference «Parallel computational technologies 

(PCT) 2020», March 31 - April 2, 2020, Perm, Russia. 

25. Научная конференция в рамках международного конгресса 

«Суперкомпьютерные дни в России», 21-22 сентября 2020 г., Москва. 

26. 16th International Conference «Parallel Computing Technologies (PaCT 

2021)», September 13–18, 2021, Kaliningrad, Russia. 

27. Научная конференция в рамках международного конгресса 

«Суперкомпьютерные дни в России», 27-28 сентября 2021 г., Москва. 

28. Национальный Суперкомпьютерный Форум (НСКФ-2021), 30 ноября - 

3 декабря 2021 г., Переславль-Залесский. 

29. Международная конференция «Суперкомпьютерные дни в России», 

26-27 сентября 2022 г., Москва. 

30. Международная конференция «Суперкомпьютерные дни в России», 

23-24 сентября 2024 г., Москва. 

Кроме конференций, результаты диссертации докладывались на семинарах 

Отделения суперкомпьютерных систем и параллельных вычислений НИЦ 

«Курчатовский институт», Федерального исследовательского центра 

«Информатика и управление» Российской академии наук, Научно-

исследовательского вычислительного центра МГУ им. М.В. Ломоносова. 
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Публикации и личный вклад автора.  

Все выносимые на защиту результаты получены соискателем лично. 

По теме диссертации автором опубликовано 45 печатных работ, из них 27 

работ опубликованы в изданиях, рекомендованных ВАК. По тематике исследова-

ний оформлено 6 свидетельств о государственной регистрации баз данных и про-

грамм для ЭВМ. 

Структура и объем работы. Диссертация состоит из введения, пяти глав и 

заключения. Содержание работы изложено на 295 страницах машинописного тек-

ста. Список использованных источников составляет 242 наименования. 

В первой главе раскрывается содержание основных задач управления вы-

числительными ресурсами суперкомпьютерной системы коллективного пользова-

ния, формулируются требования к системам управления заданиями, приводится 

краткий обзор этих систем. Центральным местом главы является иерархическая 

модель управления суперкомпьютерными ресурсами, на основе которой предло-

жена архитектура СУППЗ. В главе показано соответствие архитектуры СУППЗ 

выдвинутым требованиям, а также отражены особенности архитектуры для отече-

ственных массивно-параллельных систем серии МВС-1000. 

Во второй главе представлен обзор комплекса предложенных в составе 

СУППЗ технических и технологических решений по управлению суперкомпью-

терными ресурсами, представленных на каждом уровне иерархической модели, 

произведено сравнение качественных и количественных характеристик СУППЗ и 

ведущих мировых систем управления заданиями, представлены результаты экс-

плуатации СУППЗ на ведущих отечественных суперкомпьютерах. 

Главы 3-5 посвящены решению частных научных задач диссертации: разра-

ботке методов и средств планирования заданий, отображения параллельных про-

грамм на вычислительные узлы суперкомпьютера, организации параллельных 

вычислений с распараллеливанием по данным. В каждой главе предлагаемые ре-

шения предваряются анализом состояния предметной области решаемой научной 

задачи и обзором соответствующих этой области научных работ. 



23 
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Глава 1. Иерархическая модель управления вычислительными ресурсами и 

архитектура системы управления заданиями пользователей 

суперкомпьютера  

Типовая архитектура суперкомпьютерной системы коллективного 1.1 

пользования 

В 1990 г. Р. Дунканом было дано следующее актуальное по сей день опреде-

ление параллельной архитектуры компьютера [62], как способа организации вы-

числительной системы, при котором допускается, чтобы множество процессоров 

(простых или сложных) могло бы работать одновременно, взаимодействуя по мере 

надобности друг с другом. Это определение в явном виде выделяет в архитектуре 

параллельного компьютера вычислительную и коммуникационную подсистемы. 

На современном этапе развития в роли условного «сложного» процессора выступа-

ет вычислительный узел, представляющий собой многопроцессорный (многоядер-

ный) сервер. Вычислительные узлы объединяются в единый параллельный компь-

ютер (суперкомпьютер) высокопроизводительной локальной сетью. 

Множество вычислительных узлов и объединяющая их коммуникационная 

среда многократно увеличивают стоимость построения параллельной вычисли-

тельной системы по сравнению с персональным компьютером или сервером. 

Кроме этого, следует учитывать, что параллельные компьютеры имеют значи-

тельно меньшую серийность, чем обычные вычислительные системы, и, как след-

ствие, являются достаточно дорогостоящими вычислительными установками. 

В эксплуатации параллельный компьютер потребляет значительное количество 

электроэнергии и выделяет большие объемы тепла, которое необходимо отводить 

при помощи подсистемы охлаждения. Все это делает невозможным функциони-

рование параллельного компьютера вне специализированного центра обработки 

данных, обычно называемого суперкомпьютерным центром, эксплуатация и раз-

витие оборудования которого обеспечивается высококвалифицированным персо-

налом. 
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Основным режимом эксплуатации суперкомпьютерных систем как дорого-

стоящего научного оборудования является в режим коллективного пользования. 

Режим коллективного пользования подразумевает одновременную работу в супер-

компьютерной системе как параллельном компьютере множества пользователей, 

которым суперкомпьютерный центр оказывает услуги по высокопроизводитель-

ным вычислениям. При этом для пользователей суперкомпьютерная система пред-

ставляется в виде некоторой типовой архитектуры, представленной на рисунке 1.  

 

Пользователи  
 

Вычислитель (решающее поле) 

Клиентская 
часть СУЗ 

Серверная 
часть СУЗ 

 Сервер 
доступа 

Управляющая 

         ЭВМ 

ВУ 1 ВУ 2 ВУ 3 ВУ 4 

ВУ 5 ВУ 6 ВУ 7 ВУ 8 

ВУ 9 ВУ 10 ВУ 11 ВУ 12 

ВУ 13 ВУ 14 ВУ 15 ВУ 16 

ВУ 17 ВУ 18 ВУ 19 ВУ 20 

Система 
хранения 
данных 

Очередь 
заданий 

Интернет 

 

 

Рисунок 1. Типовая архитектура суперкомпьютерной системы коллективного 

пользования  

Главным элементом суперкомпьютерной системы является вычислитель-

ный узел (ВУ). На разных этапах развития суперкомпьютерной техники вычисли-

тельный узел представлял собой разные технические решения. В массивно-

параллельных системах 1990-х годов это был модуль (электронная плата) с микро-

процессорами для вычислений и коммуникаций. Примером отечественных массив-

но-параллельных компьютеров могут служить многопроцессорные вычислитель-

ные системы МВС-100 и МВС-1000 [63, 64], разрабатывавшиеся НИИ «Квант» и 

рядом институтов РАН в период 1994-1999 гг. Вычислительный узел в этих систе-

мах представлял собой двухпроцессорный модуль, как показано на рисунке 2. 

Один из процессоров модуля выполнял вычислительные функции и назы-

вался вычислительным процессором. На другой процессор были возложены 
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функции информационного обмена, поэтому он назывался связным. Процессоры 

ВУ имели как общую разделяемую, так и свою собственную оперативную память. 

Идентификация ВУ в системе происходила по уникальному целочисленному но-

меру от 0 до N. Каждый СП имел несколько линков, посредством которых ВУ 

объединялись в сеть, составлявшую коммуникационную среду параллельного 

компьютера.  

 

Рисунок 2. Архитектура многопроцессорных систем МВС-100 и МВС-1000  

С наступлением эпохи кластерных вычислительных систем в качестве ВУ 

стал выступать высокопроизводительный сервер с одним или несколькими процес-

сорами в составе. С распространением многоядерных микропроцессоров ВУ стали 

представлять собой многоядерные серверы с большим объемом оперативной памя-

ти, т.е. фактически SMP-системы. При оснащении ВУ двумя или более микропро-

цессорами он превращался в систему NUMA. Наконец, в последнее десятилетие 

широко распространились гибридные решения, когда ВУ, помимо центральных 

универсальных процессоров, оснащается одним или более ускорителями вычисле-

ний, как правило, на базе высокопроизводительных графических процессоров.  

Отличительными чертами современного ВУ являются: 

– наличие собственной оперативной памяти и, как правило, собственного 

жесткого диска; 
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– ВУ управляется собственной операционной системой (в современных си-

стемах в качестве ОС в подавляющем большинстве случаев используется Linux), 

взаимодействуя с другими ВУ только по сети; 

– ВУ имеет собственное уникальное сетевое имя, однозначно идентифици-

рующее его среди других ВУ. 

ВУ объединяются друг с другом посредством высокоскоростных низкола-

тентных коммуникацонных сетей, часто называемых в литературе интерконнек-

том [65]. Обзор современных итерконнектов приведен в диссертации [66].  Среди 

интерконнектов выделяются серийно выпускаемые сети Ethernet 

10G/25G/40G/100G, Infiniband  EDR/FDR, OmniPath (OPA), Aries Interconnect, а 

также сети собственной разработки, например, Tofu Interconnect, Tianhe Express. 

В системе МВС-1000 интерконнектом служила сеть связных процессоров, объ-

единенных линками. 

Управление вычислителем, в т.ч. распределением вычислительной работы 

между ВУ осуществляет специально выделенный сервер – управляющая ЭВМ. В 

системе МВС-1000 управляющая ЭВМ, как показано на рисунке 2, через специ-

альный адаптер соединялась с одним из линков нулевого (корневого) узла. В со-

временных кластерных системах для целей управления решающим полем, как 

правило, добавляется отдельная управляющая сеть. 

 Доступ пользователей к параллельному компьютеру происходит через от-

дельный сервер доступа, к которому пользователи подключаются через Интернет 

при помощи собственных оконечных устройств: рабочих станций, мобильных те-

лефонов, планшетов, ноутбуков и т.п. В системах с относительно малым числом 

ВУ функции управляющей ЭВМ и сервера доступа могут объединяться на одной 

машине.  

Каждому пользователю выделяется определенное дисковое пространство в 

системе хранения (СХД) данных суперкомпьютерного центра. Это пространство 

монтируется на всех ВУ, сервере доступа и управляющей ЭВМ в каталоги с од-
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ними и теми же именами, что позволяет пользователю иметь одинаковый доступ к 

своим файлам на всех компонентах параллельного компьютера.  

 

Задания пользователей суперкомпьютерной системы 1.2 

1.2.1 Понятие задания. Жизненный цикл задания 

В системе коллективного пользования доступ к разделяемым суперкомпью-

терным ресурсам должен быть упорядочен. С этой целью для получения доступа 

к решающему полю пользователь оформляет т.н. задание (англ. – job) – специ-

альный информационный объект, в состав которого в общем случае входят: 

– параллельная программа, реализующая алгоритм решения прикладной 

задачи и состоящая из нескольких взаимодействующих процессов (потоков), ко-

торые могут одновременно выполняться на нескольких ВУ (процессорных ядрах); 

– требования к параллельному ресурсу, под которым мы будем понимать 

подмножество ВУ (процессорных ядер), выделяемое заданию на определенное 

время, при этом величина параллельного ресурса (число ВУ или ядер и время вы-

полнения) называется размером задания (параллельного ресурса); 

– входные данные параллельной программы. 

Часто оперируют понятием площади задания (параллельного ресурса), под 

которой понимают произведение требуемого числа ВУ (процессорных ядер) и 

требуемого времени выполнения. 

Кроме требований к размеру параллельного ресурса, задание может вклю-

чать следующие дополнительные требования:  

– тип ВУ в гетерогенных системах; 

– подмножество ВУ с конкретными именами (идентификаторами); 

– состав необходимого программного обеспечения – требуемый программ-

ный стек; 

– необходимое окружение для процессов параллельной программы; 
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– сценарии запуска и завершения параллельной программы или нескольких 

параллельных программ; 

– наличие связей с другими заданиями; 

– иные требования. 

Говорят, что совокупность требований определяется параметрами задания, 

которые оформляются пользователем в виде некоторого электронного документа, 

называемого паспортом задания. Разные задания различных пользователей обра-

зуют входной поток, обработку которого осуществляют специальные программ-

ные системы управления заданиями (СУЗ) [12].  

Жизненный цикл задания включает следующие этапы. 

1. Создание пользователем паспорта задания. 

2. Направление пользователем задания на вход СУЗ (англ. – job submit). 

3. Нахождение задания в очереди СУЗ. 

4. Инициализация выделенных заданию ВУ после прохождения очереди. 

5. Запуск задания на выделенных для него ВУ, заключающийся в порожде-

нии необходимых процессов (потоков) прикладной параллельной программы. 

6. Выполнение прикладной параллельной программы. 

7. Завершение задания, заключающееся в завершении запущенных на выде-

ленных ВУ процессов (потоков) параллельной программы. 

Каждый из этапов жизненного цикла требует ненулевого времени для свое-

го выполнения. Наиболее длительными обычно являются этап 3 нахождения за-

дания в очереди и этап 6 выполнения задания. Как будет показано в п.2.3 дли-

тельность именно этих этапов во многом определяет показатели качества СУЗ. 

Следует отметить, что на этапе 3 пользователь имеет возможность удаления 

задания из очереди СУЗ, а на этапах 4-6 пользователь может досрочно завершить 

выполняющееся задание, что приводит к немедленному выполнению этапа 7. 
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1.2.2 Классификации пользовательских заданий 

Задания пользователей суперкомпьютерной системы можно разбить на 

классы по различным основаниям. От класса обрабатываемых заданий часто зави-

сит тот или иной тип СУЗ. Рассмотрим несколько распространенных классифика-

ций заданий. 

Если в основании классификации положить изменяемость или неизменя-

емость параметров задания, то задания можно разделить на два больших класса: 

задания с фиксированными и нефиксированными параметрами. Главными пара-

метрами являются требуемое для выполнения задания число ВУ и требуемое вре-

мя выполнения задания, т.е. параметры, задающие размер задания. Задания с 

фиксированными параметрами не изменяют их в течение всего жизненного 

цикла, в то время как задания с нефиксированными параметрами могут изменять 

требования к параллельному ресурсу на разных этапах жизненного цикла. 

Как правило, изменение требований к параллельному ресурсу связано с 

необходимостью адаптации задания к текущему состоянию вычислений в супер-

компьютерной системе, например, к числу свободных ВУ. Такие задания назовем 

адаптивными [67] или эластичными (англ. – moldable jobs) [68]. Адаптивные 

задания могут быть выполнены на параллельном ресурсе произвольного размера в 

некотором заданном диапазоне. Как правило, для эластичных заданий неизмен-

ным остается площадь требуемого параллельного ресурса. Условно, такое задание 

может быть выполнено на 100 ВУ за 10 часов или на 10 ВУ за 100 часов. По этой 

причине адаптивные задания в литературе часто называют масштабируемыми. 

Обработку прерываемых (фоновых) заданий  [69] можно вести неболь-

шими порциями – квантами. Как правило, фоновые задания требуют значительно-

го времени для выполнения, которое не может быть одноразово предоставлено в 

режиме коллективного пользования. Фоновые задания сохраняют в процессе вы-

полнения контрольные точки, позволяющие возобновить вычисления после пре-

рывания. СУЗ, поддерживающие фоновые задания, периодически снимают их с 

выполнения, возвращая в очередь. Квант (единичная порция времени) выполне-
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ния прерываемого задания зависит от алгоритма решения прикладной задачи и 

может составлять секунды, минуты и десятки минут, при этом общее время вы-

полнения такого задания может измеряться часами и сутками.  

По соотношению этапов инициализации и выполнения задания можно 

разделить на два класса: с коротким и длительным временем инициализации. Ко-

ротким временем инициализации обычно пренебрегают при расчетах показателей 

качества СУЗ. Под длительным временем инициализации будем понимать время, 

которым нельзя пренебречь по сравнению со временем выполнения. Можно вы-

делить следующие типовые категории заданий с длительным временем инициали-

зации [70]. 

1. Для краткосрочного задания требуется инициализация высокопроизводи-

тельного ускорителя (графического процессора или ПЛИС), при этом время ини-

циализации ускорителя сравнимо со временем обработки задания [71]. Время 

инициализации может включать в себя время перепрограммирования ПЛИС или 

компиляции программы для графического процессора. 

2. Для задания необходима специфическая программная платформа, развёр-

тывание такой платформы перед стартом задания может занять существенное 

время [72, 73]. Время инициализации может включать в себя время запуска вир-

туальных машин, подготовки контейнеров, перезагрузки вычислительного узла. 

3. Для задания необходимо до начала обработки загрузить на вычислитель-

ные узлы значительный объём входных данных. 

Для обработки заданий с длительным временем инициализации необходимо 

применение специальных методов, таких как объединение однотипных заданий в 

группы (пакеты) [74]. 

По требованиям к составу аппаратно-программной платформы задания 

могут разделяться на стандартные и нестандартные. Стандартные задания ис-

пользуют для выполнения своих параллельных программ так называемый «стан-

дартный» стек программного обеспечения для высокопроизводительных вычис-

лений. Это стек, как правило, включает в себя [66, 75]: 



32 

– на нижнем уровне: операционные системы вычислительных узлов с драй-

верами адаптеров (контроллеров) высокоскоростной коммуникационной среды; 

– над уровнем операционных систем вычислительных узлов через драйверы 

коммуникационной среды выстраивается слой коммуникационных библиотек для 

взаимодействия процессов параллельных программ, по факту – различные реали-

зации стандарта MPI; 

– следующим уровнем можно назвать инструментальные средства разра-

ботки параллельных программ, включающие библиотеки для высокопроизводи-

тельных расчетов, в том числе библиотеки прикладных программных пакетов; 

– высшим уровнем является прикладная параллельная программа пользова-

теля, включаемая им в состав стандартного задания. 

Важно, что для запуска стандартного задания не требуются особые опера-

ционные системы, либо другие специфические компоненты стека программного 

обеспечения. Однако, как отмечается в исследовании [76], в суперкомпьютерных 

центрах коллективного пользования всё чаще появляются нестандартные зада-

ния, предъявляющие особые требования к ресурсам. Подобным заданиям могут 

потребоваться отличная от стандартной операционная система (например, MS 

Windows), специфическое окружение, особые программные пакеты и лицензии, то 

есть собственная программная платформа (среда). Методы совмещения пото-

ков стандартных и нестандартных заданий рассмотрены в п. 3.5  

По связности процессов параллельной программы задания делятся на 

задания с взаимодействующими процессами и задания с распараллеливанием 

по данным. В заданиях с взаимодействующими процессами последние осуществ-

ляют друг с другом информационные обмены промежуточными результатами вы-

числений. Такие задания соответствуют классической схеме параллельных вы-

числений, подразумевающей смену фаз расчетов и коммуникаций. Для заданий с 

взаимодействующими процессами актуальна задача поиска оптимального отоб-

ражения информационного графа параллельной программы на подмножество вы-
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деленных для задания ВУ суперкомпьютера. Предлагаемый автором метод реше-

ния этой задачи представлен в главе 4. 

В случае распараллеливания по данным процессы параллельной программы 

не взаимодействуют друг с другом и осуществляют одновременную обработку 

независимых порций входных данных. Предлагаемый автором метод иерархиче-

ского разделения данных при организации параллельных вычислений с распарал-

леливанием по данным рассмотрен в главе 5. 

По способу учета приоритета можно выделить задания с абсолютными и 

относительными приоритетами. При использовании абсолютных приоритетов 

[77] вновь поставленное в очередь задание с высшим приоритетом вытесняет с 

выполнения задания с низшим приоритетом. Относительные приоритеты зада-

ний означают, что задание с высоким приоритетом только опережают в очереди 

задания с низким приоритетом, но не имеют права прерывать уже выполняющие-

ся низкоприоритетные задания. В подавляющем большинстве СУЗ применяется 

планирование заданий с относительными приоритетами. 

Задачи управления вычислительными ресурсами суперкомпьютера при 1.3 

организации режима коллективного пользования 

В монографии [78] рассмотрена иерархическая модель управления много-

процессорными вычислительными системами (МВС). В этой модели предполага-

ется, что в МВС могут быть выделены отдельные подсистемы, и на каждую выде-

ленную подсистему может быть назначен определённый вид вычислительных ра-

бот. Состояние МВС, связанное с определённым разбиением на подсистемы и 

назначением на подсистемы определённых видов работ, называется функцио-

нальным или F-состоянием системы. Периодически в такой системе необходимо 

производить перераспределение ресурсов, т.е. производить изменение F-

состояния системы, в чем собственно и заключается сущность управления вычис-

лительными ресурсами. 
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На вход системы поступает поток заданий на выполнение, которые могут 

ждать освобождения вычислительных ресурсов в одной или нескольких входных 

очередях. Вычислительные процессы, протекающие на выделенных подсистемах, 

могут находиться в разных состояниях (выполнения, ожидания, зацикливания) и 

выдавать разные запросы к СУЗ. Текущее F-состояние системы, состояние вычис-

лений процессов на выделенных подсистемах, текущее содержимое входных оче-

редей определяют текущую мультипрограммную ситуацию. 

Рассмотрим основные задачи управления вычислительными ресурсами, ко-

торые решаются при организации режима коллективного пользования в супер-

компьютерном центре. 

1. Подготовка пользователями программ и данных для высокопроизво-

дительных расчетов. Размещая программы и данные в СХД суперкомпьютерно-

го центра, на сервере доступа пользователи осуществляют редактирование вход-

ных данных, исходных текстов программ, трансляцию и сборку программ, подго-

товку их к выполнению, которая заключается в оформлении соответствующего 

задания в виде паспорта. Паспорт задания, как правило, представляет собой тек-

стовый файл определенного формата. Паспорт задания направляется на вход СУЗ, 

которая, как показано на рисунке 1, разделяется на клиентскую и серверную ча-

сти. Клиентская часть представляет собой набор команд или API, выполняемых 

пользователями на сервере доступа. Серверная часть функционирует на управля-

ющей ЭВМ и реализует дальнейший порядок обработки задания. 

2. Множество различных заданий разного размера от разных пользователей 

образует входной поток заданий, который СУЗ должна принять и обработать. Во 

время приема очередного задания СУЗ осуществляет: 

– авторизацию пользователя, направившего задание в СУЗ; 

– проверку правильности оформления паспорта задания; 

– проверку действительности квот пользователя на доступ к запрашивае-

мым вычислительным узлам; 

– присваивание заданию уникального имени или иного идентификатора; 
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– фиксацию в системных журналах времени поступления задания, его име-

ни, пользователя и основных характеристик. 

3. Велика вероятность возникновения ситуации, когда для очередного задания 

из входного потока в определенный момент времени требуемый параллельный ре-

сурс будет занят. В этом случае СУЗ должна обеспечить ведение очереди заданий, 

которое осуществляется, как правило, непосредственно на управляющей ЭВМ. На 

рисунке 1 цветом выделены ВУ, занятые разными заданиями (один цвет соответ-

ствует одному заданию), а свободные ВУ показаны неокрашенными. Важнейшей за-

дача СУЗ при ведении очереди планирование заданий (англ. – job scheduling), под 

которым понимают составление расписания запусков заданий на решающем поле. 

Обзор применяемых в известных СУЗ методов планирования, а также предлагаемые 

автором методы планирования заданий представлены в главе 3. 

4. После прохождения очереди СУЗ производит выделение заданию тре-

буемых вычислительных ресурсов, для чего необходимо выполнить следующие 

действия: 

– выбрать для задания ВУ из числа свободных; 

– проверить работоспособность выбранных ВУ; 

– провести конфигурацию выбранных ВУ; 

– предоставить доступа пользователю – владельцу задания на выделенные 

узлы; 

– зафиксировать факт старта задания в системных журналах. 

Выбор ВУ из состава свободных производится в соответствии с требовани-

ями задания и далеко не всегда является тривиальным. Если ВУ однородны, вы-

бор может сводиться к поиску наиболее связного подмножества узлов, чтобы 

обеспечить высокую скорость информационных обменов. Например, в работе [79] 

рассмотрена задача выбора узлов в суперкомпьютерной системе на базе отече-

ственной коммуникационной среды «Ангара», которая решается таким образом, 

чтобы сетевой трафик разных заданий не пересекался.  
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В случае гетерогенного вычислителя могут применяться различные крите-

рии выбора. Например, можно подобрать заданию ВУ, удовлетворяющие требо-

ваниям задания по минимуму, а можно, наоборот, выделять в первую очередь са-

мые мощные узлы, чтобы задание выполнилось как можно быстрее.  

На этапе проверки работоспособности ВУ производится диагностика узлов, 

в ходе которой тестируются доступность узла и СХД, а также готовность основ-

ных программных и аппаратных подсистем. Сценарий тестирования разрабатыва-

ется системным администратором с учетом нюансов, присущих конкретному су-

перкомпьютерному центру. Если какой-либо ВУ не проходит диагностику, он по-

мечается как неисправный, выводится из состава решающего поля, а для задания 

подбирается другой, исправный узел. 

Конфигурация выбранных ВУ для задания преследует две цели: предостав-

ление заданию требуемой программной платформы и обеспечение взаимной изо-

ляции заданий.  

Предоставление заданию требуемой программной платформы соответствует 

этапу инициализации жизненного цикла задания и может заключаться в следую-

щих видах подготовки ВУ: 

– формировании программного окружения для используемых заданием 

прикладных программных пакетов; 

– подготовке набора прикладных или коммуникационных библиотек, иных 

инструментальных средств, упакованных в контейнер; 

– запуске отдельного экземпляра операционной системы ВУ в виде вирту-

альной машины; 

– перезагрузке ВУ с переключением на другую операционную систему; 

– инициализации ускорителя вычислений на базе ПЛИС или графического 

процессора для выполнения алгоритма решения прикладной задачи. 

Взаимная изоляция заданий подразумевает конфигурирование выделенных 

заданию ВУ таким образом, чтобы доступ к этим ВУ мог получить только пользо-

ватель – владелец задания. Кроме того, должно быть исключено влияние выпол-
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няющихся процессов одного задания на выполнение процессов другого. Под вли-

янием здесь понимается не только злонамеренное или случайное воздействие на 

выполняющийся процесс (например, посылка сигнала), но и конкуренцию про-

цессов за ресурсы ВУ (процессорные ядра, оперативная память, графический 

ускоритель, устройства ввода-вывода и др.), приводящую к взаимному ожиданию 

процессов и итоговому снижению быстродействия вычислений. 

5. После выделения заданию вычислительных ресурсов СУЗ производит за-

пуск задания, поддержку и контроль его выполнения. Запускающиеся процес-

сы – ветви параллельной программы – должны быть распределены по выделен-

ным для задания ВУ так, как потребовал пользователь в паспорте задания.  

Поддержка выполнения задания заключается в предоставлении пользователю 

актуальной и достоверной информации о статусе и состоянии задания, возможно-

сти интерактивного взаимодействия с процессами задания, в том числе – возмож-

ности доступа к стандартным потокам вывода и ошибок процессов задания.  

Контроль выполнения задания производится в целях  своевременного обна-

ружения анормального поведения процессов задания. Как минимум, СУЗ отсле-

живает время выполнения задания, которое не должно превышать заказанное 

пользователем время, указанное в паспорте при постановке в очередь. При пре-

вышении заказанного времени выполнения подавляющее большинство СУЗ при-

нудительно завершает процессы задания. Другим анормальным поведением зада-

ния, которое может отслеживаться СУЗ, является «зависание» в результате дедло-

ков или ливлоков, либо аварийное завершение процессов параллельной програм-

мы. В этих случаях выполнение задания также принудительно завершается. 

6. По завершении задания СУЗ освобождает занятые заданием вычисли-

тельные узлы. Освобождение ресурсов во многом зеркально процессу выделения 

ВУ и включает:  

– прекращение доступа пользователя-владельца задания к занятым задани-

ем ВУ; 
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– прекращение выполнения всех процессов задания на каждом выделенном 

для него ВУ; 

– освобождение захваченных заданием разделяемых ресурсов ВУ, таких 

как очереди и семафоры IPC, области разделяемой памяти, временные файлы и 

другие; 

– реконфигурацию вычислительных узлов, подразумевающую их возврат в 

то состояние, которое было до запуска задания; 

– фиксацию факта и статуса завершения задания в системных журналах. 

Следует отметить, что освобождение занятых заданием вычислительных ре-

сурсов является отнюдь не тривиальным процессом. Поскольку на алгоритм и код 

параллельной программы не накладывается никаких ограничений, ее процессы 

«имеют право» совершать любые не запрещенные операционной системой анор-

мальные действия, в том числе «зависать» самим и «подвешивать» операционную 

систему, не возвращать или терять занятую память, бесконтрольно размножаться 

и т.п. Если СУЗ не удается пресечь анормальные действия процессов задания и 

корректно завершить их выполнение, то ВУ либо перезагружается, либо помеча-

ется как аварийный и выводится из состава решающего поля.  

7. Задание считается покинувшим СУЗ после освобождения ВУ. Однако, 

даже после того, как завершенное задание покидает СУЗ, необходимо обеспечить 

доступ пользователя к результатам проведенных расчетов. Обычно эти ре-

зультаты автоматически сохраняются в СХД суперкомпьютерного центра, но бы-

вают такие конфигурации параллельных компьютеров, которые требуют копиро-

вания результатов с локальных дисков ВУ в общую СХД. В любом случае поль-

зователь должен быть проинформирован, в каком месте файловой системы раз-

мещены результаты выполненных расчетов. 

8. Во время работы параллельного компьютера ведется непрерывный мо-

ниторинг состояния его вычислительных ресурсов. Помимо отслеживания ра-

ботоспособности, готовности и загруженности ВУ решающего поля, систем энер-

госнабжения и охлаждения, подсистема мониторинга может в автоматическом 
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или автоматизированном режиме отслеживать эффективность использования вы-

числительных ресурсов каждым заданием. Некоторые системы мониторинга [80] 

способны выдавать пользователям рекомендации по оптимизации выполнения их 

заданий. Немаловажной функцией подсистемы мониторинга является наглядное 

интерактивное графическое отображение состояния подсистем параллельного 

компьютера [81], помогающее администраторам осуществлять оперативный кон-

троль работоспособности и эффективности использования вычислительных ре-

сурсов. 

9. Учет потребления пользовательскими заданиями ресурсов парал-

лельного компьютера. С этой целью СУЗ в том или ином виде ведет базу дан-

ных, способную собирать и обрабатывать статистическую информацию о работе 

параллельного компьютера [82]. В такой базе данных сохраняется информация об 

обработанных заданиях, включая время поступления и характеристики каждого 

задания, времена его старта и завершения, изменения в составе и статусе ВУ, из-

менения параметров планирования заданий и др. Пользователям и администрации 

суперкомпьютерного центра база данных предоставляет статистические отчеты, 

отражающие за заданный период объемы потребленных ресурсов каждым задани-

ем, пользователем, группой пользователей, организацией. Кроме этого, в базу 

данных могут записываться данные подсистемы мониторинга, отражающие сте-

пень загруженности и эффективности использования вычислительных ресурсов. 

 

Требования к системам управления заданиями 1.4 

Формирование систем управления заданиями как отдельного вида систем-

ного программного обеспечения происходило в 1990-е годы. Необходимость по-

явления подобных систем, способных решать указанные в п.1.3 задачи управле-

ния вычислительными ресурсами, назрела в связи с расширением круга пользова-

телей суперкомпьютеров именно как параллельных вычислительных систем. Как 

справедливо отмечается в монографии [14], к середине 1990-х годов сформирова-

лась типовая архитектура параллельного компьютера, представленная на рисунке 
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1, и наблюдалось бурное развитие технологий организации параллельных вычис-

лений для компьютеров подобной архитектуры, связанное прежде всего с появле-

нием множества реализаций стандарта MPI (Message Passing Interface) [65], кото-

рый де-факто стал фундаментом для большинства прикладных параллельных про-

грамм и библиотек. Реализации MPI содержат средства запуска и развертывания 

процессов параллельной программы на подмножестве ВУ суперкомпьютера, но 

не решают при этом ни одной из указанных в п. 1.3 управленческих задач. Рост 

числа суперкомпьютерных систем и их пользователей потребовал организации 

режима коллективного пользования и создания СУЗ как неотъемлемого элемента 

стека системного программного обеспечения.  

Одной из первых работ, в которой при участии автора были сформулирова-

ны принципы организации и требования к СУЗ, стал доклад [83]. В дальнейшем 

эти требования были уточнены в монографии А.О. Лациса [14] и работе [84]. 

Обобщим и систематизируем эти требования в виде следующего перечня. 

1. Универсальность. На вид и характер пользовательских прикладных про-

грамм не накладывается никаких ограничений. Зарегистрированный в системе 

пользователь с помощью доступных инструментальных средств имеет право и 

возможности разработки и выполнения любой программы. Требование универ-

сальности применимо также к обслуживаемым СУЗ вычислительным системам: 

СУЗ должна быть способна функционировать на любом суперкомпьютере, соот-

ветствующем рассмотренной в п.1.1 типовой архитектуре. 

2. Автоматическое функционирование и круглосуточная доступность. 

Функционирование СУЗ в штатном режиме не должно предусматривать ручного 

вмешательства оператора или системного программиста (администратора). По-

следние должны воздействовать на СУЗ только в случае реконфигурации или ава-

рийных ситуаций. Соответственно,  автоматическое функционирование СУЗ под-

разумевает, что обслуживание пользовательских заданий должно производиться 

24 часа в сутки и 7 дней в неделю, за исключением вынужденных простоев и пла-

новой профилактики. 
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3. Гарантированное обслуживание без потерь. СУЗ должна гарантиро-

вать, что поступившее на ее вход задание не будет потеряно (уничтожено) и рано 

или поздно будет выполнено.  

4. Императивность управления. Наиболее полно принцип императивно-

сти управления был сформулирован в монографии [14]. Принцип постулирует 

техническую невозможность таких действий пользователя и процессов его при-

кладной программы, которые могут потенциально привести к нарушению работы 

как других прикладных программ, так и всей суперкомпьютерной системы. Как 

справедливо отмечается в [14], на момент начала исследований автора в 1999 году 

в свободном распространении не было СУЗ, в полной мере удовлетворяющих 

принципу императивности управления, что во многом обусловило необходимость 

разработки собственной СУЗ. 

5. Надёжность. СУЗ должна выполнять свои функции при любой, сколь 

угодно сложной мультипрограммной ситуации в системе. Например, пользова-

тельские процессы могут зацикливаться, выдавать некорректные запросы к ОС 

узла и к СУЗ, может произойти разрушение операционной системы ВУ. Во всех 

этих случаях, если нет аппаратных неисправностей в системе, СУЗ должна быть 

способна решать задачи управления вычислительными ресурсами.  

6. Возможность реконфигурации в процессе функционирования. Под 

возможностью реконфигурации понимается способность системы динамически 

изменять своё F-состояние. В частности, должна обеспечиваться возможность ди-

намического разбиения системы на подсистемы с произвольным составом ВУ в 

каждой. 

7. Автоматическая организация режимов профилактики в определен-

ное время. СУЗ должна иметь возможность обеспечить отсутствие выполняю-

щихся заданий на решающем поле к некоторому заданному времени. При этом 

должно продолжаться планирование очереди заданий, в которую пользователи 

могут добавлять новые задания. Соблюдение этого требования обеспечивает 
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удобство организации регулярных профилактических работ на суперкомпьютер-

ной системе по заранее заданному расписанию. 

8. Прозрачность алгоритмов планирования и справедливое распреде-

ление вычислительных ресурсов. Требование было сформулировано в работе 

[85], в которой под прозрачностью алгоритмов планирования понимается воз-

можность однозначной оценки пользователем перспектив запуска его заданий, 

находящихся в очереди. Под справедливым распределением вычислительных ре-

сурсов понимается прежде всего невозможность захвата одним пользователем не-

которого параллельного ресурса на неопределенно длительное время. Принцип 

справедливого распределения выражается формулой «пользователь, считавший за 

определенный период мало, должен иметь преимущество перед пользователем, 

считавшим много за этот же период». 

9. Автоматизация формирования типового программного окружения. 

Параллельные программы пользователей, как правило, выполняются в некотором 

типовом (стандартном) программном окружении, определяемом, например, кон-

кретной реализацией MPI. Стандартное программное окружение должно форми-

роваться в автоматизированном режиме максимально прозрачным для пользова-

теля образом. Соблюдение этого требования позволяет создать для пользователя 

удобную и комфортную рабочую среду, что, как будет показано ниже, является 

основой цифровой экосистемы суперкомпьютерного центра. 

10. Модульность архитектуры СУЗ. Соблюдение этого требования дает 

возможность применения в СУЗ взаимозаменяемых встраиваемых модулей, изме-

няющих тем или иным образом функционал СУЗ с сохранением ее общей архи-

тектуры и соответствия сложившейся цифровой экосистеме суперкомпьютерного 

центра. 

Проведенное под руководством автора исследование [84] показало, что 

практически все распространенные СУЗ соответствуют указанным требованиям с 

рядом оговорок, которые будут рассмотрены в п.2.2  Этот факт позволяет гово-
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рить о том, что соответствие приведенным требованиям является базовым показа-

телем, отражающим качество СУЗ.  

Распространенные системы управления заданиями 1.5 

Обзор наиболее распространенных СУЗ приведен в работе [12], в которой 

произведено их сравнение по перечню определенных авторами характеристик. 

В более ранней работе [15] произведена классификация СУЗ по областям примене-

ния: в кластерных HPC-системах, в грид-средах и облачных средах. Авторы [15] 

определили список характеристик СУЗ, во многом совпадающих с перечнем [12], и 

также произвели сравнение СУЗ по всем характеристикам. Рассмотрим ряд извест-

ных суперкомпьютерных СУЗ, в том числе из списков сравнения [12, 15].  

Система управления заданиям PBS (Portable Batch System) [13] ведет свою 

историю с 1991 года от системы NQS (Network Queuing System), считающейся 

первым планировщиком заданий для суперкомпьютеров. NQS/PBS разрабатыва-

лись при финансировании Национального космического агентства США, но в 

2003 году права на PBS выкупила компания Altair Engineering. В настоящее время 

существует несколько как открытых, так и коммерческих версий PBS, среди кото-

рых следует выделить OpenPBS/TORQUE [86] – свободно распространяемое ре-

шение, разрабатываемое компанией Adaptive Computing (ранее – компанией Clus-

ter Resources), и PBS Professional (PBS Pro) – проприетарную версию PBS от Altair 

Engineering. 

Распространенной коммерческой СУЗ является IBM Spectrum LSF (LSF – 

Load Sharing Facility) [17]. Изначально эта СУЗ разрабатывалась компанией Plat-

form Computing, которая в 2007 году выпустила Platform Lava, упрощенную вер-

сию LSF под лицензией GNU General Public License. В январе 2012 г. компания 

IBM приобрела Platform Computing, и с этого времени продукт называется IBM 

Spectrum LSF и поставляется совместно с суперкомпьютерными системами фир-

мы IBM. Следует отметить производный от LSF проект OpenLAVA [87] – СУЗ с 
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открытым исходным кодом, которая по оценкам [12] обладает необходимым, но в 

то же время сбалансированным набором функциональных возможностей. 

Другим известным коммерческим продуктом является Moab от компании 

Adaptive Computing. Moab ведет свою историю от свободно распространяемого 

проекта Maui [88], разработку которого с 1990-х годов вела компания Cluster 

Resources. В 2005 году проект был выкуплен Adaptive Computing, разработка Maui 

прекращена, а все преимущества проекта были воплощены в новом коммерческом 

продукте Moab HPC Suite [89]. Moab HPC Suite не только автоматизирует плани-

рование и управление заданиями, осуществляет мониторинг ресурсов параллель-

ного компьютера и учет их потребления, но также использует многомерные поли-

тики и расширенное предсказательное моделирование для оптимизации планиро-

вания заданий. 

Полнофункциональной коммерческой СУЗ является продукт Grid Engine 

[90, 91], изначально разработанный и выпущенный под названием CODINE в 1993 

году компанией Genias Software, позже приобретенный и доработанный Sun 

Microsystems и Oracle. В 2013 году права на продукт перешли к компании Univa, 

которая в 2020 году была поглощена Altair Engineering. В настоящее время разра-

ботчики версий Grid Engine от компаний Sun, Oracle и Univa продвигают новую 

версию СУЗ под названием Gridware Cluster Scheduler [92]. Существует также не-

сколько версий Grid Engine с открытым исходным кодом, включая Son of Grid 

Engine и Open Grid Scheduler, но развитие этих проектов в настоящее время не 

осуществляется. 

Среди коммерческих СУЗ следует отметить Windows HPC Server [93], раз-

рабатывавшийся компанией Microsoft в 2005-2015 гг. Основу программного про-

дукта составляла операционная система Windows, адаптированная для использо-

вания на ВУ суперкомпьютеров. Microsoft реализовала поддержку стандартов па-

раллельного программирования MPI и OpenMP как на уровне среды разработки 

MS Visual Studio (включая отладку), так и на уровне операционной системы ВУ. 

Официальная поддержка Windows HPC Server была прекращена в 2023 году. 
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Несмотря на мощность и широкий спектр возможностей коммерческих 

СУЗ, наибольшее распространение получила система SLURM (Simple Linux Utili-

ty for Resource Management – простая утилита Linux для управления ресурсами) 

[16, 94]. Разработка SLURM началась в начале 2000-х годов в Национальной ла-

боратории Лоуренса в Ливерморе (США) для решения проблемы масштабируемо-

сти СУЗ. За 20-летнюю историю развития SLURM прошел путь от простой утили-

ты до развитого программного комплекса с множеством поддерживаемых функ-

ций и встроенных модулей. SLURM является свободно распространяемым в от-

крытых исходных текстах программным продуктом, способным управлять парал-

лельными компьютерами практически произвольной мощности. Отмечается [12], 

что главным преимуществом SLURM является модульная архитектура, позволя-

ющая для добавления или изменения функционала подключать к системе различ-

ные модули третьих разработчиков. Такая архитектура позволяет настраивать 

SLURM для разных видов входных потоков заданий, различных программно-

аппаратных стеков, политик планирования задания и т.п. 

Среди отечественных разработок следует отметить систему Cleo [95], в 

начале 2000-х годов разработанную коллективом НИВЦ МГУ 

им. М.В. Ломоносова для эффективного управления ресурсами вычислительных 

кластеров. Система организует поток вычислительных заданий в одну или не-

сколько очередей и позволяет управлять порядком их выполнения на кластерах. В 

качестве вычислительной единицы в Cleo используется процессор. Хотя система 

позволяет оперировать понятием вычислительного узла, но рассматривает узел 

как объединение нескольких равноправных процессоров. Система Cleo написана 

на интерпретируемом языке Perl, что позволяет портировать её практически на 

любую вычислительную систему. К сожалению, с появлением SLURM разработки 

и развитие Cleo были свернуты. 

СУЗ Slurm-ВНИИТФ [25] разработана и функционирует в ФГУП РФЯЦ-

ВНИИТФ им. акад. Е.И. Забабахина. В основе системы лежит менеджер ресурсов 

SLURM. Slurm-ВНИИТФ расширяет функции SLURM и предоставляет дополни-
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тельные возможности управления заданиями. В п. 3.1.1 приведено более подроб-

ное описание системы Slurm-ВНИИТФ. 

Иерархическая модель управления вычислительными ресурсами 1.6 

суперкомпьютерной системы 

В фундаментальной работе [12] представлена модель СУЗ, основанная на 

разбиении системы на компоненты по функциональному признаку. Модель [12] 

выделяет следующие взаимодействующие подсистемы: 

– управления жизненным циклом задания; 

– планирования заданий; 

– выполнения заданий; 

– управления вычислительными ресурсами. 

Подсистема управления жизненным циклом задания решает задачи приема 

входного потока заданий, управления очередями заданий, контроля выполнения 

заданий, учета и биллинга. Подсистема планирования составляет расписание за-

пусков заданий, выделяет вычислительные ресурсы и назначает на них здания из 

очередей. Подсистема выполнения заданий отвечает за запуск заданий на выде-

ленных им ресурсах и за завершение заданий, очевидно, включающее освобожде-

ние занятых ими ресурсов. Подсистема управления вычислительными ресурсами 

осуществляет мониторинг вычислительных ресурсов, собирая информацию о до-

ступности и состоянии ВУ решающего поля, а также отслеживает состояния вы-

полняющихся заданий. 

Модель [12] определяет функционал практически любой СУЗ, но при этом 

не отражает иерархической структуры управления ресурсами в параллельных вы-

числительных системах, соответствующей уровням распараллеливания входного 

потока заданий. Построим иерархическую модель управления, взяв за основу 

фундаментальную модель, рассмотренную в монографии [78]. Разделим СУЗ на 

иерархические уровни, каждый из которых уменьшает неопределённость сложной 
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мультипрограммной ситуации, определяя и фиксируя ряд параметров для выше-

стоящего уровня. Выделим четыре базовых уровня принятия решений. 

Первый уровень – уровень пользователя, который выбирает алгоритмы для 

своих задач, средства для записи алгоритмов, их анализа, отладки и т.п. На втором 

уровне принимаются локальные, автономные решения по распределению ресур-

сов в рамках одного или нескольких вычислительных узлов. На третьем уровне 

принимаются решения, которые связаны с управлением подсистемой вычисли-

тельных узлов. На четвёртом уровне принимаются системные решения, изменя-

ющие F-состояние отдельной суперкомпьютерной системы. Эти решения опреде-

ляются приоритетами режимов функционирования, очередью заданий, состояни-

ем ресурсов системы, директивами оператора и т.п. 

Дополним модель [78] пятым уровнем иерархии, на котором представлены 

средства управления несколькими параллельными компьютерами, объединенны-

ми в единую распределенную вычислительную систему (РВС). На этом уровне 

принимаются глобальные решения по распределению вычислительных работ по 

очередям суперкомпьютерных систем, входящих в РВС. 

Представим СУЗ совокупностью блоков { Sij (i = 1,2,3,4,5; j = 1,2,…,J(i) }, 

где i – соответствующий уровень иерархии, как показано на рисунке 3. 
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Рисунок 3. Иерархия блоков управления вычислительными ресурсами  

Пусть P = { pi : i = 1…C } – множество процессорных ядер, а B = { ni : i = 

1…N } – множество вычислительных узлов распределенной вычислительной си-
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стемы, соответственно, С – общее число ядер,  N – общее число узлов в РВС. РВС 

состоит из L МВС, каждая из которых ведет собственную (локальную) очередь за-

даний. Пусть в некоторый момент времени существует множество W = { ti: i = 1…T 

} назначенных работ, т.е. множество выполняющихся в данный момент времени 

заданий, T – общее число работ (заданий). Каждая работа ti является назначенной 

на некоторую подсистему i
t

n = { i
t

k
n : k = 1… i

t
m  }, состоящую из i

t
m ВУ.   

Рассмотрим соответствие между блоками разных уровней иерархии и типо-

вой архитектурой параллельного компьютера, показанное на рисунке 4. 
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Рисунок 4. Иерархия блоков управления вычислительными ресурсами  

Заметим, что 
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Множество n
free

 – это множество не занятых ни одной работой, свободных 

ВУ. Общее число занятых под работы узлов равняется 

1

i

T
t

i

m n


  

Разбиение множества B на подмножества i
t

n с назначением на каждое под-

множество i
t

n  определённой работы ti фактически будет определять текущее F-

состояние всей РВС.  

Первый уровень иерархии будут представлять средства управления от-

дельным процессорным ядром, причем J(1) = C. Блоки S1j представляют собой 

ветви параллельной программы: потоки либо процессы в зависимости от модели 

параллельного программирования. Каждый блок S1j назначается на процессорное 

ядро pj средствами вышестоящего второго уровня иерархии, и задача управления 

вычислительным процессом на этом уровне целиком возлагается на пользователя-

программиста, который в зависимости от прикладного алгоритма определяет сте-

пень параллелизма своей программы. Например, программист может задейство-

вать или не задействовать векторные команды, использовать механизмы распа-

раллеливания графических процессоров и т.п.  

Второй уровень иерархии образуют средства управления отдельным вы-

числительным узлом. Средства второго уровня осуществляют контроль над сред-

ствами первого уровня и имеют возможность вмешиваться в их работу, прерывать 

и даже уничтожать и порождать новые. Кроме этого, средства второго уровня 

контролируют взаимодействие как блоков первого уровня, так и блоков второго 

уровня. Число блоков второго уровня равно числу ВУ в системе, J(2) = N. Блоки 

S2j представляют операционные системы вычислительных узлов, контролирую-

щие взаимодействующие потоки и процессы параллельной параллельной про-

граммы. В состав ОС ВУ также включаются компоненты СУЗ, управляющие от-

дельным ВУ. Узлы { ni : i = 1…m } являются занятыми определёнными работами 

(заданиями), соответствующие им управляющие средства { S2i : i = 1…m } нахо-

дятся в режиме функционирования. Узлы { nj : j = m+1 … N } свободны, соответ-

ствующие им управляющие средства { S2j : j = m+1…N } находятся в режиме 



50 

ожидания (бездействия) или отсутствуют вовсе. Назначение работы ti на некото-

рый узел nj производится средствами вышестоящего, третьего уровня иерархии.  

Третий уровень иерархии представлен средствами управления подсисте-

мами (подмножествами узлов) i
t

n . Число блоков третьего уровня равно числу вы-

деленных подсистем, т.е. числу назначенных заданий, J(3) = T. Средства третьего 

уровня полностью контролируют средства второго уровня в рамках подчинённых 

им подсистем. Блоки S3j представляют собой компоненты СУЗ, выполняющиеся 

на управляющей ЭВМ и контролирующие запуск, выполнение и завершение от-

дельного задания, для которого выделено некоторое подмножество вычислитель-

ных узлов. 

Введем два допущения. Первое допущение заключается в том, что каждый 

ВУ трактуется как минимальная и неделимая единица параллельного ресурса, ко-

торая может быть выделена заданию. Из этого следует, что выделяемые под раз-

личные задания подсистемы не должны пересекаться, т.е. один вычислительный 

узел не может разделяться между разными заданиями. Это неизбежно влечёт 

фрагментацию ресурсов в случае, когда число запрашиваемых заданием процес-

сорных ядер не кратно числу ядер на узле. Однако, для первого допущения есть 

два серьезных основания: 

– разделение одного узла между процессами разных заданий ослабляет изо-

ляцию заданий и неизбежно влечет их конкуренцию за ресурсы узла и, как след-

ствие, – снижение скорости вычислений в обоих заданиях; 

– принятие первого допущения значительно упрощает схему управления ре-

сурсами, что в свою очередь повышает надежность и готовность всей системы в 

целом. 

Следует отметить, что для мощных многоядерных ВУ с несколькими уско-

рителями фрагментация может обойтись достаточно дорого, и в этом случае при-

ходится разделять один ВУ между разными заданиями [96].  
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Второе допущение заключается в том, что обмениваться информацией друг 

с другом могут только процессы параллельной программы одного задания, т.е. 

информационный обмен невозможен между двумя различными заданиями. 

Введённые допущения накладывают следующие ограничения на построен-

ную иерархическую модель. 

1. Для любых i, j = 1… T выполняется 

ji
tt

n n    

2. Для любых i, j = 1… T взаимодействие между блоками S2i и S2j будет 

разрешено тогда и только тогда, когда существует k = 1…T такое, что k
t

i
n n  и 

k
t

j
n n . 

Четвертый уровень иерархии образуют средства, управляющие очередью 

отдельной МВС. Средства этого уровня полностью контролируют средства ниже-

стоящего третьего уровня и имеют возможность формировать отображение мно-

жества заданий W на множество подсистем i
t

n . Число блоков J(4) = L равно числу 

локальных очередей МВС в составе распределенной вычислительной системы. 

Блоки S4j представляют собой локальные планировщики СУЗ, выполняющиеся на 

управляющей ЭВМ и составляющие расписание запусков заданий на контролиру-

емых ими МВС. В состав блоков S4j включаются также средства приема входного 

потока заданий от вышестоящего, пятого уровня иерархии. 

Пятый уровень иерархии представлен средствами, обеспечивающими до-

ступ пользователей и администраторов к ресурсам системы. На этом уровне фор-

мируется входной поток заданий для локальных очередей МВС. Это могут быть 

запросы пользователей локальной МВС, либо один или несколько планировщиков 

глобальной очереди заданий в распределенной вычислительной системе. Число 

блоков J(5) = K можно рассматривать, как число различных управляющих функ-

ций пятого уровня иерархии, таких как команды отправки заданий в локальную и 

глобальную очереди, контроля выполнения заданий, средства ведения глобальной 

очереди заданий (метапланировщик) и др. 



52 

В отличие от функциональной модели [12], представленная иерархическая 

модель в явном виде отображает схему распараллеливания обработки информа-

ции в суперкомпьютерном центре коллективного пользования. На высшем, пятом 

уровне происходит распределение крупных вычислительных работ (заданий) 

между разными очередями, каждая из которых представляет собственную супер-

компьютерную систему или ее раздел. Уровнем ниже задания распределяются 

между подсистемами одного раздела, при этом обеспечивается мультизадачный 

режим работы, подразумевающий одновременное выполнение нескольких зада-

ний на разных непересекающихся подсистемах. На третьем уровне в рамках од-

ной подсистемы осуществляется распределение вычислительной работы между 

узлами суперкомпьютера. Дальнейшее распараллеливание происходит на втором 

уровне в рамках вычислительного узла, когда процессы или потоки прикладной 

программы распределяются по ядрам как центрального процессора, так и ускори-

теля вычислений. Наконец, на нижнем, первом уровне назначенный на ядро про-

цесс (поток) пользовательской программы использует возможности распаралле-

ливания процессоров, такие как векторизация кода [97], одновременная [98] и/или 

гетерогенная многопоточность [99]. 

Архитектура Системы управления прохождением параллельных заданий  1.7 

Начиная с 1999 года, силами коллектива сотрудников Института приклад-

ной математики им. М.В. Келдыша РАН (ИПМ им. М.В. Келдыша РАН),  Межве-

домственного суперкомпьютерного центра РАН (МСЦ РАН) – отделения супер-

компьютерных систем и параллельных вычислений НИЦ «Курчатовский инсти-

тут» и Института математики и механики им. Н.Н. Красовского УрО РАН (ИММ 

УрО РАН) разрабатывается и эксплуатируется отечественная СУЗ – Система 

управления прохождением параллельных заданий (СУППЗ) [100]. Архитектура 

СУППЗ построена в соответствии с рассмотренной в п.1.6  иерархической моде-

лью управления вычислительными ресурсами суперкомпьютерной системы кол-

лективного пользования и за годы своего развития претерпела ряд модификаций, 
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которые будут рассмотрены ниже. Современная архитектура СУППЗ [101] пред-

ставлена на рисунке 5, а соответствие компонентов архитектуры уровням иерар-

хической модели – на рисунке 6. 
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Рисунок 5. Архитектура СУППЗ  

Архитектурно СУППЗ можно разделить на ядро и надстройки. Ядро вклю-

чает планировщик (сервер очереди) и служебные процессы: клиентское приложе-

ние, серверы запросов и запуска и менеджеры заданий. Надстройками являются 

подсистемы: 

– сценариев пользовательских команд; 

– команд и утилит оператора и системного программиста; 

– сценариев управления заданием; 

– сценариев диагностики, выделения и освобождения узлов. 
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Сценарии надстройки подразделяются на две группы. Первую составляют 

сценарии, обеспечивающие базовый функционал соответствующей надстройки, 

одинаковый для всех суперкомпьютерных систем типовой архитектуры. Вторую 

группу составляют сценарии, разрабатываемые системным программистом в це-

лях адаптации надстроек под особенности конкретной суперкомпьютерной си-

стемы. 

Для стандартных сред параллельного программирования, например, раз-

личных реализаций MPI, СУППЗ предоставляет надстройку сценариев подготов-

ки задания, предназначение которых – автоматизация подготовки паспорта зада-

ния для выполнения параллельной программы в заданной стандартной среде. При 

применении пользователем сценариев надстройки соответствующий сценарий 

выполнения задания будет сформирован системой автоматически. На рисунке 5 

пунктирной стрелкой показано, что в результате работы сценариев подготовки за-

даний X и Y формируются соответствующие сценарии выполнения заданий. 

Сценарии подготовки заданий, взаимодействуя с клиентской утилитой на 

сервере доступа, обеспечивают подготовку входного потока заданий и могут быть 

отнесены к пятому уровню управления. На этом же уровне располагаются не вхо-

дящие в состав СУППЗ средства управления глобальной очередью. 

Клиентская утилита обеспечивает авторизованный доступ пользователя к 

нижестоящему, четвертому уровню управления через связь с сервером запросов, 

выполняющимся на управляющей ЭВМ. При этом применяется сетевой протокол 

сервера запросов, обеспечивающий постановку задания в очередь, просмотр со-

стояния очереди, снятие задания с выполнения или удаление его из очереди и 

другие действия управления. На четвертом уровне управления функционирует 

сервер очереди, осуществляющий планирование заданий в соответствии с  рас-

смотренным в п. 3.3.1 методом. На этом же уровне выполняются команды опера-

тора из соответствующей надстройки. Для взаимодействия со служебными про-

цессами ядра и командами надстройки применяется специфицированный прото-

кол сервера очереди. 
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Рисунок 6. Соответствие компонентов архитектуры СУППЗ уровням иерархиче-

ской модели  

Третий уровень управления представлен служебными процессами ядра – 

сервером запуска и менеджером задания. Сервер запуска производит выделение 

ВУ для задания, их диагностику и конфигурацию, для чего применяет сценарии 

соответствующей надстройки. При обнаружении неисправных узлов последние 

автоматически выводятся из состава вычислителя, а задание возвращается в оче-

редь на перепланирование. Менеджер задания открывает отдельный сеанс, в ко-

тором запускает на управляющей ЭВМ главный управляющий сценарий, опреде-

ляющий действия по управлению выделенной подсистемой узлов. В частности, в 

этом сценарии возможно передача функций управления узлами сторонней СУЗ 

[102]. 

На первом из выделенных заданию узлов от имени администратора выпол-

няется сценарий управления заданием, который поддерживает возобновляемый 

сеанс взаимодействия с главным управляющим сценарием, за счет чего, напри-
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мер, возможна независимая перезагрузка управляющей ЭВМ без прерывания вы-

полнения заданий.  

Сценарий выполнения задания работает на вычислительных узлах от имени 

пользователя и представляет второй уровень иерархической модели, обеспечивая 

распределение процессов/потоков прикладной программы по процессорных яд-

рам. Процессы/потоки прикладной программы в соответствии с представленной 

моделью функционируют на нижнем, первом уровне иерархии управления. 

Соответствие СУППЗ требованиям к системам управления заданиями 1.8 

Покажем, что предложенная архитектура СУППЗ полностью удовлетворяет 

выдвинутым в п.1.4 требованиям. 

Требование универсальности выполняется за счет выделения в архитекту-

ре СУППЗ ядра системы, для которого задание представляет собой абстрактный 

информационный объект, запрашивающий некоторый виртуальный параллельный 

ресурс. Задача ядра – обеспечить выделение реального физического параллельно-

го ресурса для нужд задания. Вид и характер пользовательских прикладных про-

грамм, которые будут выполнены на выделенном параллельном ресурсе, полно-

стью определяются соответствующими надстройками подготовки заданий. При 

необходимости обеспечения поддержки конкретных программных сред в соответ-

ствии с правилами СУППЗ могут быть сформированы новые надстройки. Важно, 

что сценарии надстроек подготовки заданий выполняются на сервере доступа с 

правами пользователей, поэтому последние имеют возможность разрабатывать и 

применять собственные сценарии. 

Автоматическое функционирование и круглосуточная доступность 

обеспечиваются за счет выделения надстройки сценариев управления заданием, 

подготовки, диагностики, выделения и освобождения ВУ. Сценарии диагностики 

автоматически выявляют возникающие неисправности ВУ и выводят отказавшие 

узлы из состава решающего поля, изменяя их статус на «неисправен». Факт отказа 

фиксируется в системных журналах, оператору отправляется электронное письмо. 
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Очередь заданий в случае сужения решающего поля из-за отказа ВУ   автоматиче-

ски перепланируется. СУППЗ продолжит обработку заданий до вмешательства 

оператора, который после детальной диагностики отказавших ВУ либо вернет их 

в состав решающего поля, либо отправит в ремонт. 

В случае сбоев на управляющей ЭВМ задания продолжат выполнение на 

решающем поле под контролем соответствующих сценариев управления задани-

ем. Система продолжит функционирование до вмешательства оператора, который 

после детальной диагностики управляющей ЭВМ осуществит её перезагрузку и 

восстановление менеджеров заданий. Последние возобновят удаленные сеансы со 

сценариями управления заданиями, после чего система продолжит функциониро-

вание в штатном режиме. 

Гарантированное обслуживание без потерь обеспечивается за счет упо-

минавшегося механизма диагностики ВУ, исправность которых проверяется пе-

ред запуском каждого задания. В случае отказа одного или нескольких ВУ они 

выводятся из решающего поля, а для задания подбираются новые ВУ. В случае 

отсутствия свободных ВУ задание возвращается в очередь.  

Императивность управления обеспечивается за счет выделенной в архи-

тектуре надстройки сценариев подготовки и освобождения ВУ, ориентированных 

на соблюдение следующих принципов взаимной изоляции заданий: 

– доступ пользователю и процессам его программы предоставляется только 

к выделенным для его задания ВУ и только на время выполнения задания; в 

остальное время или к другим ВУ доступ пользователю запрещается на уровне 

технической невозможности; 

– ВУ, выделенный для выполнения одного задания, не может быть одно-

временно предоставлен еще какому-либо другому заданию, даже если на узле 

остаются свободные простаивающие процессорные ядра или другие ресурсы; 

– принудительная очистка от процессов пользователя каждого ВУ после за-

вершения параллельного задания; если на ВУ после очистки все еще остаются 
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пользовательские процессы, ВУ помечается как неисправный и выводится из со-

става решающего поля. 

Надёжность в СУППЗ обеспечивается за счет принципа делегирования 

функций управления ресурсами высоконадежным компонентам и утилитам опе-

рационной системы с сохранением контроля за жизненным циклом заданий. Под 

высоконадежными понимаются такие компоненты, отказ которых означает неис-

правность все суперкомпьютерной системы в целом вне зависимости от исправ-

ности компонентов СУППЗ. Другими словами, высоконадежный компонент счи-

тается  по умолчанию исправным, в противном случае суперкомпьютер нуждает-

ся в ремонте с приостановкой обслуживания пользователей.  

В СУППЗ в качестве таких компонентов выступают сетевая файловая си-

стема (NFS) и ОС Linux на узлах. Сетевая файловая система используется в 

СУППЗ для следующих критических функций управления: 

– авторизации клиента сервером запросов; 

– ведение оперативной базы данных статусов вычислительных узлов («сво-

боден», «занят», «неисправен»); 

– контроля сценария управления заданием главным управляющим сценарием; 

– перенаправления стандартных потоков ввода/вывода задания. 

Подобное делегирование позволяет, в отличие от SLURM, LSF и PBS, отка-

заться от наличия активных компонентов СУППЗ на вычислительных узлах: сце-

нарий управления заданием запускается в момент старта задания через систему 

удаленного выполнения команд. Отсутствие активных компонентов на узлах с 

одной стороны исключает их выход из строя и повышает надежность функциони-

рования суперкомпьютера, а с другой стороны  открывает возможность приме-

нять для управления ресурсами сторонние системы,  такие как SLURM. 

Возможность реконфигурации в процессе функционирования обеспечи-

вается в СУППЗ за счет виртуализации параллельного ресурса на уровне 

надстройки сценариев подготовки заданий и конфигурации выделенных заданию 

узлов, соответствующих требуемому виртуальному параллельному ресурсу. По-
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скольку распределение заданий по ВУ производится автоматически, пользователь 

не может влиять на процесс распределения и заранее знать, какие ВУ будут выде-

лены его заданию. По умолчанию число процессов параллельной программы, за-

пускаемых на каждом узле, равно числу процессорных ядер узла. СУППЗ дает 

пользователю возможность самостоятельно задавать, сколько процессов на каж-

дом ВУ должно быть запущено, путем виртуализации параллельного ресурса. 

Пользователь должен предположить, что его заданию будет выделено нужное ему 

число ВУ с предопределенными виртуальными именами node1, node2,…, nodeN, 

где N –  число необходимых ВУ. Распределение процессов по узлам пользователь 

осуществляет при помощи специального файла-шаблона стандартного формата. 

После того, как задание пройдет через очередь и поступит на выполнение, про-

цесс-менеджер задания заменит виртуальные имена реальными именами ВУ, вы-

деленных заданию. Процессы параллельной программы будут распределены по 

реальным ВУ точно так, как указал пользователь в файле-шаблоне. 

Автоматическая организация режимов профилактики в определенное 

время, а также прозрачность алгоритмов планирования и справедливое рас-

пределение вычислительных ресурсов обеспечиваются применяемым в СУППЗ 

рассмотренным в п. 3.3.1 методом планирования заданий. В частности, режимы 

профилактики организуются за счет применения так называемых шкал доступа, 

определяющих возможности пользователей и системных администраторов по до-

ступу  к решающему полю в определенное время. 

Автоматизация формирования стандартного программного окружения 

обеспечивается наличием в архитектуре СУППЗ надстройки сценариев подготов-

ки заданий, которая позволяет автоматизировать подготовку паспорта задания для 

некоторого стандартного программного окружения. Одной из таких групп сцена-

риев, изначально входившей в состав СУППЗ, являются сценарии поддержки 

MPI-программ. В рамках этих сценариев СУППЗ предлагает пользователю специ-

альную команду mpirun, по синтаксису максимально приближенную к аналогич-

ной команде, поставляемой различными реализациями MPI. Команда mpirun в 
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СУППЗ по набору заданных параметров автоматически формирует паспорт зада-

ния, содержащий в том числе сценарий (также формируемый автоматически) вы-

полнения задания в окружении выбранной пользователем реализации MPI. Для 

этого окружения также автоматически происходит отображение виртуальных 

имен ВУ, заданных пользователем, в сетевые имена ВУ, выделенных заданию, та-

ким образом, что MPI-программа получает на вход релевантный список ВУ.  

При смене суперкомпьютерной системы или реализации MPI сценарии 

надстройки подготовки заданий MPI корректируются системным программистом 

СУППЗ для обеспечения формирования адекватного окружения MPI-приложения. 

Внешний интерфейс и набор ключей команды mpirun при этом остается неизмен-

ным для пользователя. Практика показала, что именно MPI-надстройка оказалась 

наиболее востребованной пользователями и стала характерной особенностью 

СУППЗ. 

Модульность архитектуры в СУППЗ обеспечивается: 

– соответствием архитектуры иерархической модели управления ресурсами; 

– разделением на ядро, неизменяемые и изменяемые системным програм-

мистом надстройки; 

– применением специфицированных протоколов взаимодействия компо-

нентов. 

Ядро СУППЗ, реализованное на языке высокого уровня, изменяется разра-

ботчиками сравнительно редко. Достаточно большое число функций управления 

и мониторинга, таких как диагностика вычислительных узлов, подключение раз-

ных сред программирования прикладных программных пакетов, реализовано в 

виде командных сценариев, что позволяет разработчикам при необходимости 

оперативно вносить изменения в систему, не затрагивая ядро. Наконец, разграни-

чение функций компонентов по уровням иерархии управления и применение спе-

цифицированных протоколов, таких как протоколы сервера запросов и сервера 

очереди, дало возможность подключения к СУППЗ ключевых сторонних компо-

нентов. Примерами могут служить интеграция в СУППЗ известного планировщи-
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ка Maui, рассмотренная в п. 2.1.4.4 и применение для управления вычислитель-

ными узлами СУЗ SLURM, рассмотренное в п. 2.1.3  

 

Особенности архитектуры СУППЗ для отечественных массивно-1.9 

параллельных систем МВС-1000 

Многопроцессорная вычислительная система МВС-1000 [64] была разрабо-

тана в 1998 году усилиями коллективов НИИ «Квант», ИПМ им. М.В. Келдыша 

РАН и ИММ УрО РАН. Общая архитектура системы представлена на рисунке 2. 

В качестве вычислительного узла в МВС-1000 применялся двухпроцессорный 

модуль. Один из процессоров узла назывался вычислительным  и соответственно 

выполнял вычислительные функции, другой служил для объединения вычисли-

тельных узлов в единое решающее поле и назывался связным. В МВС-1000 каче-

стве вычислительного процессора использовался микропроцессор Alpha-21164 

300-500 МГц фирмы DEC. В качестве связных процессоров использовались сиг-

нальные процессоры – либо TMS320C44 фирмы Texas Instruments, либо 

ADSP21060 (Sharc) фирмы Analog Devices. Оба сигнальных процессора имели по 

несколько (C44 – четыре, Sharc – шесть) высокоскоростных линков. При помощи 

линков ВУ соединялись друг с другом, образуя коммуникационную топологию, 

представленную на рисунке 7. 

 

 

Рисунок 7. Топология коммуникационной среды МВС-1000 для варианта из 

32 ВУ 

Важным моментом в архитектуре ВУ МВС-1000 являлось то, что на аппа-

ратном уровне связной процессор имел возможность обращения к оперативной 

памяти вычислительного процессора, в то время как  оперативная память связного 
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процессора была недоступна для вычислительного. При этом связной процессор 

имел также возможность произвести аппаратный сброс вычислительного процес-

сора и загрузку его операционной системы, в качестве которой применялась 

POSIX-совместимая ОС VxWorks [104].  

На сети связных процессоров функционировала созданная в 

ИПМ им. М.В. Келдыша РАН под руководством А.О. Лациса операционная среда 

Router [105]. Операционная среда Router была разработана в 1994 году для системы 

предыдущего поколения МВС-100 [63] как основное средство информационного 

обмена и включала в себя одноименную библиотеку передачи сообщений. Биб-

лиотека предоставляла пользователю набор примитивов для организации обмена 

сообщениями между двумя любыми узлами по модели Хоара. В МВС-1000 опе-

рационная среда Router была дополнена функциями защиты, обеспечения файлово-

го ввода-вывода и управления вычислительным процессором. Кроме этого, МВС-

1000 впервые в истории отечественных параллельных ВС была обеспечена комму-

никационной библиотекой, полностью реализовывавшей стандарт MPI. 

На управляющей ЭВМ функционировала полнофункциональная сетевая 

операционная система Digital Unix производства компании DEC. 

Возрастающее число пользователей МВС-1000 привело к необходимости 

организации полнофункционального режима коллективного пользования. С этой 

целью были сформулированы рассмотренные в п. 1.4 требования, произведен по-

иск удовлетворяющих этим требованиям свободно распространяемых решений. В 

1998 году доступны для анализа были уже упоминавшаяся система NQS/PBS, а 

также СУЗ DQS (Distributed Queueing System) [15]. Проведенный анализ [83] по-

казал, что доступные решения удовлетворяют далеко не всем выдвинутым требо-

ваниям. Это было обусловлено, прежде всего, направленностью рассмотренных 

систем на объединение в одно целое гетерогенных однопроцессорных вычисли-

тельных ресурсов и динамическое планирование в подобном кластере, как прави-

ло, непараллельных (однопроцессорных) задач. Ни одна из этих систем не была 

способна в полной мере управлять параллельными ресурсами с обеспечением им-
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перативности управления. Кроме этого, системы не позволяли автоматизировать 

работу пользователя со стандартными программными средами, в частности, с 

MPI, что приводило, например, к ситуации, DQS выделяла для задания одни ВУ, а 

среда MPI запускала параллельную программу на других. В итоге было принято 

решение о разработке собственной системы управления задания, которой и стала 

СУППЗ. 

С точки зрения организации управления главной сложностью было отсут-

ствие полнофункциональной сетевой операционной системы для связных процес-

соров. Этот факт определял отсутствие следующих возможностей: 

– сетевого имени ВУ, вместо которого применялся идентификатор в виде 

специального номера; 

– сетевой доступности ВУ из управляющей ЭВМ по протоколам TCP/IP; 

– средств идентификации, аутентификации пользователей и разграничения 

доступа; 

– сетевой файловой системы. 

В этих условиях было необходимо построить СУЗ, удовлетворяющую вы-

двинутым в п. 1.4 требованиям. С этой целью автором была предложена рассмот-

ренная в п. 1.6 иерархическая модель управления вычислительными ресурсами. 

Единственным отличием было отсутствие пятого уровня иерархии, поскольку на 

тот момент времени задача организации территориально распределенной вычисли-

тельной среды еще не была поставлена. Распределение средств управления по 

уровням иерархической модели для системы МВС-1000 представлено на рисунке 8. 

Блоки S1j первого уровня иерархии – это пользовательские программы и опе-

рационная система, выполняющиеся на вычислительном процессоре узла. ОС вы-

числительного процессора (ОС ВП) полностью контролирует доступные пользо-

вателю ресурсы узла – вычислительный процессор и его оперативную память – и 

выделяет их по запросам от пользовательской программы. 

Второй уровень иерархии представляется операционной средой, функциони-

рующей на сети связных процессоров вычислителя (ОС СП). Протоколы данного 
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уровня отвечают за взаимодействие вычислительных узлов между собой. При 

этом управляющая программа каждого связного процессора контролирует ОС 

своего вычислительного процессора и имеет возможность осуществления его ап-

паратного сброса и перезагрузки. 

Управляющая ЭВМ
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Программа 

пользователя, 
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Рисунок 8. Соответствие уровням иерархической модели компонентов 

архитектуры СУППЗ для суперкомпьютерной системы МВС-1000  

Блоки S3j третьего уровня иерархии образуются средствами управляющей 

ЭВМ, которые обеспечивают загрузку параллельного задания на определённые 

процессоры вычислителя, т.е. выделение некоторой подсистемы и назначение ра-

боты на эту подсистему. Средства третьего уровня обеспечивают доступ ниже-

стоящим уровням к общим для системы внешним устройствам, подключённым к 

управляющей ЭВМ, – файловым системам, терминалам, сетевым службам. 

Четвёртый уровень иерархии образуют средства управляющей ЭВМ, которые 

обеспечивают планирование очереди заданий, а также доступ пользователей и 

администраторов к ресурсам системы. На эти средства возлагается и большая 

часть функций защиты от НСД. 
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Вариант архитектуры ядра СУППЗ для суперкомпьютеров МВС-1000, соот-

ветствующей иерархической модели управления, показан на рисунке 9. 

Надстройки полностью идентичны общей архитектуре СУППЗ и для наглядности 

иллюстрации не показаны на рисунке. 
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Рисунок 9. Архитектура ядра СУППЗ для суперкомпьютерной системы МВС-1000  

Нетрудно видеть, что компоненты ядра СУППЗ МВС-1000 четвертого и 

третьего уровней иерархии полностью идентичны общей архитектуре. Различие 

начинается на втором уровне по причине упомянутого отсутствия полнофункцио-

нальной сетевой ОС на вычислительных узлах. Тем не менее, требования универ-
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сальности, автоматической организации режимов профилактики, автоматизации 

формирования стандартного программного окружения, прозрачности алгоритмов 

планирования и справедливого распределения вычислительных ресурсов обеспе-

чиваются теми же методами и средствами, что были рассмотрены в п.1.8  

Рассмотрим выполнение требований автоматического функционирования и 

круглосуточной доступности, надежности и гарантированного обслуживания без 

потерь. Для удовлетворения этим требованиям средства управления процессора-

ми были выделены в высоконадёжное программное ядро. Надёжность ядра была 

обеспечена за счёт полной независимости от пользовательских программ и опера-

ционной системы вычислительного процессора, а также на счёт качества разрабо-

танных и реализованных протоколов информационного обмена. Добиться этого 

получилось путём сосредоточения средств управления второго уровня исключи-

тельно в связных процессорах ВУ, в памяти, недоступной вычислительным про-

цессорам. Общение с пользовательскими программами и ОС вычислительного 

процессора осуществлялось исключительно по схеме «запрос-ответ». При этом 

запросы специфицировались таким образом, чтобы исключить возможность ре-

конфигурации или изменения управляющих средств со стороны пользовательских 

программ путём косвенного влияния через выдачу определённых запросов. 

Был введен сеансовый режим работы управляющих средств, означавший, 

что ОС ВП и пользовательские программы существуют и функционируют лишь 

во временных рамках отведённого им сеанса работы, т.е. только во время выпол-

нения определенного задания. В рамках отдельного сеанса работы функции 

управления вычислительным процессором полностью делегировались его опера-

ционной системе. Функции идентификации и аутентификации пользователей де-

легировались операционной системе управляющей ЭВМ. 

Требование возможности реконфигурации во время функционирования вы-

полнялось за счёт ввода логической нумерации ВУ во время сеанса работы. 

Управляющая программа связного процессора получала в начале каждого сеанса 

от средств вышестоящего уровня иерархической модели список ВУ, которые 
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должны были образовать связанную группу на время сеанса. Поскольку инфор-

мационный обмен во время сеанса в соответствии со вторым допущением иерар-

хической модели управления был разрешён только между ВУ одной группы, то 

внутри каждой группы было возможно введение логической нумерации ВУ. 

Управляющая программа производила во время сеанса отображение из логиче-

ского номера в физический. 

Рассмотрим требование императивности управления, выполнение которого 

также было обеспечено построением механизма изоляции заданий. С этой целью 

автором были разработаны  специальные управляющие протоколы взаимодействия 

между ОС СП и специальными процессами-агентами на управляющей ЭВМ (см. 

рисунок 9). Для каждого ВУ в один момент времени на управляющей ЭВМ мог 

существовать только один процесс-агент. В свою очередь процесс-агент обслужи-

вал только один, «собственный» ВУ. Соответствие между процессом-агентом и ВУ 

определялось физическим номером узла, который присваивался процессу-агенту 

при его инициализации от средств вышестоящего уровня иерархии. 

Временные рамки каждого сеанса работы на определённом ВУ были жёстко 

связаны с порождением и завершением соответствующего этому ВУ процесса-

агента на управляющей ЭВМ. Работа управляющих протоколов была построена 

таким образом, что ОС ВП и пользовательские программы выполнялись на опре-

делённом узле тогда и только тогда, когда на управляющей ЭВМ был загружен и 

выполнялся соответствующий узлу процесс-агент. Это важное свойство позво-

лило организовать простое и эффективное программное управление вычисли-

тельными процессорами непосредственно с управляющей ЭВМ. Для загрузки од-

ного или группы вычислительных процессоров было необходимо и достаточно 

запустить на управляющей ЭВМ один или группу процессов-агентов с соответ-

ствующими номерами. Для освобождения одного или группы вычислительных 

процессоров системы было необходимо и достаточно завершить на ЭВМ процес-

сы-агенты с соответствующими номерами. 
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Указанные свойства средств управления вычислительными процессорами 

позволили на их основе построить средства следующего, третьего уровня иерар-

хической модели. Это средства управления подсистемами, за счёт наличия кото-

рых была обеспечена возможность организации одновременного и независимого 

выполнения на вычислителе различных параллельных программ, т.е. организация 

мультизадачности на уровне ВС. 

Каждому заданию выделялась определённая подсистема – группа вычисли-

тельных процессоров. Средства управления подсистемой открывали новый сеанс 

на ВУ выделенной группы путём запуска процессоров-агентов с номерами, соот-

ветствующими физическим номерам ВУ группы. При завершении задания сред-

ства управления подсистемой уничтожали процессы-агенты соответствующей 

группы и тем самым закрывали сеанс. По окончании сеанса работы, т.е. по завер-

шении очередного задания, управляющая программа связного процессора произ-

водила аппаратный сброс вычислительного процессора. В начале нового сеанса 

происходила очистка оперативной памяти ВП, загрузка ОС ВП и пользователь-

ской программы.  

За счёт того, что средства управления процессорами разрешали информаци-

онный обмен только между ВП одной связанной группы, обеспечивалась изоля-

ция друг от друга параллельных пользовательских программ разных заданий. При 

этом сеансовый режим с очисткой оперативной памяти ВП позволил устранять 

последствия сбоев или краха ОС ВП, а также делал невозможным несанкциони-

рованный доступ какого-либо пользователя к информации другого пользователя, 

оставшейся в оперативной памяти ВП после завершения задания. 

Выделение ВУ, как подсистемы для выполнения задания, происходило на 

четвёртом уровне иерархической модели средствами планирования ресурсов си-

стемы. При запуске задания всем процессорам-агентам из выделенной группы пе-

редавался одинаковый список физических номеров ВУ группы. При этом сохра-

нялась логическая нумерация ВУ внутри группы. ОС СП обеспечивала независи-

мую загрузку ОС ВП одновременно на нескольких разных непересекающихся 
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группах ВУ. При этом обмен сообщениями между ОС ВП был возможен только 

внутри группы по логическим номерам. 

Предложенный механизм позволил осуществить независимую загрузку вы-

числителя одновременно разными параллельными программами от разных поль-

зователей и обеспечил мультизадачность на уровне системы в целом. Загрузка па-

раллельной программы на вычислительные процессоры рассматривалась как вы-

деление определённой подсистемы для соответствующего программе задания. 

Управление подсистемами осуществляли специальные процессы – серверы зада-

ния, по одному на каждую выделенную подсистему.  

На рисунке 9 сплошными стрелками показаны информационные связи раз-

личных процессов вычислителя с процессами управляющей ЭВМ и между про-

цессами управляющей ЭВМ. Пунктирными стрелками показаны информационные 

обмены между ВУ. Штриховыми стрелками обозначены управляющие обмены, 

связанные со стартом и завершением процессов. 

Компоненты СУППЗ для МВС-1000 распределялись по уровням предло-

женной иерархической модели управления следующим образом. Первый уровень 

составляли ОС ВП и пользовательские программы. Второй  уровень составляли 

ОС СП, процессы-мультиплексоры корневого ВУ и управляющей ЭВМ и процес-

сы-агенты. Третий уровень составили процессы-серверы заданий. Сервер очереди 

и серверы запросов представляли четвертый уровень иерархической модели. 

Выводы к главе 1 

Большинство суперкомпьютерных систем соответствуют типовой архитек-

туре параллельного компьютера, функционирующего в режиме коллективного 

пользования. В основе такого функционирования лежит понятие параллельного 

ресурса, представляющего собой некоторое подмножество вычислительных узлов 

суперкомпьютера, доступных, занятых или неисправных в течение определенного 

времени. Число вычислительных узлов в параллельном ресурсе и время его про-

стоя/занятости/неисправности определяют размер (площадь) ресурса. Для полу-
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чения доступа к параллельному ресурсу пользователь должен сформировать зада-

ние, включающее прикладную параллельную программу, требования к парал-

лельному ресурсу, как минимум, к его размеру и входные данные. Управление 

вычислительными ресурсами в этом случае сводится к распределению поступаю-

щих пользовательских заданий по вычислительным узлам суперкомпьютера. За-

дачи управления, такие как прием входного потока заданий, ведение очереди за-

даний, выделение и освобождение параллельных ресурсов для заданий, контроль 

выполнения заданий, мониторинг состояния и учет потребления параллельных 

ресурсов осуществляют специальные программные системы – системы управле-

ния заданиями (СУЗ).  

Функционирование СУЗ определяется требованиями, такими как  

- универсальность, как отсутствие ограничений на выполняемые пользова-

телями прикладные программы, и связанные с этим требования надежности и им-

перативности управления;  

- круглосуточная доступность, автоматическое функционирование с орга-

низацией режимов профилактики и обслуживания; 

- прозрачность алгоритмов планирования и справедливое распределение 

вычислительных ресурсов, под которым понимается невозможность длительного 

захвата одним пользователем большого объема вычислительных ресурсов;  

- автоматизация формирования типового программного окружения, под 

которым понимается автоматическая настройка заданий пользователя на выбран-

ный типовой стек системного, инструментального и прикладного программного 

обеспечения; 

- модульность архитектуры СУЗ, позволяющая менять функционал систе-

мы за счет добавления или замены программных модулей; 

- возможность реконфигурации в процессе функционирования, включаю-

щая динамическое изменение состава вычислительных узлов суперкомпьютера и 

связанную с этим виртуализацию представления параллельного ресурса для поль-

зователя. 
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 В целях упорядочивания решаемых системами управления заданиями задач  

предложена пятиуровневая иерархическая модель управления вычислительными 

ресурсами в суперкомпьютерной системе коллективного пользования. Уровни 

иерархии построенной модели отражают степени распараллеливания и техноло-

гические этапы обработки входного потока пользовательских заданий от их пла-

нирования на уровне распределенной вычислительной системы до векторизации 

программного кода на уровне процессорного ядра. На основе предложенной 

иерархической модели и в соответствии с выдвинутыми требованиями разработа-

на архитектура системы управления заданиями, которая была реализована в виде 

программной Системы управления прохождением параллельных заданий 

(СУППЗ). 
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Глава 2. Построение системы управления заданиями пользователей 

суперкомпьютера на основе иерархической модели 

Технические и технологические решения для управления вычислительными 2.1 

ресурсами суперкомпьютерных систем коллективного пользования на разных 

уровнях иерархической модели 

За годы развития СУППЗ под руководством и при участии автора был про-

веден ряд исследований и разработок по созданию средств управления вычисли-

тельными ресурсами для каждого из уровней иерархии предложенной модели. Ре-

зультатом стал комплекс технических и технологических решений, одни из кото-

рых были реализованы непосредственно в структуре СУППЗ, а другие функцио-

нируют в тесном взаимодействии с последней. Рассмотрим предложенные реше-

ния средства по уровням иерархической модели управления вычислительными 

ресурсами. 

Для первого уровня иерархии, на котором решения принимаются пользова-

телем в его прикладной программе, были проведены представленные в п. 2.1.1 ис-

следования в области автоматизации создания контрольных точек приложения. 

Для второго уровня иерархии, уровня управления отдельным ВУ, исследо-

вания и эксперименты проводились в области виртуализации и контейнеризации 

пользовательских заданий, результаты отражены в п. 2.1.2  

На третьем уровне иерархии осуществляется управление подмножеством 

ВУ как подсистемой суперкомпьютера, выделенной определенному заданию. Для 

этих целей были созданы рассмотренные в п. 2.1.3 средства сопряжения СУППЗ и 

сторонних СУЗ, а также разработаны представленные в главе 4 метод и средства 

поиска отображения параллельной программы на вычислительные узлы супер-

компьютера. Кроме этого, были проведены исследования и разработки в области 

организации параллельных вычислений с распараллеливанием по данным, по-

дробно рассмотренные в главе 5. 
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Четвертый уровень иерархии – уровень распределения подсистем супер-

компьютера между заданиями. На этом уровне были предложены методы плани-

рования заданий, представленные в главе 3. Кроме этого рассмотренные в п. 2.1.4 

технические решения для этого уровня иерархии  включают методы и средства 

применения в составе СУППЗ сторонних планировщиков и многоресурсного пла-

нирования заданий, а также поддержки обработки заданий с заданным уровнем 

обслуживания. 

Для пятого, высшего уровня иерархии проведены исследования по созда-

нию территориально распределенной среды для высокопроизводительных вычис-

лений. К этому же уровню следует отнести рассмотренные в п. 2.1.5 работы по 

созданию и развитию подсистемы сбора и обработки статистики СУППЗ. 

2.1.1 Первый уровень иерархии: средства автоматизации создания контрольных 

точек для пользовательских параллельных программ 

Практика суперкомпьютерных центров коллективного пользования показы-

вает, что время нахождения задания в очереди может составлять от нескольких ча-

сов до нескольких дней. В этих условиях администраторы суперкомпьютерных 

центров вынуждены ограничивать время, которое может быть выделено для вы-

полнения отдельного задания. Например, в МСЦ РАН это время ограничено 24 ча-

сами, за исключением отдельных суперкомпьютерных систем, где время ограниче-

но 7 сутками. Подобные ограничения отрицательно сказываются на качестве об-

служивания тех пользователей, которым необходимы длительные расчеты. В 

СУППЗ предусмотрен механизм т.н. фоновых заданий (см. главу 3), которые могут 

выполняться произвольное время, но при этом могут прерываться системой с воз-

вратом в очередь. Для организации длительных расчетов пользователь может при-

менить этот механизм, но задача сохранения состояния вычислений (контрольных 

точек) перед возвращением задания в очередь и восстановления состояния вычис-

лений после возобновления выполнения задания целиком и полностью ложится на 

самого пользователя. Однако, самостоятельная организация контрольных точек 
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(КТ) возможна, как правило, только при использовании авторских кодов. Если же 

пользователь применяет в расчетах сторонние программные пакеты, далеко не все-

гда присутствует возможность сохранения состояния вычислений. 

Для параллельных программ, способных масштабироваться до большого 

числа процессорных ядер, возникает еще одна проблема – суммарный размер кон-

трольных точек всех параллельных процессов может быть настолько большим, 

что время сохранения и восстановления состояния вычислений может оказаться 

неприемлемо долгим. С другой стороны, наблюдается тенденция роста числа 

процессорных ядер как на отдельных кристаллах, так и на вычислительных узлах 

суперкомпьютеров. Например, вычислительный узел суперкомпьютера МВС-10П 

ОП [10] на базе процессора Intel Xeon Broadwell содержит 32 процессорных ядра, 

а узел на базе процессора Intel Xeon Icelake – 64 ядра. Для достаточно большого 

числа параллельных программ это является пределом масштабируемости, подоб-

ные задания заказывают для своего выполнения один вычислительный узел, при 

этом могут проводить в очереди длительное время. Несмотря на то, что потребле-

ние ресурсов заданиями, требующими для выполнения единственный узел, не 

превышает 5%, их число достаточно велико и может достигать до 40% от общего 

числа заданий. Для таких заданий актуально применение средств автоматического 

сохранения контрольных точек. 

Для возможности эффективного применения в суперкомпьютерных систе-

мах коллективного пользования средств автоматического сохранения контроль-

ных точек последние должны удовлетворять следующим требованиям. 

1. Поддержка ядер операционных систем для суперкомпьютеров. Ядро ОС 

является фундаментом, на который опирается стек программного обеспечения су-

перкомпьютера [10]. Замена ядра критична для всего стека и поэтому, как прави-

ло, ядро ОС не меняется на протяжении всего жизненного цикла суперкомпью-

терной системы. В то же время значительное число решений в области автомати-

ческого сохранения состояния вычислений часто рассчитаны на версии ядра 

Linux, не совместимые с применяемыми в суперкомпьютерах ядрами. 



75 

2. Средство автоматического сохранения контрольных точек не должно тре-

бовать модификации кода пользовательской программы. Напомним, что СУППЗ 

удовлетворяет требованию универсальности и не накладывает ограничений на 

применяемые пользователями при подготовке параллельных программ алгорит-

мы, языки программирования и инструментальные средства. На выполнение по-

ступает широкий спектр различных типов параллельных программ, и фактически 

невозможно потребовать от разработчиков внесения изменений для поддержки 

автоматического сохранения контрольных точек. 

3. Поддержка как многопоточных (разработанных при помощи OpenMP или 

pthread), так и многопроцессных (разработанных при помощи MPI) пользователь-

ских программ. Средство автоматического сохранения КТ должно «понимать», 

что параллельная программа представляет собой довольно сложный динамически 

изменяющийся объект, состоящий из множества взаимодействующих друг с дру-

гом процессов и потоков.  

4. Поддержка сохранения состояния объектов ядра ОС, таких как дескрип-

торы открытых файлов, области разделяемой памяти, очереди IPC, семафоры и 

т.п. Например, особая структура в области памяти ядра хранит информацию о ме-

стоположении открытого программой файла, режимах ввода-вывода, блокиров-

ках, текущем положении указателя чтения-записи, и эту структуру необходимо 

будет восстановить после возобновления выполнения программы с контрольной 

точки. Если параллельная программа состоит из нескольких взаимодействующих 

процессов, их идентификаторы также будет необходимо восстановить после ре-

старта программы.  

5. Минимальное влияние на производительность вычислений. Средство ав-

томатического сохранения КТ не должно привносить в процесс вычислений су-

щественных накладных расходов, снижающих быстродействие. 

6. Возможность применения без получения привилегий суперпользователя. 

Поскольку на характер пользовательских программ не накладывается ограниче-

ний, никакой административной проверке перед выполнением эти программы не 
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подвергаются. В такой ситуации применение средства, требующего привилегий 

суперпользователя, потребует, как минимум, дополнительного аудита и в любом 

случае снизит уровень информационной безопасности. 

7. Лицензия должна позволять свободное применение в научном суперком-

пьютерном центре коллективного пользования. 

В рамках исследований [106] был проанализирован ряд средств автоматиче-

ского создания контрольных точек. Были выделены свободно распространяемые 

продукты Сheckpoint Restore In Userspace (CRIU) [107] и Distributed MultiThreaded 

Checkpointing (DMTCP) [108], для которых были проведены экспериментальное 

исследование их возможностей и характеристик и анализ влияния средств под-

держки КТ на производительность вычислений. 

Экспериментальное исследование [106] средств автоматического сохране-

ния КТ показало, что наиболее полно сформулированным требованиям соответ-

ствует продукт DMTCP, оказывающий минимальное влияние на производитель-

ность вычислений, не требующий изменений в исходных текстах программ и спо-

собный функционировать с правами обычного пользователя. Оценка производи-

тельности DMTCP показала нецелесообразность использования сжатия при со-

хранении контрольных точек. Для интеграции продукта с СУППЗ была разрабо-

тана соответствующая утилита, включение которой в сценарий выполнения зада-

ния позволит пользователю применять сохранение КТ в фоновых заданиях. 

2.1.2 Второй уровень иерархии: виртуализация и контейнеризация 

пользовательских заданий 

Цифровую экосистему суперкомпьютерного центра определяет прежде все-

го принятый порядок обслуживания пользователей и их заданий. Часто этот поря-

док оказывается несовместим с исторически сложившейся технологией организа-

ции расчетов, которую новые пользователи применяли до обращения в суперком-

пьютерный центр. Освоение принятого порядка работы, т.е. вхождение в новую 

экосистему может повлечь необходимость полной реорганизации вычислительно-
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го процесса, вплоть до реинжиниринга программных кодов. Подобная реоргани-

зация может потребовать от пользователя в том числе отказа от работы с привыч-

ными программными средами и пакетами. Кроме этого, переход в новую экоси-

стему повлечет затраты на переобучение сотрудников. Освоение суперкомпьюте-

ра новыми пользователями в такой ситуации будет проходить легче, если адапти-

ровать привычные для пользователя технологию организации расчетов и соответ-

ствующие ей программную среду и пакеты. 

Выходом видится применение технологий виртуализации для возможности 

переноса привычной пользователю программной среды в суперкомпьютерный 

центр. Как было показано в работе коллектива Института системного программи-

рования им. В.П. Иванникова РАН [32], а также в проведенных в МСЦ РАН при 

участии автора работах [73, 109], гипервизорная виртуализация вносит неоправ-

данно высокие накладные расходы в процесс высокопроизводительных вычисле-

ний. Более привлекательной с точки зрения накладных расходов выглядит кон-

тейнерная виртуализация [72, 110].  

В работах [111, 112] в качестве одного из методов применения контейнер-

ной виртуализации рассмотрена подготовка специального репозитория контейне-

ров с разными (в идеале – со всевозможными) стеками программного обеспече-

ния. Метод предполагает, что необходимые для выполнения задания окружение и 

программная среда упаковываются в контейнер, который размещается системным 

администратором суперкомпьютерного центра в специально организованном ре-

позитории. При запуске задания, прошедшего через очередь СУЗ, образ контей-

нера автоматически извлекается из репозитория, после чего на выделенных для 

задания ВУ суперкомпьютера разворачивается отдельная сеть контейнеров. Внут-

ри этих контейнеров начинают выполняться процессы задания. При завершении 

задания контейнеры останавливаются и удаляются с модулей суперкомпьютера. 

Пользователь при запуске задания в СКЦ выбирает из репозитория наибо-

лее подходящий для него контейнер. В проведенном под руководством автора ис-

следовании [112] показаны преимущества метода репозитория:  простота и 
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надежность реализации и высокая безопасность. Метод был успешно применен 

при создании программного комплекса с распараллеливанием по данным 

XP-COM [113], который подробно рассмотрен в п. 5.6 а также для представленной 

в п. 2.1.3 интеграции СУППЗ с системой Sun Grid Engine. 

Второй метод [75] подразумевает для пользователя возможность запуска 

любого подготовленного им контейнера с произвольным наполнением и выбран-

ным пользователем стеком ПО. Реализация этого варианта значительно сложнее, 

для возможности ее осуществления был решен ряд следующих задач. 

1. Были разработаны способ представления задания в виде контейнера, мето-

дика и средства применения этого способа пользователем. Способ позволяет поль-

зователю в рамках заданных правил и ограничений упаковывать в контейнер про-

извольный стек инструментального и прикладного ПО. Предложенная методика 

формирования образа такого контейнера включает рекомендации по обеспечению 

работоспособности коммуникационной библиотеки MPI внутри контейнера. 

2. Была обеспечена безопасность вычислений в пользовательских контейне-

рах с организацией технической невозможности превышения пользователем сво-

их привилегий.  

3. Был разработан способ конфигурирования подсети развёрнутых на ВУ 

контейнеров таким образом, чтобы выполняющиеся внутри контейнеров процес-

сы параллельной программы «видели» друг друга и могли совершать информаци-

онные обмены. 

4. Были разработаны сценарии для развёртывания на выделенных ВУ пред-

ставленных в виде контейнеров пользовательских заданий, контроля их выполне-

ния и сворачивания контейнеров после завершения заданий. 

В итоге оба метода были реализованы для СУППЗ, что позволило представ-

лять суперкомпьютерные задания в виде контейнеров в Центре коллективного 

пользования  вычислительными ресурсами МСЦ РАН.  
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2.1.3 Третий уровень иерархии: совмещение управления вычислительными 

ресурсами со сторонними системами управления заданиями 

Все функции СУЗ по уровням иерархической модели можно условно разде-

лить на две группы. Первую группу составляют функции управления заданиями: 

прием входного потока различных заданий от разных пользователей, ведение их 

очереди, построение расписания запусков. Эти функции относятся к пятому и 

четвертому уровням иерархии управления. Вторую группу составляют функции 

управления ресурсами: выделение ресурсов для прошедших очередь заданий, 

конфигурация выделенных ресурсов, запуск заданий, контроль их выполнения, 

освобождение ресурсов после завершения заданий. Эти функции осуществляются 

на третьем и втором уровнях иерархии. 

Нетрудно видеть, что функции управления заданиями одинаковы для лю-

бых типов суперкомпьютеров и не зависят от архитектуры ВУ. Функции управле-

ния ресурсами, наоборот, во многом определяются архитектурой и комплектацией 

ВУ. По этой причине функции управления ресурсами часто выносятся в отдель-

ную подсистему командных сценариев, в которые системный администратор су-

перкомпьютера может вносить изменения, отражающие специфику вычислитель-

ной системы. В СУППЗ функции управления ресурсами реализованы в надстрой-

ке сценариев управления заданием, подготовки, диагностики, выделения и осво-

бождения узлов. Замена сценариев в этой надстройке позволяет с минимальными 

трудозатратами подключить для управления вычислительными ресурсами воз-

можности сторонних СУЗ. В практике применения СУППЗ было осуществлено 

два подобных интеграционных проекта: совместное управление ресурсами с из-

вестными системами Sun Grid Engine (SGE) и SLURM. 

Для ряда пользователей МСЦ РАН исторически сложилась технология рас-

четов, основу которой составляет вычислительная инфраструктура под управле-

нием Sun Grid Engine (SGE) [90, 91]. На каждом из находящихся под управлением 

SGE вычислительных узлов функционирует клиентский процесс SGE. Так же, как 

и в любой СУЗ, пользователи подключаются к серверу доступа (в терминологии 
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SGE – узлу входа), на котором формируют свои расчетные задания и направляют 

их в очередь SGE. SGE распределяет задания из очереди по клиентским ВУ. 

В свою очередь, СУППЗ полностью управляет ВУ суперкомпьютера, по-

этому простое совместное применение СУППЗ и SGE для управления одними и 

теми же ВУ суперкомпьютера невозможно. Поскольку производимые под управ-

лением SGE расчеты носят не постоянный, а периодический характер, то выделе-

ние под управление SGE отдельного сегмента суперкомпьютера нецелесообразно. 

Для устранения этого противоречия было принято решение об использовании 

рассмотренного в п. 2.1.2 метода представления пользовательских заданий в виде 

контейнеров.  

Для реализации среды контейнеризации была применена известная система 

Docker [114]. Весь необходимый набор программ, библиотек, пользовательского 

окружения и клиентский сервер SGE были упакованы в образ Docker, который 

был размещен в специально созданном репозитории. Образ из репозитория может 

быть извлечен запущенным заданием, прошедшим через очередь СУППЗ. Успеш-

ный запуск задания и, соответственно, контейнеров на ВУ суперкомпьютера фак-

тически означает развертывание вычислительной инфраструктуры SGE в режиме 

коллективного доступа. Далее пользователи могут обычным порядком обращать-

ся к мастер-серверу SGE и помещать свои расчетные задания в очередь SGE. Эти 

задания планировщиком SGE будут автоматически распределяться по контейне-

рам, запущенным под управлением СУППЗ на ВУ суперкомпьютера. Полная 

очистка ВУ от всех возможных остатков вычислений достигается простым удале-

нием контейнера по завершении задания СУППЗ. 

В результате была создана подсистема разворачивания среды выполнения 

SGE под управлением СУППЗ. Подробное изложение предложенных для ее со-

здания технических решений приведено в публикации [112]. 

Подсистемы сценариев управления заданием, подготовки, диагностики, вы-

деления и освобождения узлов имеют в своем составе практически все современ-

ные СУЗ, в том числе широко распространенная система SLURM [16, 94]. Осо-
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бенностью SLURM является значительный объем программного обеспечения 

управления ресурсами (командных сценариев), разработанного производителями 

ВУ и системными интеграторами для поставляемого ими суперкомпьютерного 

оборудования. По этой причине в МСЦ РАН, начиная с суперкомпьютера 

МВС-10П (2013 г.) [115], практикуется совместное функционирование СУППЗ и 

SLURM. На СУППЗ возлагаются функции управления заданиями, а часть функ-

ций управления ресурсами осуществляется путем применения готовых команд-

ных сценариев из состава SLURM. 

Однако, при появлении в 2017 году ВУ на базе микропроцессоров Intel Xeon 

Phi KNL [116] ситуация изменилась. Архитектура KNL предполагает несколько 

альтернативных режимов работы, поддержку которых компания Intel осуществи-

ла не в виде командных сценариев подсистемы управления ресурсами, а внедрила 

непосредственно в ядро SLURM [117]. В результате управление ВУ на базе про-

цессоров KNL без применения SLURM стало невозможным. Суперкомпьютер 

МВС-10П МП2 KNL [10] был предоставлен пользователям под управлением 

SLURM, но оказался слабо востребованным по сравнению с системами на базе 

СУППЗ. По этой причине было принято решение об интеграции СУППЗ и 

SLURM, для осуществления которого под руководством и при участии автора 

были проведены соответствующие разработки [102, 103]. 

Основной принцип интеграции, представленный на рисунке 10, состоит в 

следующем. Все функции управления заданиями, включая командный интерфейс 

с пользователями и ведение очереди заданий, возлагаются на СУППЗ. Прошедшее 

через очередь СУППЗ задание помещается в SLURM, очередь которой всегда ис-

кусственно поддерживается пустой.  При передаче задания СУППЗ сообщает 

SLURM список ВУ, на которых следует запустить задание. 

Поскольку очередь SLURM пуста, переданное задание немедленно поступа-

ет на выполнение на указанных в списке узлах. При этом за тем, чтобы один узел 

не выделялся одновременно более чем одному заданию, отвечает СУППЗ. Она же 

предоставляет пользователям привычный командный интерфейс. 
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Рисунок 10. Принцип интеграции СУППЗ и SLURM  

SLURM при такой схеме выполняет все функции управления ресурсами су-

перкомпьютера, независимо от того, реализованы они в системе командных сце-

нариев или в ядре SLURM. При этом пользовательскому заданию становится до-

ступным окружение SLURM, пользуясь которым можно осуществлять желаемую 

настройку суперкомпьютерного оборудования в полном соответствии с докумен-

тацией и рекомендациями производителя. Другими словами, при такой схеме ин-

теграции получается оптимальное сочетание функций управления: СУППЗ обес-

печивает привычные интерфейс и порядок работы с очередью заданий, SLURM 

позволяет использовать все богатство возможностей высокопроизводительной 

программно-аппаратной платформы. Отдельно следует отметить, что предложен-

ный подход позволил в полной мере продолжать использовать подсистему сбора 

и обработки статистики СУППЗ. 

При практической реализации рассмотренного принципа интеграции был 

решен ряд научно-технических задач. Во-первых, был разработан механизм 

предотвращения несанкционированного доступа пользователей к SLURM в обход 

очередь СУППЗ. Во-вторых, в SLURM обеспечена поддержка фоновых заданий 
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СУППЗ. В-третьих, компенсировано различие в подходах к резервированию ре-

сурсов. В-четвертых, осуществлена поддержка командных сценариев SLURM для 

обеспечения полноты функций управления ресурсами. 

Интеграция SLURM и СУППЗ в полной мере продемонстрировала принципы 

модульности иерархической архитектуры СУППЗ и делегирования полномочий 

управления в высоконадежные компоненты. SLURM в этом случае выступил в ка-

честве такого компонента. Делегирование функций управления второго и третьего 

уровней иерархии позволила совместить порядок обслуживания пользователей, 

принятый в СУППЗ и составляющий экосистему суперкомпьютерного центра 

МСЦ РАН, и возможности управления вычислительными ресурсами, включенные 

производителями оборудования в функции SLURM. Разработанная интегрирован-

ная система была внедрена в Центре коллективного пользования вычислительными 

ресурсами МСЦ РАН – отделения МСЦ Курчатовского высокопроизводительного 

вычислительного комплекса НИЦ «Курчатовский институт» и обслуживает поль-

зовательские задания на всех суперкомпьютерах линейки МВС-10П. 

2.1.4 Технические и технологические решения четвертого уровня иерархии 

2.1.4.1  Логические подсистемы СУППЗ 

СУППЗ поддерживает разбиение на две и более логических систем. ВУ, от-

несенные к той или иной логической системе, могут пересекаться, но могут быть 

и разными. Кроме этого, механизм логических систем позволяет работать одной 

управляющей ЭВМ сразу с несколькими вычислителями. Логические системы 

различаются по именам. На рисунке 11 показаны две логические системы – sys1 и 

sys2. Каждая система имеет собственный сервер очереди – qserver1 и qserver2, со-

ответственно. Сервер запросов обращается к серверам очередей разных систем по 

разным идентификаторам. Сервер очереди каждой из логических систем может 

использовать для запуска заданий свой собственный сервер запуска. Имя системы 

автоматически добавляется к имени задания в качестве префикса. 
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Рисунок 11. Пример логических подсистем СУППЗ  

За счет механизма логических подсистем обеспечивается функционирова-

ние нескольких разделов суперкомпьютера МВС-10П ОП [10], установленного в 

МСЦ РАН – отделении МСЦ КВВК НИЦ «Курчатовский институт». 

2.1.4.2  Многоресурсное планирование в СУППЗ 

Достаточно часто суперкомпьютерные системы подвергаются модерниза-

ции в процессе эксплуатации. При этом нередко проводится модернизация не 

всей системы, а только некоторой ее части, что приводит к неоднородности ре-

шающего поля. Разные вычислительные узлы могут содержать процессоры раз-

ной мощности, разные объемы оперативной памяти и т.п. Если разнородность не 

учитывать при планировании, то выделение ресурсов будет производиться неэф-

фективно. Более оснащенные ВУ могут простаивать или выделяться под задания, 

которым не требуется их полная мощность. Для поддержки планирования множе-

ства вычислительных ресурсов в ядро СУППЗ была добавлена соответствующая 

возможность [118]. При постановке задания в очередь пользователь может ука-

зать, какие дополнительные вычислительные ресурсы (помимо процессоров) тре-

буются для его задания. Дополнительные вычислительные ресурсы специфици-

руются системным администратором. При этом каждый специфицированный до-

полнительный ресурс имеет имя и может быть числовым или строковым. Число-

вые вычислительные ресурсы выделятся по принципу «не меньше, чем задано 
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пользователем», а строковые – по принципу «точного соответствия значению, за-

данному пользователем».  

Частным случаем многоресурсного планирования в СУППЗ является под-

держка планирования ресурсов локальной дисковой памяти (ЛДП) вычислитель-

ных узлов, которая помогает в решении проблемы сохранения больших объемов 

промежуточных результатов долгосрочных вычислений. Если задание пользова-

теля фоновое, т.е. может периодически прерываться системой, то, заказав ресурс 

ЛДП, пользователь получает возможность сохранять контрольные точки своего 

задания от одного рестарта до другого. СУППЗ гарантирует пользователю, что 

при каждом рестарте его задание будет выполняться на тех ВУ, где размещен за-

казанный ресурс ЛДП. 

2.1.4.3  Поддержка уровней обслуживания пользователей 

При наличии большого числа пользователей время пребывания задания в 

очереди может достигать нескольких часов и даже дней. Для ряда пользователей, 

чьи задания носят срочный характер, длительное ожидание в очереди неприемле-

мо. Простое повышение приоритета таких заданий часто оказывается недостаточ-

ным – даже находясь первым в очереди, высокоприоритетное задание будет ожи-

дать завершения ранее запущенных заданий. Кроме этого, в системе одновремен-

но может оказаться несколько высокоприоритетных заданий, которым неизбежно 

придётся ожидать друг друга. Для таких случаев в СУЗ предусматривается меха-

низм урегулирования конфликтов между высокоприоритетными заданиями, 

обычно называемый «уровнем обслуживания» или «соглашением об уровне об-

служивания» (англ. – Service Level Agreement, SLA).  

В таких СУЗ, как коммерческие продукты LSF от компании IBM Platform и 

Moab от компании Adaptive Computing, присутствуют механизмы поддержки раз-

личных уровней обслуживания. Предполагается, что пользователь может заклю-

чить с суперкомпьютерным центром отдельное соглашение SLA, и СУЗ будет 

сконфигурирована так, чтобы требования соглашения соблюдались автоматически.  



86 

В Moab для соглашений об уровне обслуживания реализован механизм 

обеспечения заданного качества обслуживания (англ. – Quality of Service, QoS) 

[119]. С механизмом QoS можно производить немедленный запуск задания с вы-

теснением остальных заданий, назначение приоритета, подбор ВУ заданной кон-

фигурации, запрет обратного заполнения при обработке приоритетных заданий и 

др. Среди этих возможностей наиболее важное значение имеют обработка зада-

ний к заданному сроку (англ. – deadline) и предварительное резервирование ре-

сурсов. Для отдельного задания или группы заданий сроки выполнения могут 

быть указаны специально. Для таких заданий сначала оценивается возможность 

соблюдения этих сроков. Если такая возможность есть, Moab добавляет задание в 

список срочных и выделяет ресурсы, гарантируя, что все принятые срочные зада-

ния будут обработаны не позднее запрошенных сроков. При этом планировщик 

оптимизирует время использования ресурсов, старясь выполнить все задания в 

кратчайшие сроки. 

Возможность определения крайних сроков для обработки задания обеспе-

чивается и в СУЗ LSF [120]. Так же, как и в Moab, эта возможность реализуется за 

счёт предварительного резервирования ресурсов в определённый период времени. 

В LSF это называется «временны́м окном». Кроме резервирования в определён-

ный период, LSF поддерживает уровни обслуживания, обеспечивающие обработ-

ку определённого числа заданий в течение заданного времени или к заданному 

сроку. 

Для поддержки уровней обслуживания в СУППЗ при участии автора было 

проведено исследование [121], по результатам которого пользователям было 

предоставлено две возможности. Первая – гарантированный запуск задания не 

позднее определённого срока, вторая – наличие определённого объёма свободных 

ресурсов к заданному пользователем времени (резервирование ресурсов на задан-

ное время). Последнее подразумевает запуск привилегированных заданий в зара-

нее выделенных временны́х окнах, т.е. на заранее зарезервированных на опреде-

лённое время под запуск задания ВУ суперкомпьютера.  
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Конкретные значения по гарантированным срокам запуска заданий, числу 

этих заданий, объёму и времени резервируемых ресурсов пользователи готовы ого-

варивать в SLA. В соглашении также отражается, что в ситуации, когда привилеги-

рованный запрос на гарантированный запуск заданий или на резервирование ре-

сурсов не может быть удовлетворён в силу высокой загрузки суперкомпьютера, 

пользователь извещается об этом при постановке задания в очередь. В этом случае 

соглашение SLA оставляет за пользователем выбор: либо перенести сроки запуска 

задания или резервирования ресурсов, либо поставить задание в очередь с высоким 

приоритетом, но без гарантии сроков запуска, либо отказаться от запроса.  

2.1.4.4  Применение сторонних планировщиков в составе СУППЗ 

Модульность СУППЗ позволяет заменять компоненты с сохранением обще-

го построения и характеристик архитектуры. Проведенные под руководством ав-

тора исследования [112, 122, 123] продемонстрировали практическую возмож-

ность замену штатного сервера очереди СУППЗ на сторонний планировщик. В 

практике применения СУППЗ было осуществлено два таких проекта: подключе-

ние к СУППЗ планировщиков Maui и Sun Grid Engine. Последний был рассмотрен 

в п. 2.1.3 , здесь осветим вопросы подключения Maui.  

Планировщик Maui [88] в начале 2000-х годов получил широкое распро-

странение в мировой практике построения и применения СУЗ. Maui разрабаты-

вался с середины 1990-х годов компанией Cluster Resources как программный 

продукт с открытым исходным текстом. Это обстоятельство привлекло к его раз-

витию значительное число специалистов мирового сообщества HPC. Интеграцию 

с Maui осуществили многие известные СУЗ: OpenPBS/Torque, LoadLeveler, Sun 

Grid Engine, LSF. Для интеграции были разработаны соответствующие интерфей-

сы, главными недостатками являлись их ориентация на конкретную СУЗ и отсут-

ствие документации. Первоначально исследование пошло по следующему пути. В 

качестве основы было решено рассмотреть связку Maui-OpenPBS/Torque, т.к. дан-

ный вариант на практике доказал свою стабильную работоспособность. Было вы-
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двинуто предположение, что существует четкий интерфейсный разрез между 

Maui и Torque, через который взаимодействуют эти системы. В этом случае зада-

ча сводилась бы к выявлению интерфейсного разреза и его поддержке со стороны 

СУППЗ. Другими словами, система OpenPBS/Torque заменялась на СУППЗ с со-

хранением интерфейса с Maui. При этом Maui, работая в уже в составе СУППЗ, 

«считал» бы, что находится в составе OpenPBS/Torque.  

К сожалению, указанный путь привел в тупик. Отсутствие документации на 

интерфейсный модуль Maui-OpenPBS заставило обратиться к исходным текстам, 

исследование которых показало, что четкого интерфейсного разреза между Maui и 

OpenPBS/Torque не существует. Более того, нечеткое соблюдение принципа мо-

дульности в архитектуре OpenPBS/Torque привело к тому, что, например, Maui 

получил возможность непосредственного управления вычислительными узлами. 

При этом во время трансляции исходных текстов Maui для включения поддержки 

интерфейса OpenPBS/Torque было необходимо наличие исходных кодов 

OpenPBS/Torque. 

В итоге было принято решение воспользоваться другим преимуществом 

Maui – наличием отдельного административного интерфейса Wiki [124]. Интер-

фейс Wiki предполагает клиент-серверную архитектуру взаимодействия, в роли 

сервера (Wiki-сервер) выступает сторонняя система управлением заданиями, а ро-

ли клиента (Wiki-клиент) – планировщик Maui. Задача интеграции в этом случае 

сводится к разработке некоторого сервера-посредника, обеспечивающего транс-

ляцию протокола Maui в протокол СУЗ и обратно. Отметим, что на момент начала 

работ не существовало готовых решений интеграции с Maui через интерфейс 

Wiki, публикации о реализации подобных проектов появились позднее [125].  

На рисунке 12 представлена структура разработанного сервера-посредника. 

Для обеспечения взаимной трансляции протоколов сервера очереди СУППЗ и ин-

терфейса Wiki была организована [123] подсистема внутреннего представления 

вычислительных ресурсов и заданий. Изначальная конфигурация ВУ определя-

лась конфигурационными файлами СУППЗ, изменения в конфигурации осу-
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ществлялись через запросы серверов запуска и серверов заданий СУППЗ. Инфор-

мация о заданиях извлекалась из паспортов заданий, передаваемых анализатору 

конфигурационных файлов сервером запросов СУППЗ при постановке заданий в 

очередь. Через анализатор запросов Maui информация о текущем состоянии зада-

ний и ВУ передавалась планировщику Maui. Последний составлял расписание за-

пусков заданий и выдавал команды на запуск очередного задания, которые через 

сервер-посредник транслировались серверу запуска СУППЗ. 

Под управление СУППЗ с интегрированным планировщиком Maui был по-

мещен отдельный сегмент суперкомпьютера МВС-100К [66, 126], установленного 

в МСЦ РАН. Сегмент получил название Mixa, включал в себя 32 ВУ МВС-100К с 

общим числом процессорных ядер 256 и функционировал в 2009-2012 гг. в каче-

стве учебного кластера. За это время на сегменте было обслужено свыше 70 поль-

зователей, выполнивших более 10 тыс. заданий.  

 

 

 

 

С е р в е р -п о с р е д н и к  m s e rv e r  

 

 

А н а л и з а т о р  

з а п р о с о в  

С У П П З  

 

 

К о н ф и г у р а ц и о н н ы й  

ф а й л  

 

П о д с и с т е м а  

в н у т р е н н е го  

п р е д с т а в л е н и я  

в ы ч и с л и т е л ь н ы х  

р е с у р с о в  и  з а д а н и й  

 

З а д а н и я  

  

  

  

  

  

  

  

  

  

  

Р е с у р с ы  

А н а л и з а т о р  

з а п р о с о в  

M a u i  

 

 

 

M a u i  

 

 

П р о ц е с с ы  

С У П П З  

 

 

А н а л и з а т о р  

ко н ф и гу р а ц и о н н ы х  

ф а й л о в  

 

 

 

 

 

П а с п о р т  з а д а н и я  

 

И н т е р ф е й с  

W ik i  

 

П р о т о к о л   

с е р в е р а  о ч е р е д и   

 

 

Рисунок 12. Структура сервера-посредника для интеграции планировщика Maui в 

состав СУППЗ  

К сожалению, после приобретения Cluster Resources компанией Adaptive 

Computing планировщик Maui был включен в состав коммерческой СУЗ Moab 

HPC Suite, поддержка изначального проекта Maui была прекращена, что посте-

пенно в течение нескольких лет остановило его развитие. В связи с этим плани-
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ровщик Maui не смог вытеснить со своего места штатный планировщик СУППЗ. 

Тем не менее, успешная интеграция Maui продемонстрировала преимущества мо-

дульной архитектуры СУППЗ, позволившей осуществить такой проект. 

2.1.5 Технические и технологические решения пятого уровня иерархии 

2.1.5.1  Сбор и обработка статистики работы суперкомпьютерной системы 

Одной из высокоуровневых задач управления вычислительными ресурсами 

сбор и обработка различной статистической информации, позволяющей пользова-

телям оценивать результаты своей работы на суперкомпьютере, системным адми-

нистраторам – осуществлять мониторинг работоспособности и функциональности 

вычислительных систем, руководству центра коллективного пользования – анали-

зировать эффективность работы суперкомпьютерного оборудования центра и 

планировать его дальнейшую деятельность. Для этих целей в СКЦ организуются 

специальные системы, включающие как базы данных (БД), накапливающие соот-

ветствующую статистическую информацию, так и средства доступа к этой ин-

формации и ее анализа. 

В состав СУППЗ входит подсистема сбора, хранения и обработки статисти-

ческой информации (подсистема «Статистика»), включающая базу данных [127] и 

специальное программное средство «МСЦ-КроСтат» [128]. 

Подсистемы сбора и обработки статистической информации о своей работе 

содержат все распространенные СУЗ. Сбор информации заключается в фиксации 

статистически значимых событий, фиксируются время наступления события и его 

параметры. К основным статистически значимым событиям относятся: 

– поступление нового задания (постановка задания в очередь); 

– запуск задания на выполнение после прохождения очереди и, соответ-

ственно, занятие заданием определенного параллельного ресурса; 

– завершение выполняющегося задания и, соответственно, освобождение 

занятых заданием вычислительных ресурсов; 

– снятие задания из очереди до его запуска; 



91 

– старт и остановка СУППЗ; 

– смена режима работы СУППЗ; 

– изменение состава ВУ решающего поля по причине отказа (неисправно-

сти) определенных ВУ или, наоборот, их восстановления после отказа (возврата 

из ремонта). 

Обработка собранной информации заключается в формировании статисти-

ческих отчетов, отражающих за определенный период времени как потребление 

вычислительных ресурсов пользователями (биллинг), так и показатели качества 

работы суперкомпьютерной системы, такие как загрузка ресурсов, коэффициент 

замедления заданий, число обработанных заданий и др. Статистическая информа-

ция может собираться отдельно по пользователям, по организациям, по научным 

проектам. 

Информация о происшедших статистически значимых событиях фиксиру-

ется СУППЗ на управляющей ЭВМ в специальном журнале событий. С помощью 

«МСЦ-КроСтат» информация из журналов событий заносится в БД «Статистика» 

под управлением свободно распространяемой СУБД PostgreSQL. После разбора 

журналов событий и заполнения БД становится возможным формирование ряда 

статистических отчетов, содержащих как биллинговую информацию, так и ин-

формацию о загрузке ресурсов. 

2.1.5.2  Пользовательские интерфейсы СУППЗ 

СУППЗ обладает собственным пользовательским командным интерфейсом, 

архитектурно реализованным в виде соответствующей надстройки. Этот интер-

фейс сложился исторически, реализация многих команд производилась в ответ на 

запросы пользователей для удовлетворения их актуальных потребностей. Для 

обеспечения соответствия стандарту POSIX 1003.2d Batch Environment Standard на 

системы пакетной обработки для СУППЗ был разработан соответствующий стан-

дарту интерфейс [118], совместимый с СУЗ PBS. 
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Следование рекомендациям POSIX необходимо для возможности интегра-

ции в состав СУППЗ соответствующих стандарту компонентов различных изго-

товителей, а также для обеспечения эффективности переноса прикладного про-

граммного обеспечения. Пользователи, работавшие с POSIX-совместимыми си-

стемами семейства PBS, накопили большое количество командных сценариев для 

запуска и сопровождения задания. При переходе таких пользователей на СУППЗ 

они смогут использовать ранее созданные программные инструменты. При созда-

нии POSIX-совместимого командного интерфейса СУППЗ было решено ориенти-

роваться на СУЗ OpenPBS/Torque [86], которая соответствует спецификации 

POSIX 1003.2d Batch Environment Standard. В результате был реализован [118] 

POSIX-совместимый набор команд, обеспечивающий проведение полного цикла 

работы пользователя с системой управления заданиями. 

2.1.5.3  Организация распределенных вычислительных сред 

Одним из ключевых методов повышения доступности и эффективности ис-

пользования ресурсов суперкомпьютерных центров является их объединение в 

единую распределенную сеть. Появление в начале 2000-х годов фундаментальных 

работ [129, 130] дало старт организации высокопроизводительных распределен-

ных вычислительных сред в виде т.н. грид-систем. Подобные исследования и раз-

работки более 20 лет осуществляются при участии автора в МСЦ РАН – Отделе-

нии суперкомпьютерных систем и параллельных вычислений НИЦ «Курчатов-

ский институт». 

В работе [131] отражены результаты работ по созданию сетевой среды рас-

пределенных вычислений (ССРВ) – грид-системы, представляющей собой сово-

купность связанных коммуникационными каналами вычислительных систем 

(ВС), доступную для пользователей как единый вычислительный ресурс. ВС 

ССРВ могут различаться по архитектуре, составу программных и аппаратных 

средств, политике администрирования т.п. и могут использоваться как в составе 

ССРВ, так и вне ее.  Входящие в состав ССРВ ВС могут иметь собственную ло-
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кальную систему планирования заданий, которая получает задания либо непо-

средственно от пользователей локальной ВС, либо из глобальной очереди ССРВ. 

В рамках реализованного проекта [131, 132], в качестве локальной системы пла-

нирования заданий была использована СУППЗ, для сопряжения с которой был 

разработан специальный интерфейс ССРВ. Разработанный интерфейс, в том чис-

ле, обеспечивал возможность синхронного запуска ветвей параллельной програм-

мы из одного задания на разных ВС ССРВ. 

Развитие ССРВ получила в виде проекта Российской инфраструктуры для 

суперкомпьютерных приложений [133], в рамках которого были объединены вы-

числительные ресурсы филиалов МСЦ РАН в Москве, Санкт-Петербурге и Каза-

ни. Суперкомпьютерные сегменты в каждом из филиалов работали под управле-

нием СУППЗ.  

Актуальность вопросов создания территориально распределенной высоко-

производительной вычислительной среды (ТРС) отражена в работах [134, 135]. 

ТРС предполагает объединение разных вычислительных систем, принадлежащих 

разным организациям, в конфедерацию суперкомпьютерных центров. По реше-

нию руководства суперкомпьютерного центра, только часть из имеющихся в цен-

тре ВС может войти в состав ТРС, оставшаяся часть оборудования может исполь-

зоваться исключительно под нужды и задачи центра. Для управления отдельной 

ВС используется локальная система управления ресурсами (ЛСУР), действия всех 

ВС в сети координирует глобальная система управления ресурсами (ГСУР). В ка-

честве ЛСУР может выступать любая система управления заданиями (СУППЗ, 

SLURM, PBS и т.п.). 

После включения ВС в состав сети ее вычислительные ресурсы не отчужда-

ются от их владельца и продолжают использоваться для выполнения локальных за-

даний, которые образуют локальный поток заданий. Задания этого потока посту-

пают на вход определенной ВС и могут выполняться на ресурсах только этой ВС. 

После включения ВС в состав сети совместно с заданиями локального пото-

ка на вычислительные ресурсы ВС начинают поступать задания с других ВС – из 
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глобального потока заданий. В отличие от локального, задания глобального пото-

ка допускают обработку на вычислительных ресурсах любой ВС сети (либо ВС из 

заданного списка), ГСУР распределяет задание глобального потока в ту ВС сети, 

время обработки задания в которой будет минимальным. Вопросы создания мето-

дов и алгоритмов глобального планирования заданий в ТРС подробно рассмотре-

ны в работах [75, 136]. 

Важно отметить, что ГСУР не планирует задания на локальные ресурсы ВС, 

а только выбирает т.н. целевую ВС для размещения задания. Размещенное зада-

ние глобального потока поступает под управление ЛСУР целевой ВС и планиру-

ется наряду с заданиями локального потока. 

Сравнение качественных характеристик СУППЗ и ведущих систем 2.2 

управления заданиями 

Под качественными характеристиками (свойствами) системы управления 

заданиями мы будем понимать наличие или отсутствие определенных функций 

или возможностей. С точки зрения определения перечня качественных характери-

стик систем управления заданиями наиболее полной является фундаментальная 

работа научного коллектива Массачусетского технологического института [12]. В 

этой работе качественные характеристики (англ. – features) классифицированы по 

группам, и проведено сравнение наиболее распространенных систем по всем ха-

рактеристикам. Рассмотрим выделенные авторами [12] группы качественных ха-

рактеристик и определим их наличие или отсутствие у СУППЗ по выделенным 

группам. Данные о наличии или отсутствии определенных свойств у других си-

стем возьмем из [12]. 

1. К общим характеристикам систем управления заданиями относятся сле-

дующие. 

Развитие СУППЗ продолжается, новые возможности добавляются. 

Распространение.  Исходные коды СУППЗ открыты. 

Поддерживаемая ОС: Linux. 
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Языки программирования. Поскольку СУППЗ удовлетворяет требованию 

универсальности, ограничений на использование пользователями языков про-

граммирования нет. 

Защита от НСД. СУППЗ обеспечивает авторизацию, разграничение и кон-

троль доступа пользователей к вычислительным ресурсам. 

Отказоустойчивость. В случае отказа управляющей ЭВМ существуют воз-

можность перезапуска СУППЗ с сохранением стоящих в очереди и выполняю-

щихся заданий. 

Сводная информация по сравниваемым системам приведена в таблице 1. 

Таблица 1. Общие характеристики систем управления заданиями 

Характеристика LSF 
Open 

Lava 
Grid 

Engine 
SLURM PBS СУППЗ 

1 2 3 4 5 6 7 

Развитие + + + + + + 

Распространение платно открыт. 
платно и 

открыт. 
открыт. 

платно и 

открыт. 
открыт. 

Поддерживаемая 

ОС 
Linux 

Linux 

Cygwin 
Unix Unix Unix Linux 

Языки 

программирования 
все все все все все все 

Защита от НСД + + + + + + 

Отказоустойчивость + + + + + + 

 

2. Виды поддерживаемых заданий. 

Разнотипные задания: поддерживает ли система разнотипные задания, 

другими словами различает ли СУЗ задания разных классов. Рассмотренный 

в п. 3.3 метод планирования заданий в СУППЗ основан на разделении заданий на 

классы: отладочные, ординарные, фоновые. 

Параллельные задания. СУППЗ поддерживает как задания с взаимодей-

ствующими процессами, так и задания с распараллеливанием по данным. 

Массивы заданий: поддерживает ли система синхронные зависимые 

параллельные и/или асинхронно независимые параллельные задания. СУППЗ 

поддерживает только асинхронно независимые задания. 
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Ведение нескольких очередей: поддерживает ли система одну или 

несколько очередей заданий. СУППЗ поддерживает несколько очередей заданий 

через рассмотренный в п. 2.1.4.1 механизм логических подсистем. 

Метапланирование: поддерживает ли система многоуровневое 

планирование в распределенной вычислительной среде. СУППЗ может быть 

элементом распределенной вычислительной среды, участвуя в рассмотренной в 

п. 2.1.5.3 двухуровневой системе глобального планирования в территориально 

распределенной вычислительной среде. 

Сводная информация о видах заданий по сравниваемым системам приведена 

в таблице 2. 

Таблица 2. Виды поддерживаемых заданий  

Характеристика LSF 
Open 

Lava 
Grid 

Engine 
SLURM PBS СУППЗ 

1 2 3 4 5 6 7 

Разнотипные 

задания 
+ + + + + + 

Параллельные 

задания 
+ + + + + + 

Массивы заданий + + + + +  

Несколько очередей + + + + + + 

Метапланирование      + 

 

3. Методы планирования заданий. 

Разделяемость ВУ: поддерживает ли система одновременное выполнение 

разных заданий на одном ВУ. СУППЗ поддерживает разделение ВУ, однако по-

скольку это противоречит требованиям императивности управления и надежно-

сти, такая возможность, как правило, на практике не задействуется.   

Обратное заполнение: использует ли планировщик стратегию обратного 

заполнения. Планировщик СУППЗ поддерживает эту стратегию. 

Пакетирование заданий: поддерживает ли объединение однотипных зада-

ний в группы (пакеты). Для СУППЗ разработана отдельная подсистема пакетиро-

вания заданий [137]. 
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Упаковка заданий: это метод распределения ресурсов, при котором плани-

ровщик выбирает группы заданий для одновременного запуска на ВУ или под-

множестве ВУ, чтобы повысить загрузку вычислительных ресурсов. Поскольку 

подобная упаковка неизбежно приведет к возрастанию конкуренции заданий за 

ресурсы ВУ и, как следствие, – к ослаблению изоляции заданий, СУППЗ не под-

держивает этот метод. 

Групповое планирование позволяет пользователю помещать в очередь не-

сколько процессов в рамках одного слота задания. Только один из этих процессов 

может выполняться в один момент времени, т.е. обычно это последовательно вы-

полняющиеся процессы. В СУППЗ такая возможность доступна в рамках сцена-

рия выполнения задания, в котором пользователь может указать последователь-

ность запусков процессов в рамках одного задания.  

Зависимости заданий: есть ли у пользователя возможность  определять за-

висимости выполнения между заданиями при помощи направленных ацикличе-

ских графов. У СУППЗ не поддерживает зависимости между заданиями. 

Сводная информация о методах планирования заданий по сравниваемым си-

стемам приведена в таблице 3. 

Таблица 3. Поддерживаемые методы планирования заданий 

Характеристика LSF 
Open 

Lava 
Grid 

Engine 
SLURM PBS СУППЗ 

1 2 3 4 5 6 7 

Разделяемость ВУ + + + + + + 

Обратное 

заполнение 
+ + + + + + 

Пакетирование 

заданий 
  +   + 

Упаковка заданий    +   

Групповое 

планирование 
   +  + 

Зависимости 

заданий 
+ + + +   
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4. Управление ресурсами. 

Гетерогенность: поддерживает ли система управление гетерогенными ВУ. 

В п. 2.1.4.2 было рассмотрено многоресурсное планирование в СУППЗ, направ-

ленное на поддержку гетерогенных вычислительных ресурсов. 

Политика распределения ресурсов: есть ли возможность разработки и 

применения правил использования ресурсов. СУППЗ обладает развитым меха-

низмом планирования заданий, правила планирования задаются специальным 

расписанием, составляемым системным администратором. Подробно применямые 

методы планирования изложены в главе 3. 

Динамические ресурсы: есть ли возможность помимо управления статиче-

скими ресурсами, такими как процессорные ядра, планировать потребление дина-

мически изменяющихся ресурсов, таких как оперативная память. СУППЗ не под-

держивает планирование динамических ресурсов. 

Отображение заданий: учитывается при распределении заданий по ВУ то-

пология коммуникационной сети. Предлагаемые автором для СУППЗ метод и ал-

горитмы отображения заданий рассмотрены в главе 4. 

Сводная информация о методах управления ресурсами по сравниваемым си-

стемам приведена в таблице 4. 

Таблица 4. Поддерживаемые методы управления ресурсами  

Характеристика LSF 
Open 

Lava 
Grid 

Engine 
SLURM PBS СУППЗ 

1 2 3 4 5 6 7 

Гетерогенность + + + + + + 

Политика 

распределения 

ресурсов 

+ + + + + + 

Поддержка 

динамических 

ресурсов 

+ + + +   

Отображение 

заданий 
+  + + + + 
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5. Управление очередью заданий. 

Интеллектуальное планирование: поддерживает ли система методы пла-

нирования заданий, отличные от стратегии FCFS (First Come First Serve). Метод и 

алгоритмы планирования СУППЗ основаны на достаточно сложном разделении 

заданий на классы и приоритеты с поддержкой стратегии обратного заполнения. 

Схема приоритетов определяет возможности управления приоритетами за-

даний разных пользователей. В СУППЗ наличествует развитая система динамиче-

ских приоритетов заданий, подробно рассмотренная в главе 3. 

Резервирование ресурсов определяет возможности пользователя по заказу 

одного или нескольких слотов заданий в расписании запусков. Такая возможность 

доступна в СУППЗ как в виде отдельной команды предоставления параллельного 

ресурса, так и при помощи рассмотренного в п. 2.1.4.3 механизма поддержки 

уровней обслуживания пользователей. 

Замена и переупорядочивание заданий. СУППЗ не предоставляет пользо-

вателю возможности заменять и/или переупорядочивать задания в очереди. 

Учет энергопотребления: возможность управлять числом включенных ВУ 

для минимизации потребления энергии суперкомпьютерной системой. В СУППЗ 

подобные механизмы представлены в виде результатов исследований [138, 139]. 

Кроме этого, за счет рассмотренного в п. 2.1.3 механизма сопряжения СУППЗ со 

сторонними системами возможности последних могут быть использованы для 

управления энергопотреблением ВУ. 

Управление размещением заданий на ВУ: есть ли у пользователя возмож-

ность указывать, может ли его задание (или нет) быть размещено на ВУ, на которых 

выполняются другие задания, в т.ч. задания другого пользователя. Поскольку СУППЗ 

соблюдает принцип неделимости ВУ, такая возможность не предоставляется. 

 Назначение заданий на ВУ с требуемыми данными возможно в СУППЗ 

за счет механизма ЛДП. 

Сводная информация о возможностях управления очередью заданий по 

сравниваемым системам приведена в таблице 5. 
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Таблица 5. Возможности управления очередью заданий 

Характеристика LSF 
Open 

Lava 
Grid 

Engine 
SLURM PBS СУППЗ 

1 2 3 4 5 6 7 

Интеллектуальное 

планирование 
+ + + + + + 

Схема приоритетов + + + + + + 

Резервирование 

ресурсов 
+  + + + + 

Замена и изменение 

порядка заданий 
+ + + + +  

Учет 

энергопотребления 
+  + + + + 

Управление 

размещением 

заданий на ВУ 
+  + + +  

Назначение заданий 

на ВУ с требуемыми 

данными 
     + 

 

6. Управление выполнением заданий. 

Поддержка пролога/эпилога: это функция, которая позволяет выполнять 

командные сценарии до и/или после выполнения задания. В СУППЗ эта функция 

обеспечивается за счет надстройки сценариев диагностирования и подготовки ВУ. 

Перемещение данных: возможность копирования вспомогательных файлов 

в локальное хранилище ВУ, в [12] отмечаются, что эту возможность можно счи-

тать устаревшей по мере развития сетевых хранилищ данных. Возможность 

включается системным администратором СУППЗ в соответствующий сценарий 

подготовки ВУ. 

Контрольные точки: позволяют сохранять состояние вычислений запу-

щенных заданий, чтобы в случае сбоя можно было перезапустить задания и вос-

становить их из контрольной точки. СУППЗ предоставляет механизм фоновых за-

даний (см. главу 3), контрольная точка может быть сохранена при помощи рас-

смотренных в п. 2.1.1 средств. 

Миграция заданий: возможность переместить выполняющееся задание на 

другой параллельный ресурс. Такая возможность в СУППЗ не поддерживается. 
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Следует особо отметить, что отмеченное в [12] наличие подобной возможности в 

других СУЗ касается только тех заданий, которые состоят из одного процесса. Та-

кие задания имеют слабое отношение к высокопроизводительным вычислениям, 

однако часто встречаются в анализируемых в [12] системах обработки больших 

данных. Миграция многопроцессного задания, использующего параллельный ре-

сурс в режиме взаимодействия процессов, невозможна ни в одной из СУЗ. 

Перезапуск заданий. Отмеченная в [12] возможность перезапустить зада-

ние в случае аварии в СУППЗ автоматически обеспечивается для фоновых зада-

ний. 

Вытеснение заданий: возможность вытеснить с выполнения низкоприори-

тетное задание, отправив его в режим гибернации на ВУ в СУППЗ не поддержива-

ется. Опять-таки в отношении остальных СУЗ гибернация заданий возможно 

только в случае занятия ими одного узла одним процессом, что важно для систем 

обработки больших данных, но не для суперкомпьютеров. 

Сводная информация о возможностях управления выполнением заданий по 

сравниваемым системам приведена в таблице 6. 

Таблица 6. Возможности управления выполнением заданий  

Характеристика LSF 
Open 

Lava 
Grid 

Engine 
SLURM PBS СУППЗ 

1 2 3 4 5 6 7 

Пролог/эпилог +  + + + + 

Перемещение 

данных 
+  + + + + 

Контрольные точки + + + + + + 

Миграция заданий + + + +   

Перезапуск заданий + + + + + + 

Вытеснение заданий + + + + +  

Сравнительный анализ возможностей СУЗ показывает, что СУППЗ облада-

ет подавляющим большинством качественных характеристик ведущих СУЗ, что 

позволяет говорить о соответствии СУППЗ мировому уровню развития СУЗ. Рас-

смотрим наиболее часто применяемые количественные показатели качества СУЗ. 
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Количественные характеристики систем управления заданиями 2.3 

К количественным характеристикам СУЗ следует отнести измеряемые тем 

или иным способом показатели качества. Рассмотрим наиболее употребительные 

показатели качества СУЗ.  

Пусть некоторое задание было поставлено в очередь в момент времени tq, 

запустилось в момент времени te и завершилось в момент времени tf. Тогда время 

Q = te – tq будет временем ожидания задания в очереди, а время E = tf – te будет 

временем выполнения задания. В работе [18] вводится понятие времени 

пребывания задания в системе (англ. – walltime) TW, определяемое как 

𝑇𝑊 =  𝑡𝑓  – 𝑡𝑞  =  𝑄 +   𝐸 (1) 

Для снижения времени TW  необходимо минимизировать времена Q и E. 

Очевидно, что время TW пребывания задания в системе есть некоторый общий 

показатель, характеризующий как качество планирования заданий, напрямую 

влияющее на время Q ожидания задания в очереди, так и производительность 

суперкомпьютерной системы, во многом определяющую время выполнения 

задания E. Однако, как будет показано в главе 4, СУЗ также может влиять на время 

E путем построения оптимального отображения графа параллельной программы 

на граф связности ВУ суперкомпьютера, выделенных для выполнения задания.  

Возьмем некоторый, достаточно длительный интервал T работы 

суперкомпьютера и разобьём этот интервал на последовательные периоды 

∆𝑡𝑖 , 𝑖 = 1 … 𝑡, 𝑇 =  ∑ ∆𝑡𝑖
𝑡
𝑖=1 . В течение каждого отдельного периода ∆𝑡𝑖 не 

изменяются значения 𝑁𝑖 общего числа доступных ВУ и 𝑀𝑖 числа занятых 

выполнением заданий ВУ, т.е. за каждый отдельный период времени ∆𝑡𝑖 не 

происходит добавления или изъятия ВУ из решающего поля, а также не 

запускаются или завершаются задания. Собственно, смена периодов ∆𝑡𝑖 и ∆𝑡𝑖+1 

означает изменение либо значения 𝑁𝑖, либо значения 𝑀𝑖. Определим как Nall 

площадь параллельного ресурса, доступного для выполнения заданий за интервал 

времени T: 
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𝑁𝑎𝑙𝑙(𝑇) = ∑ 𝑁𝑖∆𝑡𝑖

𝑡

𝑖=1
 

Определим как Mall суммарную площадь выполнявшихся на 

суперкомпьютерной системе заданий за тот же интервал T: 

𝑀𝑎𝑙𝑙(𝑇) = ∑ 𝑀𝑖∆𝑡𝑖

𝑡

𝑖=1
 

Определим как Ri заказанное время выполнения i-го задания, т.е. то время 

выполнения, которое пользователь указал при постановке задания в очередь как 

требование к необходимому параллельному ресурсу. Определим как Qi время 

ожидания i-го задания в очереди, а как Ei – реальное время выполнения i-го 

задания.  

Определим загрузку U вычислительных ресурсов суперкомпьютера за 

определённый интервал времени T как 

𝑈(𝑇) =
𝑀𝑎𝑙𝑙(𝑇)

𝑁𝑎𝑙𝑙(𝑇)
 (2) 

В некоторых случаях используют показатель простоя вычислительных 

ресурсов I(T), как величину, противоположную загрузке: 

𝐼(𝑇) = 1 − 𝑈(𝑇) (3) 

Пусть за интервал времени T было выполнено n заданий. Тогда среднее время 

ожидания задания в очереди Q(T) за интервал T может быть рассчитано как 

𝑄(𝑇) =
∑ 𝑄𝑖

𝑛
𝑖=0

𝑛
 (4) 

Отметим, что в реальных системах разброс значений Qi может быть 

значительным. По этой причине часто вместо среднего времени ожидания задания 

в очереди применяется медианное значение этого показателя. 

Само по себе среднее время ожидания задания в очереди не является 

информативным показателем и может служить лишь для сравнения качества 

разных СУЗ на одном и том же входном потоке заданий. Поясним этот факт на 

следующем примере. Пусть два разных задания ожидали в очереди одно и то же 

время, например, 1 час. При этом первое задание выполнялось 10 часа, а второе – 
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10 минут. Очевидно, что время ожидания является достаточно малым для первого 

задания, поскольку составляет только 0,1 от времени его выполнения,  и  

неприемлемым для второго задания, поскольку превышает время его выполнения  

в 6 раз. Для нормализации времени ожидания задания в очереди это время 

приводят либо ко времени выполнения задания E, либо к заказанному времени 

выполнения R. Последнее применяется для заданий с фиксированными 

параметрами, поскольку именно время R используется планировщиком СУЗ для 

составления расписания запусков заданий. Приведенное время ожидания задания 

характеризует его относительную задержку в очереди и поэтому часто в 

литературе называется коэффициентом замедления (англ. – slowdown). 

В работе [18] коэффициент замедления предлагается ограничивать сверху, 

поскольку значительная часть заданий в реальной системе завершается аварийно 

по разным причинам (как правило, из-за ошибок в программе пользователя). 

Средний коэффициент замедления n заданий за интервал времени T в 

соответствии с [18] предлагается рассчитывать как 

𝑆(𝑇) =
1

𝑛
∑ max(𝑆𝑖 , 1) , 𝑆𝑖 =

𝑅𝑖 + 𝑄𝑖

max (𝑅𝑖 , 𝜏)

𝑛

𝑖=1

 (5) 

Параметр 𝜏 применяется для исключения из расчетов аварийно 

завершившихся заданий с аномально коротким временем выполнения, не 

превышающим 𝜏. Очевидно, что минимальное значение коэффициента 

замедления равно 1, что соответствует отсутствию ожидания заданий в очереди. 

Коэффициент замедления рассчитывается по фактическому времени вы-

полнения задания, в то время как планировщик СУЗ составляет расписание, исхо-

дя из времени выполнения, заказанного пользователем при постановке задания в 

очередь. Пусть Bi – заказанное пользователем время выполнения i-го задания. 

Определим величину V(T) – среднее значение времени нахождения задания в 

очереди относительно заказанного времени выполнения: 

𝑉(𝑇) =
1

𝑛
∑

𝑄𝑖

𝐵𝑖

𝑛

𝑖=1

  (6) 
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Рассмотрим систему управления заданиями с точки зрения системной 

инженерии. Тогда в соответствии с ГОСТ Р 59341 2021 величину TW следует 

рассматривать как время реакции системы на запрос пользователя в виде задания.  

ГОСТ Р 59341 2021 определяет своевременность предоставления требуемой 

информации в системе как «свойство системы обеспечивать предоставление 

запрашиваемой или выдаваемой принудительно (автоматически) выходной 

информации в задаваемые сроки, гарантирующие выполнение соответствующей 

функции согласно целевому назначению системы». 

Стандарт предполагает наличие в системе I различных типов запросов, для 

каждого типа задаются следующие величины: 

– λi – интенсивность поступления в систему запросов i-го типа; 

– Tзад i – пороговое значение для критерия своевременности по среднему 

времени реакции: среднее время обработки запросов i-го типа Ti должно быть не 

более задаваемого Tзад i, в стандарте условие этого критерия упоминается как 

условие своевременности α1; 

– Pсв зад i – пороговое значение для вероятностного критерия: вероятность 

своевременной обработки запросов i-го типа в системе Pсв i (Tзад i) = Pсв i (τ𝑖  ≤ Tзад i) 

за заданное время Tзад i должна быть не ниже задаваемой Pсв зад i (в стандарте 

условие этого критерия упоминается как условие своевременности α2), где τ𝑖  – 

случайная величина, означающая время реакции системы при обработке запросов 

i-го типа. 

На основе заданных величин λi, Tзад i, Pсв зад i ГОСТ Р 59341 2021 определяет 

такой показатель, как относительная доля своевременно обработанных в 

системе запросов Ссвоевр. Показатель Ссвоевр охватывает лишь те типы запросов, 

для которых выполнены требования заказчика, и в соответствии с 

ГОСТ Р 59341 2021 этот показатель вычисляют по формуле: 

𝐶своевр = ∑ 𝜆𝑖𝑃св 𝑖(𝑇зад 𝑖)[𝐼𝑛𝑑(𝛼1) + 𝐼𝑛𝑑(𝛼2)]

𝐼

𝑖=1

∑ 𝜆𝑖

𝐼

𝑖=1

⁄   (7) 
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Критерии своевременности обработки каждого типа запросов 

устанавливают с использованием индикаторной функции Ind(α), которая 

принимает либо значение 1 при выполнении условия критерия α, либо значение 0 

в противном случае. 

Запросами в СУЗ являются задания пользователей. При постановке задания 

в очередь пользователь, как правило, не задает величин Tзад i, Pсв зад i и указывает 

только заказанное время выполнения задания, которое СУЗ использует для 

составления расписания и определении прогнозируемого времени запуска 

заданий. О своевременности обработки запроса пользователя можно сделать 

вывод по следующему признаку. Если пользователя не устраивает прогнозируемое 

время запуска его задания, то он удаляет это задание из очереди до начала его 

выполнения.  

Пусть i-й пользователь за период времени T направил в систему ni заданий. 

Тогда интенсивность поступления его заданий можно оценить как 𝜆𝑖 =
𝑛𝑖

𝑇
. Пусть 

di – число заданий, который i-й пользователь за время T удалил из очереди до 

начала выполнения, т.е. то число заданий, для которых не было выполнено 

условие своевременности α1. Тогда вероятность Pсв i (Tзад i) можно оценить как 

𝑃св 𝑖(𝑇зад 𝑖) = 1 −
𝑑𝑖

𝑛𝑖
. 

Пусть I пользователей за время T направили в систему 𝑛 = ∑ 𝑛𝑖
𝐼
𝑖=1  заданий. 

Будем считать, что у каждого пользователя свои требования по своевременности 

обработки его заданий. В этом случае выполнение условия своевременности α1 

для каждого пользователя будет определяться неявно подразумевающимся этим 

пользователем временем Tзад i. Определим величину d удаленных из очереди 

заданий за время T как 𝑑 = ∑ 𝑑𝑖
𝐼
𝑖=1 . Тогда с учетом (7) показатель Ссвоевр 

приобретает следующий вид: 

𝐶своевр = ∑ 𝜆𝑖𝑃св 𝑖(𝑇зад 𝑖)

𝐼

𝑖=1

∑ 𝜆𝑖

𝐼

𝑖=1

⁄  = ∑
𝑛𝑖

𝑇
(1 −

𝑑𝑖

𝑛𝑖
)

𝐼

𝑖=1

∑
𝑛𝑖

𝑇

𝐼

𝑖=1

⁄ = 1 −
𝑑

𝑛
 (8) 
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Показатель Ссвоевр, рассчитанный в соответствии с (8), является частным 

случаем показателя доли соевременно обработанных запросов, определенного в 

ГОСТ Р 59341 2021. 

В [12] в качестве одного из основных показателей качества исследуется 

задержка планирования (англ. – scheduler latency) 𝑡𝑙, под которой авторы 

понимают накладные расходы СУЗ на запуск одного задания. При этом 

выделяется два случая: 

– если среднее время выполнения задания 𝑡 ≫  𝑡𝑙, то влияние накладных 

расходов СУЗ невелико и им можно пренебречь; 

–  если среднее время выполнения задания 𝑡  𝑡𝑙≈
< , то влиянием накладных 

расходов СУЗ пренебречь нельзя. 

Второй случай соответствует заданиям с длительным временем 

инициализации, для планирования которых требуются специальные методы [70, 74]. 

Будем считать загрузку вычислительных ресурсов и средний коэффициент 

замедления заданий основными количественными показателями качества СУЗ. 

Отметим, что руководство и администрация суперкомпьютерного центра обычно 

стремится к максимизации загрузки вычислительных ресурсов, а пользователи 

заинтересованы в минимизации среднего коэффициента замедления. В 

дальнейшем в диссертации мы будем пользоваться главным образом основными 

показателями качества. 

К дополнительным показателям качества СУЗ можно отнести следующие: 

– средняя длина очереди, определяющая среднее число находившихся в 

очереди заданий за рассматриваемый период; 

– полезная загрузка вычислителя, учитывающая время инициализации 

заданий как простой вычислительных ресурсов [70]; 

– пропускная способность системы как количество обслуженных заданий за 

временной период; 

– сбалансированность загрузки как равномерная загруженность всех 

вычислительных ресурсов; 
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– «честность» по отношению СУЗ к заданиям как дисперсия времени 

ожидания заданий в очереди; 

– полнота охвата как отношение числа обработанных к директивному сроку  

заданий  к общему числу заданий. 

Как уже было отмечено, все указанные показатели качества отражают 

прежде всего эффективность планирования заданий в СУЗ. Кроме этого, могут 

применяться показатели качества, отражающие возможности масштабирования 

СУЗ [12, 140]: 

– максимальное число обслуживаемых вычислительных узлов; 

– максимальное число одновременно планируемых заданий. 

Обычно в современных СУЗ значения этих показателей заведомо превыша-

ют актуальные потребности суперкомпьютерного центра. 

Сравнение количественных показателей качества СУППЗ и SLURM  2.4 

В 2013 году под руководством автора было проведено исследование [140] 

по сравнению качества систем управления заданиями СУППЗ и SLURM. Для 

сравнения были выделены следующие количественные показатели. 

1. Загрузка ресурсов, определяемая в соответствии с (2). 

2. Масштабируемость СУЗ по числу ВУ, другими словами, максимальное 

число ВУ, которым СУЗ способна управлять. 

3. Масштабируемость по числу заданий, т.е. максимальное число планиру-

емых заданий. 

4. Среднее значение времени нахождения задания в очереди относительно 

заказанного времени его выполнения в соответствии с (6). 

Определение показателей качества планирования СУППЗ и SLURM про-

изводилось на статистических данных суперкомпьютера МВС-100К, установлен-

ного в МСЦ РАН. Подробно состав системы МВС-100К рассмотрен в п. 2.5 , а 

также в работах [66, 126]. Статистические данные по работе МВС-100К были взя-
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ты за период с 6 по 12 декабря 2012 года. В этот период под планирование зада-

ний в системе было отведено 5 824 процессора (728 8-процессорных ВУ). 

Для определения показателей SLURM был использован симулятор [141], на 

основе которого был собран экспериментальный стенд с виртуальным вычислителем 

с параметрами, аналогичными кластеру МВС 100К (728 8-процессорных ВУ).  

Для корректного сравнения показателей качества планирования разных 

СПО было необходимо обеспечить для них одинаковые входные потоки заданий. 

С этой целью из базы данных подсистемы «Статистика» СУППЗ [114] была из-

влечена следующая статистическая информация за рассматриваемый период с 6 

по 12 декабря 2012 года, включающая:  

– имя пользователя, поставившего задание в очередь; 

– время поступления задания в систему; 

– число ядер, требуемое для выполнения задания; 

– время выполнения, заказанное пользователем; 

– фактическое время выполнения задания. 

На основе указанной информации был сформирован модельный поток за-

даний, поданный на вход симулятора SLURM на экспериментальном стенде. 

В процессе вычислительного эксперимента симулятор SLURM сохранял резуль-

таты симуляции (время поступления, запуска и останова заданий и др.) в соб-

ственную базу данных. После окончания симуляции показатели качества плани-

рования были рассчитаны с помощью SQL-запросов к этой базе данных. 

При расчёте показателей качества планирования было необходимо учесть, 

что на момент начала симуляции виртуальный вычислитель SLURM, в отличие от 

реального вычислителя МВС-100К, не был загружен никакими заданиями, и пер-

вые выполненные задания будут запускаться на счёт без ожидания в очереди. По-

скольку это напрямую влияет на показатели качества, анализ статистики был про-

веден не с момента запуска, а с момента заполнения виртуального вычислителя. 

По этой причине статистика учитывалась, начиная с третьего модельного дня ра-

боты стенда. 
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На вход симулятора SLURM был подан модельный поток из 17 392 фик-

тивных заданий. Первое поступившее задание по времени соответствовало зада-

нию, поставленному в очередь СУППЗ МВС-100К 4 декабря 2012 года в 0 часов 0 

минут и 1 секунду. Показатели качества планирования для SLURM рассчитыва-

лись за тот же период времени, что и для СУППЗ, т.е. с 6 по 12 декабря 2012 года. 

За этот период SLURM успела запустить 13 500 заданий против 13 748, выпол-

ненных СУППЗ. 

Результаты сравнения показателей представлены в таблице 7. 

Таблица 7. Показатели качества СУЗ SLURM и СУППЗ 

Показатель SLURM СУППЗ 

1 2 3 

Загрузка ресурсов за исследуемый период в 

соответствии с (2) 
0,94 0,97 

Средний коэффициент замедления заданий за 

исследуемый период в соответствии с (5) 
9,67 9,05 

Среднее значение времени нахождения задания в 

очереди относительно заказанного времени счёта 

за исследуемый период в соответствии с (6) 

0,34 0,23 

Доля своевременно обработанных заданий за 

исследуемый период в соответствии с (8) 
– 0,978 

Число запущенных заданий за исследуемый 

период 
13 500 13 748 

 

Из работы [12] известно, что SLURM может управлять системами разме-

ром до 65 536 ВУ и одновременно обрабатывать свыше 100 тыс. заданий. Макси-

мальное число одновременно планируемых заданий в СУППЗ ограничено разра-

ботчиками системы и равняется 512. Задания, поступившие в систему сверх этого 

числа, принимаются СУППЗ, но на планирование не поступают, ожидая освобож-

дения места в очереди. Опыт эксплуатации СУППЗ свидетельствует о том, что 

система способна обслуживать решающее поле, состоящее из 1 500 ВУ. Следует 

отметить, что указанные параметры СУППЗ заметно перекрывают потребности 

суперкомпьютерных центров, в которых эксплуатируется система. Полученные 
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результаты позволяют говорить о примерном паритете СУППЗ и SLURM и оди-

наково высоком качестве планирования заданий в обеих системах.  

Результаты эксплуатации Системы управления прохождением параллельных 2.5 

заданий  

Эксплуатация СУППЗ осуществляется с 1999 года по настоящее время на 

множестве суперкомпьютерных систем МСЦ РАН (ныне – отделения МСЦ Кур-

чатовского высокопроизводительного вычислительного комплекса НИЦ «Курча-

товский институт»), ИПМ им. М.В. Келдыша РАН. Кроме этого, СУППЗ приме-

нялась на ряде суперкомпьютерных систем, поставлявшихся НИИ «Квант» инсти-

тутам РАН. Рассмотрим эти системы. 

1. Серия вычислительных установок МВС-1000 [64] штатно оснащалась 

СУППЗ в варианте архитектуры, рассмотренном в п. 1.9 Системы серии МВС-

1000 были установлены в МСЦ РАН и ИПМ им. М.В. Келдыша РАН в 1999 году 

и функционировали до 2007 года. Состав суперкомпьютеров МВС-1000 рассмот-

рен в п. 1.9 установки в разных комплектациях содержали 32 и 64 вычислитель-

ных узла. 

2. Первый российский суперкомпьютер МВС-1000М [66, 142] сферы науки 

и образования, перешагнувший терафлопсный рубеж производительности и за-

нявший 64-место в рейтинге Топ-500 самых производительных суперкомпьюте-

ров мира. Место установки – МСЦ РАН. МВС-1000М состоял из 384 двухпроцес-

сорных ВУ на базе микропроцессоров DEC Alpha 21264 667 МГц. ВУ объединя-

лись в решающее поле при помощи низколатентной высокоскоростной сети 

Myrinet. Пиковая производительность МВС-1000М – 1024 ГФлопс. 

Система эксплуатировалась с 2001 по 2006 год. С 2005 года проводилось 

демасштабирование системы [66]: отдельные сегменты были установлены в 

ИВМиМГ СО РАН и Казанском научном центре РАН.  

3. Серия суперкомпьютеров МВС-1000/16 и МВС-1000/32 производства 

НИИ «Квант». Системы состояли из 16 и 32 ВУ соответственно. ВУ содержали по 
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одному процессору Intel Pentium III и  объединялись друг с другом при помощи 

сети Fast Ethernet. Системы были поставлены в ИПМ им. М.В. Келдыша РАН, 

ИММ УрО РАН [143], МФТИ [144], Ивановский государственный энергетиче-

ский университет им. В.И. Ленина [145], ИВМиМГ СО РАН [146], ИВМ СО РАН 

[147], ИАПУ ДВО РАН [148]. Системы активно эксплуатировались с 2001 по 

2007 год. 

4. Суперкомпьютер МВС-1000/RSC4, созданный и установленный в 

ИПМ им. М.В. Келдыша РАН. Система состояла из 64 двухпроцессорных ВУ на 

базе процессоров AMD Opteron, ВУ объединялись сетью Myrinet. Годы эксплуа-

тации – 2004-2010. 

5. Суперкомпьютер МВС-15000 [66] с пиковой производительностью 

10,1 Тфлопс в 2005 году занял 56-е место в списке Топ-500 и стал самым мощным 

российским суперкомпьютером. В его состав входили 574 двухпроцессорных узла 

на базе процессоров IBM PowerPC 970FX. Коммуникационная сеть использовала 

технологию Myrinet и обеспечивала скорость передачи данных между двумя вы-

числительными узлами с использованием библиотек MPI находилась на уровне 

170-180 Мбайт/с. Система эксплуатировалась в МСЦ РАН с 2004 по 2008 год. 

В 2008 году было проведено демасштабирование системы, отдельные сегменты 

были установлены в Санкт-Петербургском и Казанском филиалах МСЦ РАН. 

6. Суперкомпьютер МВС-6000 [66] содержал 128 двухпроцессорных ВУ на  

на базе VLIW-процессоров Intel Itanium-2. ВУ объединялись коммуникационной 

сетью Myrinet. Пиковая производительность MBC-6000 составляла 1,54 Тфлопс 

(412 место в TOP500). Система эксплуатировалась в МСЦ РАН с 2006 по 2011 год. 

7. Суперкомпьютер МВС-100К [66, 126] содержал 1275 вычислительных уз-

лов, 10572 ядра, 21144 виртуальных процессора. 19 узлов были оснащены ускори-

телями Nvidia Tesla M2090, по 8 ускорителей в каждом узле. Суперкомпьютер за-

нял 38-е место в рейтинге Топ-500 с пиковой производительностью 

227,94 Тфлопс. Коммуникационная сеть была построена на базе InfiniBand DDR 

20 Гбит/с. Система эксплуатировалась в МСЦ РАН с 2007 по 2021 год. 
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8. Суперкомпьютер К100 [9, 149] был создан и установлен в 

ИПМ им. М.В. Келдыша РАН в 2010 году. Является первым отечественным су-

перкомпьютером гибридной архитектуры, содержащей графические ускорители в 

составе ВУ. Состоит из 64 ВУ и имеет пиковую производительность 107 ТФлопс. 

В состав ВУ этой системы, наряду с двумя 6-ядерными процессорами общего 

назначения, входят три 448-ядерных графических ускорителя модели Fermi про-

изводства nVidia. Основу коммуникационной среды составляют сеть Infiniband 

производства QLogic и сеть собственной (ИПМ им. М.В. Келдыша, НИИ «Квант») 

разработки. Активная эксплуатация системы продолжалась с 2011 по 2023 год. 

9. Суперкомпьютер МВС-Экспресс [150] создан и установлен в 

ИПМ им. М.В. Келдыша РАН в 2010 году. В состав системы входят шесть ВУ, 

каждый из которых содержит два четырехядерных процессора AMD Opteron и 

один спаренный ускоритель NVidia GeForce GTX 295. Узлы соединены между со-

бой каналами PCI Exppress через коммутатор. Активная эксплуатация системы 

продолжалась с 2011 по 2023 год. 

10. Суперкомпьютер МВС-10П Торнадо [66, 115] был установлен в МСЦ 

РАН в 2013 году. Пиковая производительность 524 ТФлопс позволила занять 59-е 

место в списке Топ-500. Система включает 208 ВУ, каждый из которых содержит 

два 8-ядерных процессора Intel Xeon E5-2690 и два 61-ядерных ускорителя Intel 

Xeon Phi 7110X. Для объединения ВУ применяется сеть InfiniBand FDR, 

56 Гбит/c. Годы активной эксплуатации – 2013-2023. 

11. Линейка суперкомпьютеров МВС-10П ОП [10, 66], установленных в 

МСЦ РАН. ВУ этих сиcтем объединены сетью Intel OmniPath. МВС-10П состоит 

из следующих разделов: 

– МВС-10П ОП Broadwell (2017 г.), пиковая производительность 

181 ТФлопс, раздел включает 136 ВУ на базе 16-ядерных процессоров Intel Xeon с 

микроархитектурой Broadwell, каждый узел включает в себя 2 процессора Intel 

Xeon E5-2697Av4  и 128 ГБ оперативной памяти; 
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– МВС-10П ОП KNL (2018 г.), пиковая производительность 76 ТФлопс, раздел 

включает 22 ВУ на базе 72-ядерных процессоров Intel Xeon Phi 7290 с микроархи-

тектурой Knights Landing, каждый узел имеет 96 ГБ оперативной памяти; 

– МВС-10П ОП Skylake (2019 г.), пиковая производительность 

200,4 ТФлопс, раздел включает 58 ВУ на базе 18-ядерных процессоров Intel Xeon 

с микроархитектурой Skylake, каждый узел включает в себя 2 процессора Intel 

Xeon Gold 6154 и 192 ГБ оперативной памяти; 

– МВС-10П ОП Cascade Lake (2020 г.), пиковая производительность 

872,3 ТФлопс, раздел включает 191 ВУ на базе 24-ядерных процессоров Intel Xeon с 

микроархитектурой Cascade Lake, каждый узел имеет 192 ГБ оперативной памяти; 

– МВС-10П ОП Icelake (2024 г.), пиковая производительность 42,6 ТФлопс, 

раздел включает 8 ВУ на базе 32-ядерных процессоров Intel Xeon с микроархитек-

турой Icelake, каждый узел имеет 256 ГБ оперативной памяти. 

С 2021 года из состава раздела МВС-10П ОП  Cascade Lake был выделен 

раздел Optane, состоящий из 8 ВУ Cascade Lake, каждый из которых был снабжен 

дополнительными 768 ГБ оперативной памяти на базе технологии Intel Optane.  

12. Суперкомпьютер К60 [9] был установлен в ИПМ им. М.В. Келдыша 

РАН в 2022 году. В состав системы входят 86 ВУ, каждый из которых содержит 

два 14-ядерных процессора Intel Xeon  с микроархитектурой Broadwell и 10 ВУ с 

двумя 16-ядерными процессорами Intel Xeon Broadwell и 4-мя ускорителями 

NVidia Volta V100.  

Подробное описание суперкомпьютерных систем МСЦ РАН приведено в 

диссертации [66]. Описание суперкомпьютерных систем ИПМ им. М.В. Келдыша 

РАН приведено в работе [9]. Обобщенная статистика о числе пользователей и вы-

полненных ими заданиях на некоторых суперкомпьютерах под управлением 

СУППЗ приведена в таблице 8. По остальным системам статистика либо не соби-

ралась, либо была утрачена после снятия системы с эксплуатации. 

На каждой суперкомпьютерной системе велась отдельная очередь заданий, 

при этом за указанные в таблице 8 годы эксплуатации (столбец 3) в очереди пла-
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нировалось различное число процессорных ядер. Максимальное число ядер ука-

зано в столбце 4. Столбец 7 представляет число научных проектов, реализован-

ных с применением высокопроизводительных вычислений исследовательскими 

группами пользователей, а столбец 8 – число научных и образовательных органи-

заций, сотрудниками которых являлись пользователи. 

Таблица 8. Число пользователей и обработанных заданий на некоторых 

суперкомпьютерных системах под управлением СУППЗ в 2001-2024 гг. 

Система Размещение Годы 

Число 

ядер, 

макс. 

Число 

польз. 

Число 

заданий 

Число 

научных 

проектов 

Число 

орган. 

1 2 3 4 5 6 7 8 

МВС-1000М 

МСЦ РАН – 

отделение МСЦ 

КВВК НИЦ 

«Курчатовский 

институт» 

 2001- 

2006 
768 372 339 984 н/д 86 

МВС-15000 
 2004-

2008 
1146 357 221 903 н/д 81 

МВС-6000 
 2006-

2011 
254 206 78 089 н/д 49 

МВС-100К 
 2007-

2021 
9728 964 1 825 797 353 117 

МВС-10П 
 2013-

2023 
2800 448 389 293 220 75 

МВС-10П 

ОП 

Broadwell 

 2017-

2024 
4352 444 169 695 204 74 

МВС-10П 

ОП KNL 

 2018-

2024 
2160 248 43 547 143 57 

МВС-10П 

ОП Skylake 

 2019-

2024 
2088 329 46 890 160 61 

МВС-10П 

ОП Cascade 

Lake 

 2020-

2024 
8880 357 118 830 168 67 

МВС-10П 

ОП Optane 

 2021-

2024 
288 178 6 604 96 45 

МВС-10П 

ОП Icelake 
2024 512 72 3 883 51 32 

К100 ИПМ им. 

М.В. Келдыша 

РАН 

 2010-

2023 
768 258 467 001 32 12 

К60 
 2022-

2024 
2408 90 63 348 н/д 6 

 

Общее число выполненных под управлением СУППЗ заданий составляет 

более 3,7 млн. Общее число исследователей, воспользовавшихся услугами 

СУППЗ, составляет в МСЦ РАН свыше 1240 человек из 135 организаций, а в 

ИПМ им. М.В. Келдыша РАН – свыше 280 человек. Общее число научных проек-
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тов, реализованных при помощи суперкомпьютеров МСЦ РАН, превышает 530, а 

реализованных при помощи суперкомпьютеров ИПМ им. М.В. Келдыша РАН – 

превышает 32. 

На рисунке 13 представлена диаграмма загрузки вычислительных ресурсов 

суперкомпьютеров под управлением СУППЗ, достигнутой в длительные (свыше 6 

дней) периоды между профилактиками оборудования. 

 

Рисунок 13. Загрузка суперкомпьютеров под управлением СУППЗ  

Десятилетия успешной эксплуатации СУППЗ позволяют говорить о сфор-

мировавшейся на её основе цифровой экосистемы. В работе [151] такая экосисте-

ма определяется как цифровое пространство, построенное на базе одной или не-

скольких цифровых платформ и включающее в  себя совокупность сервисов, ко-

торые позволяют пользователям удовлетворять разнообразные потребности в 

рамках реализации единого бесшовного процесса. В нашем случае именно 

СУППЗ предоставляет пользователям сервисы высокопроизводительных вычис-

лений в рамках реализации процесса научных исследований. В диссертации [66] 

под экосистемой суперкомпьютерного центра понимается динамичная совокуп-

ность научного оборудования центра, его персонала, пользователей и отношений 

между ними. Во многом эти отношения определяются системой управления зада-

ниями, на базе которой пользователи выстраивают инструменты и среды разра-
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ботки для проведения своих исследований и через которую получают доступ к 

высокопроизводительным вычислениям. 

Выводы к главе 2 

Для каждого уровня построенной иерархической модели предложены тех-

нические и технологические решения по управлению вычислительными ресурса-

ми этого уровня иерархии. На основе предложенной архитектуры, разработанных 

технических и технологических решений построена Система управления прохож-

дением параллельных заданий (СУППЗ), обеспечивающая комплекс возможно-

стей,  качественных характеристик и количественных показателей, соответству-

ющий мировому уровню. 

Для оценки систем управления заданиями был определен ряд основных ко-

личественных показателей, к которым отнесены загрузка вычислительных ресур-

сов и средний коэффициент замедления заданий, отражающие соответственно ин-

тересы поставщика ресурсов в виде руководства и персонала суперкомпьютерно-

го центра и потребителя ресурсов в виде пользователей. Сравнительный анализ 

СУППЗ и ведущей систему управления заданиями SLURM показал примерный 

паритет сравниваемых систем по рассмотренным количественным показателям.  

Практическая значимость СУППЗ подтверждается ее успешным примене-

нием в ведущих российских суперкомпьютерах, установленных в 1999-2024 гг. в 

МСЦ РАН,  ИПМ им. М.В. Келдыша РАН и ряде других научных и образователь-

ных организаций. Услугами СУППЗ воспользовались более 1240 пользователей-

исследователей из 135 организаций, выполнивших свыше 3,7 млн. заданий при 

реализации более чем 530 научных проектов.  

Объем и характеристики предоставляемых под управлением СУППЗ услуг 

по высокопроизводительным вычислениям позволяют говорить о формировании 

на основе СУППЗ цифровой экосистемы в виде информационно-вычислительной 

среды суперкомпьютерного центра коллективного пользования, доступной прак-

тически для всех российских ученых.  
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Глава 3. Планирование пользовательских заданий 

Существующие методы и средства планирования суперкомпьютерных 3.1 

заданий  

Под планированием заданий (англ. – job scheduling) понимается функция со-

ставления расписания запусков заданий, находящихся в очереди. Эта функция воз-

лагается на специальный компонент СУЗ, называемый планировщиком (англ. – 

scheduler). Планировщик является ядром СУЗ, вокруг которого выстраиваются 

остальные компоненты системы. Роль функции планирования центральная, и поэто-

му в англоязычной литературе термином «scheduler» часто называют СУЗ целиком 

[12]. Планировщик управляет всей суперкомпьютерной системой, выделяя для нужд 

заданий подсистемы ВУ, т.е. средства планирования относятся к четвертому уровню 

иерархии управления вычислительными ресурсами.  

Классификацию и обзор существующих методов планирования заданий мож-

но найти в работе [152], посвященной в большей степени организации вычислений в 

распределенных средах. В п.1.2.2 была приведена классификация пользовательских 

заданий. Тип или класс обрабатываемых в СУЗ заданий во многом определяют те 

методы, алгоритмы и средства, которые будут применяться для планирования зада-

ний этого класса или категории. В настоящей работе предлагаются методы планиро-

вания заданий с фиксированными параметрами, адаптивных (эластичных) заданий и 

нестандартных заданий, поступающих на вход СУЗ в виде виртуальных машин или 

контейнеров, в том числе от облачных платформ. 

3.1.1 Методы и средства планирования заданий с фиксированными параметрами 

В большинстве случаев применяемые в практике научных суперкомпьютер-

ных центров методы планирования заданий с фиксированными параметрами опира-

ются на следующие основные принципы. 

1. Расписание запусков заданий строится на основе сообщаемых пользовате-

лем-владельцем задания характеристик, главными их которых являются число необ-
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ходимых для задания ВУ суперкомпьютера и требуемое время вычислений. Эти ха-

рактеристики задаются пользователем при постановке задания в очередь и в процес-

се обработки задания не могут быть изменены.  

2. Дисциплина обслуживания заданий – приоритетная невытесняющая. 

Другими словами, при планировании применяются относительные приоритеты за-

даний, которые определяются главным образом приоритетом пользователя-

владельца и его группы. Вновь поступающие высокоприоритетные задания не вы-

тесняют выполняющиеся задания с низким приоритетом,  а лишь занимают более 

высокое место в очереди.  

Основным методом приоритетного обслуживания практически во всех совре-

менных СУЗ является механизм динамического справедливого распределения 

(англ. – fair share) [19]. Основная идея здесь состоит в «справедливом» распределе-

нии ресурсов – чем больше ресурсов пользователь потребил, тем ниже приоритет его 

заданий. Рассмотрим этот принцип на примере ведущей мировой СУЗ SLURM. В 

SLURM по умолчанию задействован алгоритм т.н. «дерева справедливости» (англ. – 

fair tree) [20].  

Для определения приоритетов в этом алгоритме  используется упорядоченное 

дерево, образуемое на основе иерархии учётных записей пользователей. Например, 

пользователь может быть членом одной проектной группы, несколько таких групп 

могут составлять один проект, несколько проектов могут принадлежать одной орга-

низации и т.д. 

Предполагается, что администратор СУЗ распределяет квоты на использова-

ние ресурсов на верхнем уровне иерархии, например, среди организаций. Получен-

ные организациями квоты распределяются между проектами администраторами со-

ответствующих организаций. Далее администраторы проектов делят доставшиеся 

им квоты между группами и т.д. Приоритет конечного пользователя складывается из 

его квоты и квот его иерархических «предков» в дереве справедливости. Важным 

моментом при этом является то, что квоты определяют только базовую часть прио-



120 

ритета. Окончательное значение приоритета формируется с учётом того, сколько ре-

сурсов (например, в ядро-минутах) пользовательские задания уже использовали.  

Потребление ресурсов в прошлом разбивается на ряд учётных периодов, и чем 

более удалён по времени учётный период, тем меньшее влияние он оказывает на 

итоговое значение приоритета нового задания. В SLURM для этого применяется 

формула «полураспада», в которой вес более раннего учётного периода равен поло-

вине веса последующего за ним периода, т.е. вес учётных периодов уменьшается в 

геометрической прогрессии по мере их отодвигания в прошлое. Период «полураспа-

да» в SLURM задаётся администратором СУЗ. 

Альтернативой иерархической схеме директивного распределения приорите-

тов являются экономические методы планирования, которые позволяют [153] до-

биться справедливого распределения вычислительных ресурсов на конкурентной 

основе.  Противоречие разрешается через систему бюджетов, которые пользователи 

могут тратить на оплату ресурсов. Бюджет может быть основан как на виртуальных, 

так и реальных финансовых средствах. Приоритет пользователя при применении 

экономических методов планирования определяется той ценой, которую пользова-

тель готов заплатить за место в очереди для своего задания. Для определения этой 

цены могут быть применены различные схемы аукционов [136]. 

3. В рамках одного приоритета задания обрабатываются строго в порядке по-

ступления в очередь (принцип FCFS). Однако, в большинстве СУЗ разрешен запуск 

вне очереди некоторых заданий, которые не только поступили позже других, но мо-

гут иметь более низкий приоритет. Необходимым условием для внеочередного за-

пуска является то, что он не повлияет на время старта заданий, стоящих в очереди 

выше (по причине высокого приоритета или более раннего поступления в очередь). 

Такое возможно, например, в случае, если для задания А, стоящего в очереди выше, 

недостаточно ресурсов, и при этом задание Б, стоящее в очереди ниже, успеет за-

вершиться до момента, когда освободится достаточное количество ресурсов для за-

пуска задания А. Принцип такого перераспределения заданий впервые был пред-

ставлен в [154] и получил название «обратного заполнения» (англ. – backfilling). В 
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настоящее время стратегия обратного заполнения является основной для всех со-

временных СУЗ, поскольку она позволяет радикально повысить загрузку ресурсов. 

Исследования в области развития методов и средств планирования суперком-

пьютерных заданий можно разделить на следующие направления. 

В таких исследованиях, как [27], принцип планирования заданий с фиксиро-

ванными параметрами справедливо критикуется, поскольку качество планирования 

в этом случае существенно зависит от точности оценки пользователями времени вы-

полнения их заданий. Как показано в [155], из-за боязни принудительного снятия за-

дания пользователи многократно завышают оценку времени выполнения своих за-

даний. Задания с завышенными оценками времени выполнения с точки зрения пла-

нировщика завершаются преждевременно, что приводит к внеочередному перестро-

ению расписания запусков заданий и негативно влияет на качество их планирования.   

В [27] для преодоления этого влияния предлагается введение т.н. «мягких» 

ограничений, основанных на предсказании времени выполнения каждого задания. 

Авторы разработали модуль прогноза, встроенный в планировщик СУЗ PBS Pro. 

Прогноз времени выполнения задания осуществляется на основе статистики работы 

суперкомпьютера за некоторый исторический период. Предсказанное время исполь-

зуется в PBS Pro в качестве т.н. «мягкого ограничения», на которое ориентируется 

планировщик при составлении расписания запусков заданий. При превышении мяг-

кого ограничения задание не снимается с выполнения и может продолжать расчеты 

до истечения заказанного пользователем времени. За счет применения при планиро-

вании предсказанных времен авторам удалось улучшить такие характеристики, как 

время ожидания задания в очереди и коэффициент замедления заданий. 

Большое число работ, например [21-24], посвящено развитию и оптимизации 

метода обратного заполнения.  

В [23] классифицированы основные проблемы, возникающие при исследова-

нии методов и алгоритмов планирования заданий методом имитационного модели-

рования (симуляции). Авторы отметили невозможность точной симуляции работы 

планировщика, а также отсутствие метрик, позволяющих оценить точность симуля-
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ции, обозначили задачу формирования статических и динамических входных пото-

ков заданий (рабочей нагрузки). Особо выделены проблема неточных пользователь-

ских оценок времени выполнения заданий и ее влияние на качество планирования. В 

статье рассмотрены два основных вида алгоритма обратного заполнения: консерва-

тивный и агрессивный. Консервативный алгоритм при размещении заданий в об-

ход основной очереди не допускает сдвига запланированного времени старта ни од-

ного из заданий основной очереди. Агрессивный (EASY – Earliest Available Start-time 

Yielding) алгоритм не разрешает сдвиг времени старта только первого стоящего в 

очереди задания. 

В статье [21] рассмотрены различные стратегии выбора задания для запуска в 

обход очереди при агрессивном алгоритме обратного заполнения. В работе [22] ав-

торы использовали статистику пяти суперкомпьютерных систем при симуляции 

процесса планирования. В работе произведено сравнение четырех политик планиро-

вания в сочетании с агрессивным алгоритмом обратного заполнения.  

Одна из последних работ [24] в этой области посвящена направлению иссле-

дований, связанному с предсказанием времени выполнения заданий. Как мы уже от-

мечали, одной из основных проблем планирования является неточная оценка поль-

зователями времени выполнения своих заданий. Основываясь на пользовательских 

оценках, авторы при помощи метода k средних дают прогнозную оценку реального 

времени выполнения каждого задания. Это предсказанное время используется при 

выборе задания для обратного заполнения очереди.  В статье показано преимуще-

ство предлагаемого подхода перед стандартными стратегиями обратного заполне-

ния. По мнению авторов, полученные результаты не только продемонстрировали 

потенциал по повышению эффективности планирования, но и способствуют повы-

шению мотивации пользователей для более точной оценки времени выполнения 

своих заданий. 

Проблеме предсказания времени выполнения заданий посвящены работы 

[155-157].  В [156] определены пределы повышения качества планирования при 

100% точности прогноза времени выполнения заданий.  В статье [155] на базе стати-
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стики суперкомпьютеров МСЦ РАН показано, что для улучшения показателей каче-

ства планирования точность предсказания времени выполнения заданий должна 

быть не ниже 80%.  В [157] авторы исследовали различные алгоритмы машинного 

обучения для предсказания времени выполнения заданий. На основе статистики ра-

боты суперкомпьютеров Северо-западного политехнического университета (КНР) 

авторы продемонстрировали улучшение таких показателей качества планирования, 

как среднее время ожидания, среднее время ответа и средний коэффициент замедле-

ния заданий. 

В работе [158] исследуются подходы к совместному распределению ресурсов 

для гарантированного выполнения заданий в  системах с гетерогенными узлами. 

Отмечается, что сложные вычислительные системы часто работают в условиях не-

определенности доступности ресурсов, вызванной непредсказуемостью текущей 

мультипрограммной ситуации. В то же время у пользователей существует высокая 

потребность в гарантированных сроках выполнения их заданий. Однако, гарантиро-

ванное резервирование определенного объема вычислительных ресурсов неизбежно 

приводит к их простою в режиме ожидания и снижению загрузки вычислителя. 

Предлагаемое авторами [158] решение позволяет оптимизировать процедуру рас-

пределения и резервирования ресурсов для нужд заданий с учетом статических и 

динамических особенностей использования ресурсов, при этом доступность ресур-

сов выдвигается в качестве целевого критерия. 

Ряд исследований посвящен оптимизации планирования в условиях специали-

зации суперкомпьютерной системы. В [159] справедливо отмечается, что целевые 

показатели качества планирования заданий могут существенно отличаться в зависи-

мости от специализации разных суперкомпьютерных центров, определяемой авто-

ром как цель использования вычислительных ресурсов. В работе предложен новый 

подход к оценке эффективности функционирования суперкомпьютерной системы, 

позволяющий сравнивать разные суперкомпьютеры исходя из их специализации 

(цели использования).  
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В работе [25] рассмотрена система планирования заданий, функционирующая 

в ФГУП РФЯЦ-ВНИИТФ им. акад. Е.И. Забабахина. В основе системы лежит мене-

джер ресурсов SLURM. Система, названная Slurm-ВНИИТФ, расширяет функции 

SLURM и предоставляет дополнительные возможности планирования. Главной из 

этих возможностей является разделение заданий на классы в зависимости от срочно-

сти их выполнения. Авторы отмечают, что одной из проблем планирования является 

наличие в единой очереди множества разнородных (относящихся к разным классам) 

заданий. Выделяются класс интерактивных заданий, необходимых для отладки и ви-

зуализации расчетов, и класс фоновых заданий, которые при поступлении более 

приоритетных заданий могут вытесняться с выполнения с сохранением промежу-

точных результатов расчетов. За счет возможности перезапуска фоновых заданий, 

система Slurm-ВНИИТФ позволила увеличить ежегодное количество выполненных 

заданий примерно на 20%. В то же время авторы отмечают в высокой степени спе-

циализированный характер предлагаемых ими подходов.  

3.1.2 Методы и средства планирования адаптивных заданий 

СУЗ, в которых осуществляется планирование исключительно адаптивных за-

даний, имеют достаточно узкую специализацию и слабо представлены в научных 

публикациях. В большинстве случаев адаптивные задания планируются наряду с за-

даниями с фиксированными параметрами, образуя входной поток разнородных за-

даний. Сложность планирования в одной очереди разнородных заданий отмечается в 

исследовании [26], в котором так же, как и в [25], выделяется класс заданий с высо-

ким уровнем отклика (High-Responsiveness-Requesting jobs – HRR). Такие задания 

применяются пользователями для отладки своих программ, во время которой важно 

быстрое прохождение очереди. Авторы отмечают, что простое приоритетное обслу-

живание HRR-заданий ухудшает положение в очереди остальных заданий и предла-

гают для потока HRR использовать переподписку ресурсов – выделение для разных 

HRR-заданий одних и тех же узлов суперкомпьютера. 
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Рассмотрим приведенные в научной литературе методы и способы обработки 

адаптивных заданий. 

1.  Обработка адаптивных заданий в общей очереди. Пользователи самостоя-

тельно занимаются поиском окон в расписании запусков и добавляют адаптивные 

задания в очередь в соответствии с размерами найденных окон. Этот процесс может 

быть автоматизирован как самими пользователями, так и разработчиками СУЗ.  

В статье [160] исследуется вопрос динамического выделения ресурсов для 

MPI-приложения. Работа [161] посвящена интеллектуальному совместному плани-

рованию, когда несколько заданий могут совместно использовать ресурсы на уровне 

узлов для повышения эффективности использования узлов и снижения времени об-

работки заданий. 

2.  Создание отдельного сегмента («песочницы») для обработки адаптивных 

заданий небольшого размера. 

В работе [28] осуществлена попытка моделирования ситуации обработки до-

полнительных небольших по вычислительным ресурсам, но длительных по времени 

заданий на суперкомпьютере IBM Summit. Отмечено негативное влияние на измеря-

емые показатели эффективности и в качестве рабочего решения предложено созда-

ние отдельного вычислительного контура для обработки небольших заданий. 

3.  Применение грид-технологий или облачных технологий. 

В работах [162, 163] рассматривается система Production and Distributed 

Analysis (PanDA), которая успешно использовалась в эксперименте ATLAS в каче-

стве СУЗ. Авторами предложен новый компонент под названием Harvester для по-

средничества в управлении и потоке информации между PanDA и вычислительными 

ресурсами, что позволяет интеллектуально управлять рабочей нагрузкой и динами-

чески предоставлять ресурсы на основе детального знания возможностей ресурсов и 

их состояния в реальном времени. 

В работе [164] Google Cloud использовался для оценки эластичных пакетных 

вычислений до 100 тыс. ядер для обработки заданий, требующих быстрого выполне-

ния. Успех этапов проверки концепции привел к расширению проекта Google Cloud, 
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в котором ATLAS будет изучать вопросы организации облачного сайта, полностью 

интегрированного с распределенными вычислительными ресурсами грид. 

4.  Автоматическая адаптация параметров заданий планировщиком. 

В работе [165] предлагается эластичный планировщик, который на основе 

времени выполнения и потребляемой электроэнергии способен подбирать наилуч-

шую конфигурацию в целях оптимизации времени выполнения или потреблённой 

энергии. 

В работе [166] рассматривается инструмент для умного планировщика, кото-

рый сможет подбирать компромисс между требуемыми вычислительными ресурса-

ми и временем выполнения. Отмечается, что такой инструмент неполон без учёта 

времени ожидания задания в очереди.  

В статье [167] представлен метод Artemis подбора параметров задания с по-

мощью машинного обучения для оптимизации времени выполнения задания. 

Artemis отслеживает задания во время выполнения и создает адаптивные модели для 

настройки параметров выполнения, минимально вмешиваясь в разработку приложе-

ний и обеспечивая невысокие накладные расходы во время выполнения заданий. 

В статье [168] предлагается целостная динамическая политика планирования 

заданий Slowdown Driven (SD-Policy), которая использует адаптивность заданий для 

повышения темпов обработки и снижения времени отклика заданий. SD-Policy осно-

вана на стратегии обратного заполнения и совместном использовании узлов не-

сколькими заданиями.  

В нескольких работах предлагается использовать нейронные сети для назна-

чения заданий в окна простоя. В проекте FreeTrain [29] задача определения соответ-

ствия заданий динамически изменяющимся окнам решается при помощи детерми-

нированного алгоритма распределения ресурсов с применением смешанного цело-

численного линейного программирования (MILP). По утверждению авторов, задача 

MILP может быть эффективно решена во время выполнения заданий. Однако Free 

Train полагается на то, что пользователи предоставят точную информацию о време-
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ни выполнения заданий, что увеличивает нагрузку на пользователей и делает пред-

лагаемый подход труднопримениым на практике.  

5.  Применение постпланирования. 

В [30] авторы предложили использовать свободные вычислительные ресурсы 

суперкомпьютеров путем организации дополнительной очереди низкоприоритетных 

непараллельных заданий. Такие задания предлагается выполнять в контейнерах, раз-

бивая выполнение на отдельные интервалы с помощью инструментов миграции кон-

тейнеров. Авторы разработали систему управления контейнерами, которая поддер-

живает дополнительную очередь во взаимодействии с планировщиком СУЗ.  

В диссертации [31] предложен и реализован алгоритм, позволяющий увели-

чить эффективность использования высокопроизводительных вычислительных си-

стем, ориентированных на выполнение больших параллельных задач (использую-

щих до нескольких тысяч вычислительных узлов), посредством динамической доза-

грузки простаивающих ресурсов суперкомпьютера малыми задачами под контролем 

внешней системы управления нагрузки. Автору удалось повысить загрузку супер-

компьютера Titan на 2% при практическом отсутствии какого-либо воздействия на 

время ожидания для крупных и средних заданий в очереди. 

В исследовании [169] была предпринята попытка создания постпланировщика 

в виде программного средства под названием «Квазипланировщик», способного за-

полнять простаивающие ресурсы небольшими заданиями. Эффект от применения 

«Квазипланировщика» был показан на реальном входном потоке длительностью 7 

дней из более чем 4000 заданий, взятых из статистики работы суперкомпьютера 

МВС-100К. За счёт заполнения свободных окон в расписании была незначительно 

повышена загрузка вычислительных ресурсов с 93,3% до 94,2% при отсутствии ста-

тистически значимого влияния на время нахождения заданий в очереди.  

3.1.3 Методы и средства планирования нестандартных заданий 

В большинстве суперкомпьютерных центров принят примерно одинаковый 

порядок работы. Зарегистрированный пользователь получает учётную запись и 
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пароль, которые позволяют осуществлять удалённый доступ к суперкомпьютерным 

ресурсам и сервисам. После подготовки задания и постановки в очередь СУЗ 

пользователю необходимо дождаться его старта и завершения, после чего забрать 

результаты. При работе на нескольких суперкомпьютерных установках пользователь 

вынужден повторять однотипные действия для каждой из них, что далеко не всегда 

является удобным и эффективным. При этом очень часто пользователи сами не 

разрабатывают новые программы, а используют для расчётов готовые прикладные 

пакеты. Установка и настройка пакета для нескольких суперкомпьютерных 

установок – трудоёмкий процесс. Вместе с тем необходимый для работы 

пользователя стек программного обеспечения может быть оформлен в виде 

виртуальной машины (ВМ) или контейнера, в том числе с использованием 

рассмотренных в п. 2.1.2 методов и средств. Задание, оформленное в виде ВМ или 

контейнера, в соответствии с введенной нами в п. 1.2.2 классификацией следует 

отнести к нестандартным заданиям. 

Для СУЗ возникает новая задача – обеспечение возможности автоматиче-

ского обслуживания потока нестандартных заданий, представленных набором 

виртуальных машин (контейнеров), совместно с потоком обычных стандартных 

заданий. Решить эту задачу возможно через введение дополнительного уровня аб-

стракции – облачного сервиса, который обеспечит единый интерфейс управления. 

При этом необходимо учитывать и традиционный порядок работы пользователей 

через СУЗ.  

В существующих решениях в области организации облачных вычислений, 

как и в суперкомпьютерных расчётах, подразумевается определённый типовой 

порядок действий пользователя. Пользователь при помощи клиентских инстру-

ментов инициирует запрос на создание/использование необходимых ему вирту-

альных машин. С помощью специального компонента – контроллера облака – об-

лачная платформа подбирает наиболее подходящие вычислительные ресурсы, на 

которых начинается выполнение виртуальных машин. При подборе вычислитель-

ных ресурсов и запуске на них виртуальных машин контроллер облака непосред-
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ственно взаимодействует с гипервизорами физических вычислительных узлов 

(серверов), анализируя текущую загруженность решающего поля и балансируя 

вычислительную нагрузку. Другими словами, решающее поле, которое в супер-

компьютерах управляется СУЗ, должно быть передано под полное управление 

облачной платформе. Это противоречие обуславливает актуальность разработок 

методов планирования, совмещающих потоки стандартных и нестандартных за-

даний. 

Концепция облачных вычислений подразумевает, что конечному 

пользователю по требованию и на определённое время будет предоставлен 

удобный сетевой доступ к некоторому набору настраиваемых вычислительных 

ресурсов: подмножеству узлов решающего поля суперкомпьютера, сетям передачи 

данных, устройствам хранения данных, программным приложениям и пакетам. В 

терминологии облачных вычислений предоставляемый пользователю доступ к 

ресурсам называется услугой или сервисом, а сам процесс предоставления 

сервиса – обслуживанием. Среди основных моделей обслуживания выделяют 

программное обеспечение как услугу (SaaS), платформу как услугу (PaaS) и 

инфраструктуру как услугу (IaaS). 

К обязательным характеристикам облачных вычислений обычно относят 

следующие: 

− самообслуживание по требованию – услуга предоставляется по запросу 

пользователя, который самостоятельно определяет её объём и продолжительность; 

− универсальный доступ по сети – услуга доступна пользователям по сети 

вне зависимости от используемого оконечного устройства (терминала, клиента); 

− динамическое перераспределение вычислительных мощностей в условиях 

постоянного изменения нагрузок за счёт объединения ресурсов в единый пул;  

− эластичность – объём предоставляемых услуг по требованию 

пользователя может быть в любой момент времени изменён как в большую, так и 

в меньшую сторону; 

− оплата пользователем только фактически потреблённых ресурсов. 
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С точки зрения пользователя, облака упрощают доступ к необходимым 

сервисам, делая прозрачным путь от запроса к вычислительным ресурсам. При 

этом пользователь может существенно сэкономить как на организации 

вычислений, так и на том, что оплатит лишь фактически потреблённые ресурсы. 

Выгода владельца ресурсов состоит в кратном увеличении прибыли за счёт более 

эффективной загрузки ресурсов и консолидации затрат на управление ими. Для 

эффективной организации облачных вычислений на базе имеющихся ресурсов 

создаётся специальная инфраструктура с помощью облачных платформ и систем 

виртуализации. 

Нетрудно заметить, что любая СУЗ в рамках контролируемой 

вычислительной системы в некоторой степени абстракции обладает всеми 

перечисленными характеристиками облачных вычислений: 

− самообслуживание по требованию и эластичность – зарегистрированный 

пользователь для непосредственного производства расчётов формирует и 

направляет в СУЗ вычислительное задание, самостоятельно задавая необходимые 

число узлов решающего поля и время для выполнения задания; 

− универсальный доступ по сети – зарегистрированный пользователь имеет 

круглосуточный удалённый доступ к суперкомпьютеру и может использовать для 

доступа произвольное оконечное устройство (терминал); 

− система управления заданиями динамически выделяет вычислительные 

узлы для каждого задания, обеспечивая полноту и равномерную загрузку 

решающего поля;  

− биллинговая подсистема СУЗ ведёт точный учёт фактического 

потребления пользователями суперкомпьютерных ресурсов. 

Отметим также принципиальные отличия высокопроизводительных 

вычислений от облачных, не позволяющие осуществить их простую интеграцию: 

− уникальность вычислительных ресурсов суперкомпьютеров не всегда 

поддерживается универсальными гипервизорами; 
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− обеспечивая минимальное время выполнения своего задания и 

максимальную эффективность использования вычислительных устройств, 

пользователь суперкомпьютера предпочитает иметь непосредственный, а не 

опосредованный системой виртуализации, доступ к суперкомпьютерным 

ресурсам; 

− для широкого класса суперкомпьютерных задач использование 

виртуализации не оправдано, т.к. последняя привносит существенные накладные 

расходы на вычисления [73, 32]. 

Тем не менее, попытки интеграции облачных и высокопроизводительных 

вычислений осуществляются постоянно на протяжении многих лет как за 

рубежом, так и в России. Среди исследований и разработок в этой области можно 

выделить три направления.  

Первое направление связано с применением в суперкомпьютерах техноло-

гий виртуализации как основы организации облачных вычислений. Успехи по 

этому направлению связаны с технологиями контейнерной виртуализации, при-

вносящей наименьшие накладные расходы в вычислительный процесс [72, 172]. В 

работе [111] содержится не только достаточно полный обзор исследований в обла-

сти контейнерной виртуализации, но и предлагаются решения по представлению 

вычислительных заданий в виде контейнеров в системе управления заданиями 

SLURM. 

По второму направлению ведутся разработки облачных сервисов для 

высокопроизводительных вычислений на основе построения собственных 

облачных платформ [33, 34], в т.ч. и с использованием программных комплексов 

организации добровольных вычислений [35].  

Третье направление связано с исследованиями в области построения и 

применения облачных платформ для высокопроизводительных вычислений. 

Например, в работе [36] описывается концепция динамического разделения 

решающего поля на стандартно управляемую часть и виртуализированный на базе 

OpenStack раздел и интеграцию данного механизма с СУЗ LSF. В работе [37] 
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предлагается в облаке, управляемом платформой OpenStack, выделять по запросу 

пользователя виртуальный кластер не из виртуальных машин, а из части 

физических узлов, т.е. некий гибридный подход к построению облака для 

высокопроизводительных вычислений. В работах [32, 38] рассмотрены основные 

проблемы, возникающие при переносе высокопроизводительных вычислений в 

облако, и представлен подход к организации высокопроизводительного облачного 

сервиса с использованием виртуализации. Отмечается [32] основное 

препятствие – высокие накладные расходы, которые даже при достаточно 

глубоких исследованиях авторов [38] составили не менее 10%. Схожий опыт 

демонстрирует работа [39], где попытка внедрения облачной платформы 

OpenStack на вычислительных узлах суперкомпьютера Cray привела к накладным 

расходам в 20%. Кроме этого, для эффективного управления 

высокопроизводительными ресурсами авторам работы [38] потребовалось 

создание собственного планировщика [173], учитывающего топологию 

коммуникационной среды. Как показывает опыт автора настоящей диссертации, 

собственные разработки [174] при всей их эффективности на 

узкоспециализированном участке исследований часто оказываются 

несовместимыми с общепринятыми стандартными подходами. 

Планировщик заданий как система массового обслуживания  3.2 

Отдельное научное направление представляют собой исследования плани-

ровщиков заданий как систем массового обслуживания, преследующие цель по-

строения и анализа математических моделей суперкомпьютерных систем коллек-

тивного пользования. Рассматривая это направление, следует отметить успехи 

отечественной школы теории массового обслуживания, представители которой в 

своих работах постоянно совершенствуют математические модели, методы и 

средства исследования усложняющихся вычислительных машин и систем, в том 

числе суперкомпьютеров. 
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В монографии [175] впервые на русском языке были представлены резуль-

таты аналитического исследования приоритетных систем обслуживания, в том 

числе рассмотрены многоэтапные приоритетные системы как наиболее общие 

модели высокопроизводительных расчетов на ЭВМ. В работе [176] рассмотрены 

проблемы эффективного использования вычислительных ресурсов управляющих 

ЭВМ, работающих в режиме реального времени в составе автоматизированных 

систем управления. В частности, приводятся основные характеристики методов 

организации вычислительного процесса: приоритетных и бесприоритетных мето-

дов диспетчеризации с ограниченной и неограниченной буферной памятью, в том 

числе методов диспетчеризации с квантованием времени обслуживания. Методы 

анализа мультипрограммных систем представлены в [177], а в [178] аналитиче-

ские методы были применены для исследования сетей ЭВМ. Дальнейшее разви-

тие методов теории массового обслуживания в целях исследования приоритетных 

вычислительных систем представлено в [179, 180], где рассматриваются вопросы 

пакетной обработки заявок и комбинации различных дисциплин приоритетного 

обслуживания заявок в вычислительных системах. 

Новый импульс аналитическое моделирование вычислительных систем по-

лучило при появлении многоядерных микропроцессоров, которые превратили 

практически любое компьютерное устройство в достаточно сложную параллель-

ную вычислительную систему. В теории массового обслуживания параллельные 

системы получили название многосерверных систем [181]. Обзор моделей много-

процессорных систем приведен в работе [182], в ней же предпринята попытка мо-

делирования работы суперкомпьютерной системы коллективного пользования на 

примере вычислительного кластера Карельского научного центра РАН (КарНЦ 

РАН). Суперкомпьютер представлен как m-процессорная система массового об-

служивания GI/G/m с независимыми одинаково распределенными интервалами 

между заявками {Tn} и независимыми одинаково распределенными временами 

обслуживания {Sn}, в которой i-й приходящей заявке требуется одновременно 

случайное число процессоров Ni ∈ [1, m]. Если число свободных процессоров 
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меньше Ni, то заявка (вычислительное задание) ожидает в буфере освобождения 

недостающего числа процессоров. Модель показала хорошее согласие со стати-

стическими данными кластера  КарНЦ РАН, что позволило авторам сделать вы-

вод об определенном потенциале ее практического применения для анализа суще-

ствующих и проектирования новых многопроцессорных систем. 

В работе [183] предложена модель суперкомпьютерного кластера, основан-

ная на типовой системе массового обслуживания M/M/∞. Как и в [182], каждая за-

явка представляет собой задание, требующее для своего выполнения выделения 

случайного числа каналов обслуживания (процессоров). Авторы ввели в модель 

важное дополнение, отражающее особенность функционирования суперкомпью-

тера, – ограничение времени обработки каждого задания некоторой случайной ве-

личиной, распределенной по показательному закону. Это позволило получить в 

явном виде закон распределения числа занятых процессоров, а также вероятности 

успешного завершения заданий в виде некоторой функции от среднего ограниче-

ния по времени. 

В то же время в работах [182, 184, 185] отмечаются особенности, затрудня-

ющие анализ суперкомпьютерных систем коллективного пользования при помо-

щи методов теории массового обслуживания. К основным трудностям относят т.н. 

«тяжелые хвосты распределений», ограничивающие использование экспоненци-

альных распределений для моделирования процессов в современных компьютер-

ных системах [182] и  неконсервативность процесса нагрузки (узлы или процессо-

ры суперкомпьютера могут простаивать при непустой очереди) [184]. Отмечается 

[185], что  нахождение явных решений для характеристик производительности 

таких систем затруднено даже для систем малого размера. Значительное число за-

дач, связанных с анализом суперкомпьютерных систем, являются открытыми 

проблемами [186], и часто исследователи сосредотачивают свои усилия на не-

больших системах, например, двухпроцессорных [185]. 

Отдельно отметим, что заявки в виде заданий в суперкомпьютерную систе-

му, как правило, направляют люди – пользователи системы. Пользователи отсле-
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живают текущие параметры планирования заданий и адаптируют требования сво-

их заданий к изменениям этих параметров. Таким образом, мы получаем систему 

массового обслуживания с обратной связью, обусловленной в том числе челове-

ческим фактором. Это обстоятельство еще сильнее усложняет анализ суперком-

пьютерных систем коллективного пользования.  В монографии [186] отмечается, 

что аналитическое или численное моделирование столь сложных систем либо за-

труднено, либо невозможно традиционными методами теории массового обслу-

живания, что заставляет исследователей прибегать к методам имитационного мо-

делирования и машинного обучения. 

Имитационное моделирование является одним из часто используемых методов 

исследования СУЗ как систем массового обслуживания. В работе [187] на базе ана-

лиза статистики десятков тысяч заданий нескольких суперкомпьютеров была пред-

ложена модель, способная формировать входной поток заданий, статистически не-

отличимый от входного потока реальной вычислительной системы. Для этого каж-

дая из характеристик задания моделируется случайной величиной с определённым 

распределением и заданным параметрами. Предложенный в работе [187] подход был 

применен при имитационном моделировании СУЗ для разработки метода совмеще-

ния разнородных потоков заданий. 

Планирование заданий с фиксированными параметрами  3.3 

3.3.1 Метод планирования заданий с фиксированными параметрами 

Рассматриваемый метод планирования заданий применяется в СУППЗ, 

начиная с 1999 года. Программная реализация метода в виде сервера очереди 

СУППЗ осуществлена сотрудником Института математики и меха-

ник им. Н.Н. Красовского УрО РАН С.В. Шарфом.  

Метод предполагает, что пользователи для каждого задания указывают чис-

ло необходимых процессорных ядер и время выполнения задания. В зависимости 

от значения этих параметров задания разбиваются на три категории – отладочные, 

ординарные (пакетные) и фоновые. Размер отладочных заданий ограничивается 
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сравнительно небольшим числом ядер Pотл и коротким временем выполнения Tотл. 

Параметры Pотл и Tотл определяются администратором. Задания, чьи требования 

не превышают этих значений, категорируются как отладочные. Ординарными 

считаются однократно запускаемые задания, время исполнения которых сравни-

тельно велико и ограничивается сверху параметром Tорд. Число ядер для ординар-

ного задания ограничивается только общим числом ядер в суперкомпьютерной 

системе.  

Фоновые задания могут выполняться произвольное время, но при этом пе-

риодически прерываться системой управления. Для фонового задания пользова-

тель явно указывает квант – минимальное время выполнения фонового задания. 

СУППЗ гарантирует, что если фоновое задание было запущено, то ему для вы-

полнения будет предоставлено время, не меньшее указанного кванта. Если по ис-

течении кванта будут обнаружены задания, претендующие на занятые фоновым 

заданием ресурсы, фоновое задание будет снято с выполнения и заново поставле-

но в очередь. При этом общее время счета фонового задания будет уменьшено на 

число минут, прошедших с его последнего запуска. 

Расписание планировщика представляет собой последовательность сменя-

ющих друг друга режимов планирования. Планирование очереди в каждый мо-

мент времени производится в соответствии с параметрами текущего режима. В 

системе может быть несколько расписаний, переключение между которыми осу-

ществляется по директиве администратора, а переключение режимов внутри каж-

дого расписания – автоматически. 

Режим планирования определяется следующими параметрами. 

1. Дата и время включения режима, определяющие время, начиная с которо-

го параметры режима вступают в силу. Параметры режима действуют вплоть до 

включения следующего режима. 

2. Шкала доступа к режиму определяет группы пользователей, которым 

разрешено выполнение заданий в этом режиме. С помощью шкалы доступа орга-

низуются режимы профилактики оборудования, во время которой запуск заданий 
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разрешается только администраторам системы. Планировщик гарантирует, к 

началу режима профилактики узлы суперкомпьютера будут свободны от заданий 

пользователей. 

3. Общее число планируемых процессорных ядер. 

4. Максимальное время Tотл и число ядер Pотл, отведенные для отладочных 

заданий. Задания, требующие для исполнения времени, не превышающего Tотл, и 

числа ядер, не превышающего Pотл, автоматически будут отнесены к категории 

отладочных. Все ординарные задания в сумме не могут на время, большее Tотл, 

занимать ядер больше, чем разность между общим числом ядер и значением Pотл. 

Фактически ядра числом Pотл будут использоваться только для выполнения отла-

дочных заданий, другими словами, будут «зарезервированы» для отладочных за-

даний. Следует пояснить, что «резервирование» не означает выделение конкрет-

ных ядер или узлов под отладочные задания. Планировщик СУППЗ гарантирует, 

что Pотл процессоров не будет использовано для ординарных заданий на время, не 

превышающее Tотл, а какие конкретно узлы будут «зарезервированы» для этой 

цели, зависит от текущей ситуации. Подход с «плавающим» резервом отладочных 

ядер позволяет сократить простои ресурсов при отсутствии в системе отладочных 

заданий. 

5. Максимальное время, отведенное для ординарных заданий Tорд. Задания, 

чьи требования превышают время Tорд, будут ожидать в очереди смены режима 

или расписания без включения в расписание запусков. 

6. Шкала приоритетов пользователей. Приоритеты напрямую зависят от 

суммарного времени выполнения всех заданий пользователя за некоторый учет-

ный период. Размер учетного периода задается администратором при составлении 

расписания очереди. При планировании определяются k приоритетов, 1 ≤ k ≤ 6, 

для заданий путем задания шкалы вида ( t1, t2, t3, … tk, 0 ). Обозначим как Tuser 

суммарное время выполнения всех заданий пользователя за учетный период. От-

метим, что в сумму Tuser включается также сумма заказанных времен выполнения 

заданий пользователя, находящихся в очереди. 
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Наивысшим приоритетом (очередь 0) будут обладать задания пользователей 

с суммарным временем Tuser < t1, чуть меньшим  (очередь 1) приоритетом – тех 

пользователей, у которых Tuser < t2, еще меньшим (очередь 2) – тех пользователей, 

у которых Tuser < t3 и т.д. Низшим для текущего режима (очередь k) приоритетом 

будут обладать задания пользователей, у которых tk ≤ Tuser. 

При суммировании времени заданий пользователя за учетный период, время 

каждого задания умножается на специальный коэффициент – цену задания. Цена 

задания определяется администратором для каждого пользователя при составле-

нии расписания. При вычислении приоритета задания учитывается время выпол-

нения, указанное пользователем при постановке задания в очередь. Это время 

прибавляется к суммарному времени заданий пользователя за учетный период. 

Планировщик пытается выделить ресурсы из числа свободных сначала для 

заданий из очереди 0, потом – из очереди 1 и т.д. Внутри одной очереди ресурсы 

выделяются в порядке поступления заданий (принцип FCFS). Если свободных ре-

сурсов для задания нет, определяется момент времени, когда нужные ресурсы 

освободятся, и устанавливается время запуска задания. Никакое менее приоритет-

ное задание не может занять ресурсы так, чтобы это отодвинуло запуск более 

приоритетного задания. При отсутствии конфликта по ресурсам менее приоритет-

ное задание может стартовать раньше более приоритетного, реализуя консерва-

тивный алгоритм обратного заполнения. 

Отметим основные характеристики метода планирования СУППЗ:  

–  метод реализует принцип планирования с фиксированными параметрами 

и невытесняющей приоритеной дисциплиной обслуживания; 

–  за счет шкалы приоритетов реализуется «справедливый» принцип плани-

рования faire share – чем больше времени выполнялись задания пользователя за 

учетный период, тем ниже его приоритет, и наоборот; 

–  метод применяет консервативный алгоритм обратного заполнения. 

Перечисленные характеристики метода присущи большинству используе-

мых в СУЗ стратегий планирования заданий. Во многом по этой причине иссле-
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дование [140] показало паритет между планировщиками СУППЗ и SLURM по ос-

новным показателям качества планирования для одних и тех же входных потоков 

заданий. 

Отличительными особенностями метода планирования в СУППЗ является 

выделение в отдельные классы отладочных и фоновых заданий. Аналогичная 

классификация применяется в [25], однако в СУППЗ подобный подход был при-

менен на два десятилетия раньше. Рассмотрим статистику работы суперкомпью-

теров под управлением СУППЗ и исследуем, как выделение отладочных и орди-

нарных заданий влияет на показатели качества планирования. 

3.3.2 Методика обработки данных статистики для определения коэффициента 

замедления 

В расчетах использовались данные статистики работы рассмотренных в 

п. 2.5 вычислительных систем МСЦ РАН за период с 2001 по 2024 годы. Инфор-

мация о выполненных на суперкомпьютерных системах МСЦ РАН и 

ИПМ им. М.В. Келдыша РАН заданиях приведена в таблице 9. 

Каждая суперкомпьютерная система управлялась через отдельную очередь 

заданий, при этом за указанные в таблице 9 годы эксплуатации в очереди плани-

ровалось различное число процессорных ядер. Максимальное число ядер указано 

в столбце 3 таблицы 9. Таблица содержит также общее число выполненных зада-

ний, число выполненных отладочных и фоновых заданий. Процент использования 

ресурсов отладочными и фоновыми заданиями рассчитывался от общего объема 

ресурсов, потребленного всеми заданиями. Для большинства суперкомпьютерных 

систем максимальное время выполнения ординарного задания равно 1 суткам 

(1440 минут). Исключение составляет раздел Optane суперкомпьютера МВС-10П 

ОП, на котором возможен запуск ординарных заданий длительностью до 1 недели 

(10080 минут). 

Из таблицы 9 видно, что при сравнительно небольшом числе фоновых зада-

ний они потребляют существенную долю вычислительных ресурсов. С отладоч-
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ными заданиями мы имеем обратную ситуацию – при достаточно большом их 

числе доля потребленных ресурсов мала. Для ряда суперкомпьютеров режим от-

ладочных заданий не вводился, и соответствующие ячейки таблицы 1 пусты. 

Таблица 9. Суперкомпьютерные системы МСЦ РАН в 2001-2024 гг. 

Система Годы 

Число 

ядер, 

макс. 

Выполнено заданий 
Использовано 

ресурсов, % 

Всего Отл. Фон. Отл. Фон. 

1 2 3 4 5 6 7 8 

МВС-1000М 2001-2006 768 339 984 78 031 9 233 1,2% 28,5% 

МВС-15000 2004-2008 1146 221 903 60 672 6 073 1,0% 18,1% 

МВС-6000 2006-2011 254 78 089 15 970 928 3,2% 17,9% 

МВС-100К 2007-2021 9728 1 825 797 231 067 40 190 0,3% 8,4% 

МВС-10П 2013-2023 2800 389 293 21 140 7 603 0,1% 8,7% 

МВС-10П ОП 

Broadwell 
2017-2024 4352 150 843 20 427 1 933 0,1% 3,1% 

МВС-10П ОП 

KNL 
2018-2024 2160 41 900 31 659 0,01% 9,3% 

МВС-10П ОП 

Skylake 
2019-2024 2088 42 356  831  7,0% 

МВС-10П ОП 

Cascade Lake 
2020-2024 8880 99 238  1381  2,2% 

МВС-10П ОП 

Optane 
2021-2024 288 5 938 8 110 0,01% 13,9% 

К100 2010-2023 768 467 001 150 611 19 829 0,01% 22,6% 

К60 2022-2024 2408 63 348 19 284 3584 0,01% 28,9% 

 

Всего на функционировавших под управлением СУППЗ суперкомпьютерах 

механизмом фоновых заданий воспользовались более 260 пользователей при реа-

лизации свыше 110 научных проектов. 

Традиционно коэффициент замедления рассчитывается в соответствии с 

формулой (5). В СУППЗ минимально возможное время выполнения задания равно 

1 минуте, и именно это значение использовано в качестве параметра τ для отла-

дочных заданий. Для длительных по времени ординарных и фоновых заданий 

время выполнения в 1 минуту означает фактически аварийный запуск, поэтому 

значение параметра τ для этих классов задавалось равным 2 минутам. 

Кроме этого, для фоновых заданий, которые могут многократно запускаться 

и возвращаться в очередь, коэффициент замедления следует представить как  
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  𝑆𝑖 =
∑ (𝑅𝑗 + 𝑄𝑗)𝑘

𝑗=1

∑ max (𝑅𝑗, 𝜏)𝑘
𝑗=1

 (9) 

где k – число запусков i-го фонового задания, Qj и Rj – соответственно времена 

ожидания в очереди и выполнения для j-го запуска задания.  

Коэффициент замедления является интегральным показателем качества и 

должен определяться на сравнительно больших временных промежутках. Учиты-

вая, что фоновые задания могут находиться в системе несколько месяцев, целесо-

образно рассчитывать коэффициент замедления по годам. При выполнении стати-

стических расчетов из базы данных статистики МСЦ РАН [114] извлекалась сле-

дующая информация: 

– время поступления задания в очередь; 

– число ядер и  требуемое время выполнения для задания, квант для фоно-

вого задания; 

– параметры режима планирования на момент поступления задания в оче-

редь, в соответствии с которыми определялся класс задания; 

– число доступных процессорных ядер на все время пребывания задания в 

системе; 

– времена старта и завершения задания. 

Сумма времен Qj и Rj в формулах (5) и (9) есть время пребывания задания в 

системе. Из этого времени вычитались периоды профилактики оборудования, в 

течение которых задания ожидали в очереди без возможности выполнения. Кроме 

этого, из рассмотрения исключались периоды, во время которых были зафиксиро-

ваны аварийные ситуации, связанные с массированным отказом оборудования. 

3.3.3 Средние коэффициенты замедления для различных классов заданий 

суперкомпьютеров МСЦ РАН разных поколений 

Средние коэффициенты замедления заданий разных заданий для суперком-

пьютеров из таблицы 9 приведены на диаграммах рисунков 14-25. На каждой диа-

грамме по годам представлены четыре столбца. Первый соответствует среднему 

коэффициенту замедления для всех заданий за год. Остальные три соответствуют 



142 

коэффициентам замедления отладочных, ординарных и фоновых заданий. На не-

которых системах в определенные годы режим отладочных заданий не включался, 

и соответствующие столбцы на диаграммах отсутствуют.  

 

Рисунок 14. Коэффициент замедления разных классов заданий  

суперкомпьютера МВС-1000М 

 

Рисунок 15. Коэффициент замедления разных классов заданий  

суперкомпьютера МВС-15000 

 

Рисунок 16. Коэффициент замедления разных классов заданий  

суперкомпьютера МВС-6000 
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Рисунок 17. Коэффициент замедления разных классов заданий  

суперкомпьютера МВС-100K 

 

Рисунок 18. Коэффициент замедления разных классов заданий  

суперкомпьютера МВС-10П 

 

Рисунок 19. Коэффициент замедления разных классов заданий  

раздела Broadwell суперкомпьютера МВС-10П ОП 
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Рисунок 20. Коэффициент замедления разных классов заданий  

раздела KNL суперкомпьютера МВС-10П ОП 

 

Рисунок 21. Коэффициент замедления разных классов заданий  

раздела Skylake суперкомпьютера МВС-10П ОП 

 

Рисунок 22. Коэффициент замедления разных классов заданий  

раздела Cascade Lake суперкомпьютера МВС-10П ОП 
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Рисунок 23. Коэффициент замедления разных классов заданий  

раздела Optane суперкомпьютера МВС-10П ОП 

 

Рисунок 24. Коэффициент замедления разных классов заданий  

суперкомпьютера К100 

 

Рисунок 25. Коэффициент замедления разных классов заданий  

суперкомпьютера К60 
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Анализ представленных результатов позволяет сделать следующие выводы. 

Коэффициент замедления для отладочных заданий всегда меньше среднего коэф-

фициента от 2 до 8 раз. Для фоновых заданий коэффициент замедления в подав-

ляющем большинстве случаев ниже среднего значения и значения для ординар-

ных заданий, исключения носят единичный характер. Темп обработки фоновых 

заданий выше темпа обработки ординарных заданий от 20% до 900%.  

3.3.4 Особенности планирования отладочных заданий 

Интересен пример раздела Broadwell суперкомпьютера МВС-10П ОП, при-

веденный в таблице 10. Режим отладочных заданий в этой системе действовал с 5 

августа 2021 года по 30 мая 2023 года с неизменными параметрами. Отладочными 

считались задания, запрашивавшие не более 128 ядер не более чем на 30 минут. 

Отметим, что правами отладочных заданий обладают также фоновые задания с 

квантом, не превышающим время отладочного задания (в нашем примере – 30 

минут) и запрашивающие число ядер не более значения, установленного для от-

ладочных заданий (в нашем примере – 128 ядер). Такие фоновые задания мы так-

же учитывали при расчете коэффициента замедления. 

Сравним коэффициент замедления заданий с указанными параметрами для 

периода с отладочным режимом и для непосредственно предшествующих перио-

дов до введения этого режима. Выключение отладочного режима в 2023 г. связано 

с передачей значительной части процессорных ядер из очереди СУППЗ в моно-

польное использование для решения специализированных задач. По этой причине 

коэффициент замедления для всех заданий очереди кратно вырос, и учет его при 

сравнении с периодом действия отладочного режима будет некорректным. Стати-

стические показатели представлены в таблице 10. 

Из таблицы 10 видно, что с момента введения отладочного режима (строка 

№ 3) коэффициент замедления для указанной категории заданий существенно 

снизился и оставался на низком уровне вплоть до выключения отладочного ре-

жима. Более того, рисунок 21 показывает, что отладочный режим вызвал заметное 
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снижение как общего коэффициента замедления, так и коэффициента замедления 

ординарных и фоновых заданий. 

Таблица 10. Статистические показатели раздела Broadwell суперкомпьютера 

МВС-10П ОП до и после введения режима обработки отладочных заданий 

№ Период 
Число 

заданий 

Коэффициент 

замедления 

1. 2021, 1 квартал 882 4,86 

2. 01.04.2021 – 05.08.2021 2093 4,54 

3. 05.08.2021 – 01.10.2021 674 1,9 

4. 2021, 4 квартал 1518 2,13 

5. 2022, 1 квартал 1643 3,05 

6. 2022, 2 квартал 5233 3,27 

7. 2022, 3 квартал 1924 3,84 

8. 2022, 4 квартал 4367 1,93 

9. 2023 1 квартал 1924 3,84 

10. 01.04.2023 – 30.05.2023 2620 1,23 

 

Таблица 11 демонстрирует значения показателя Ссвоевр доли своевременно 

обработанных заданий, рассчитанной в соответствии с (8).  

Таблица 11. Доля своевременно обработанных заданий разных классов 

Система Общая Отладочные Ординарн. Фоновые 

1 2 3 4 5 

МВС-1000М 0,967 0,977 0,967 0,917 

МВС-15000 0,963 0,973 0,960 0,950 

МВС-6000 0,965 0,979 0,962 0,951 

МВС-100К 0,978 0,983 0,977 0,978 

МВС-10П 0,977 0,983 0,965 0,964 

Broadwell 0,944 0,984 0,940 0,938 

KNL 0,954 0,940 0,954 0,961 

Optane 0,948 1 0,948 0,948 

К100 0,985 0,992 0,983 0,973 

К60 0,989 0,997 0,986 0,978 
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Из таблицы 11 видно, что доля своевременно обработанных заданий для по-

давляющего большинства систем заметно выше как общей доли своевременно 

обработанных заданий, так и значений этого показателя для классов ординарных 

и фоновых заданий. 

За счет применения механизма «плавающего резерва» и занятия зарезерви-

рованных для отладочных заданий узлов заданиями других классов удалось по-

высить загрузку для суперкомпьютера МВС-100К на 9-14 тыс. узло-часов в год, а 

для суперкомпьютера МВС-10П ОП Broadwell  на 4,5 тыс. узло-часов в год. 

Планирование адаптивных заданий  3.4 

3.4.1 Метод совмещения потоков адаптивных заданий и заданий с 

фиксированными параметрами (метод постпланирования) 

При планировании заданий с фиксированными параметрами из-за разных 

размеров заданий в плане запуска неизбежно возникают так называемые окна, во 

время которых часть узлов простаивает. Для заполнения окон большинство пла-

нировщиком применяют одну или несколько рассмотренных выше стратегий об-

ратного заполнения. Обратное заполнение позволяет помещать менее приоритет-

ные задания в образующиеся окна, если это не задержит запуск более приоритет-

ного задания. Обратное заполнение позволяет существенно поднять загрузку су-

перкомпьютера и минимизировать простои узлов. 

Выделим адаптивные (эластичные) задания в отдельный класс и отдельный 

входной поток. Для адаптивных заданий допускается варьировать требуемый 

объём вычислительных ресурсов и заказанное время счёта. Рассмотрим задачу 

совмещения потоков адаптивных заданий и заданий с фиксированными парамет-

рами в одной очереди.  

Предлагаемый метод совмещения потоков адаптивных заданий и заданий с 

фиксированными параметрами основан на поиске окон в расписании запусков за-

даний с фиксированными параметрами и помещении в найденные окна адаптив-

ных заданий. Размер адаптивного задания должен соответствовать размеру окна. 
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По этой причине процесс обработки адаптивных заданий совместно с потоком за-

даний с фиксированными параметрами назовем постпланированием. Выделим 

часть планировщика СУЗ, ответственную за обработку потока адаптивных зада-

ний, которую назовем постпланировщиком. Метод совмещения двух разнород-

ных потоков соответственно назовем методом постпланирования. 

При 100% загрузке вычислителя заданиями с фиксированными параметрами 

обработка потока адаптивных заданий не имеет смысла, так как нет окон для запол-

нения. Очевидно, при отсутствии в очереди заданий с фиксированными параметра-

ми (0% загрузке) поток адаптивных заданий сможет эффективно поднять загрузку 

суперкомпьютера. Важным является вопрос определения границы загрузки от 0 до 

100%, при которой обработка потока адаптивных заданий позволит статистически 

значимо улучшить качество планирования. Актуальными вопросами настоящего ис-

следования являются следующие. Насколько такая обработка сможет поднять за-

грузку вычислителя? Как сильно при этом замедлится обработка заданий с фиксиро-

ванными параметрами?  

Предлагаемый метод постпланирования представлен на рисунке 26 и за-

ключается в следующем. 

Основной поток заданий

Дополнительный поток 

адаптивных заданий

СУЗ

Планировщик
с алгоритмом 

обратного 
заполнения

Пост-планировщик

Очередь заданий

Информация

об окнах

Адаптивные

задания

 

Рисунок 26. Метод постпланирования 
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1. Будем считать очередь заданий с фиксированными параметрами основ-

ной. Эту очередь обрабатывает соответственно основной планировщик СУЗ. Пред-

полагается, что основной планировщик реализует одну из стратегий обратного 

заполнения, т.е. позволяет заполнять окна в расписании запусков заданиями соот-

ветствующих окнам размеров. 

Рассмотрим понятия окна и обратного заполнения подробнее. 

Расписание (план) запусков заданий основной очереди формируется на ос-

нове заданных пользователем фиксированных параметров: числа узлов суперком-

пьютера (процессорных ядер) и времени выполнения задания. Из-за разных пара-

метров заданий в плане запусков возникают так называемые окна, что демонстри-

рует рисунок 27. Высотой окна назовём число простаивающих узлов, а шириной 

окна назовём его длительность. 

 

Рисунок 27. Пример окна в расписании запусков заданий 

С помощью алгоритма обратного заполнения окна заполняются менее при-

оритетными заданиями, если это не помешает запуску более приоритетных зада-

ний. По статистике, пользователи указывают заказанное время счёта с большим 

запасом [170].  На примере рисунка 27, если раньше завершится задание 1, то за-

пущенное в окне менее приоритетное задание продолжит выполнение. В резуль-

тате задание 2 не сможет запуститься раньше, как если бы окно не было заполне-

но. Более того, как показано на рисунке 28, образуется новое окно. 

Образование таких новых окон по причине неточной пользовательской 

оценки времени выполнения является одним из главных факторов снижения эф-

фективности планирования. Этот фактор вносит существенную стохастическую 
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составляющую в план запуска, что не позволяет делать точные прогнозы времен 

старта и завершения заданий. 

  

Рисунок 28. Пример отрицательного влияния обратного заполнения при 

досрочном завершении задания 1 

2. Поток адаптивных заданий поступает на вход постпланировщика и обра-

зует тем самым дополнительную очередь. В отсутствие адаптивных заданий ос-

новная очередь обрабатывается применяемым в основном планировщике мето-

дом. 

3. Постпланировщик анализирует текущее состояние основной очереди и 

определяет окна в плане запуска заданий, в которые можно поместить задания из 

дополнительной очереди. Анализ производится после каждого перестроения рас-

писания основным планировщиком. Перестроение производится после поступле-

ния нового задания в очередь, удаления задания из очереди, запуска или заверше-

ния задания, иных событий. 

4. Параметры очередного адаптивного задания задаются в соответствии с 

характеристиками найденного окна. Заказанное число узлов подбирается так, что-

бы задействовать все узлы свободного окна. Время выполнения адаптивного за-

дания не должно превышать длительности заполняемого окна и определяется в 

соответствии с коэффициентом заполнения окна (КЗО). Этот коэффициент при-

нимает значение от 0 до 1 и показывает, какую часть окна по длительности можно 

использовать для адаптивного задания. На рисунке 29 представлено окно на 3 уз-

ла продолжительностью 10 минут. При коэффициенте заполнения равном 0,7 в 

рассматриваемое окно может быть помещено адаптивное задание на 3 узла с про-

должительностью 7 минут. 
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Длительность появившегося окна может быть большой и даже неограни-

ченной, если в основной очереди нет заданий, запланированных на некоторых уз-

лах, как показано на рисунке 30. Для корректной обработки случая неограничен-

ного окна введём параметр – максимальную длительность адаптивного задания. 

 

Рисунок 29. Пример длительности временно̀го окна при коэффициенте 

заполнения, равном 0,7 

 

Рисунок 30. Пример неограниченного окна 

5. Адаптивное задание с заданными постпланировщиком параметрами 

направляется в основную очередь. Согласно принципу обратного заполнения ос-

новной планировщик немедленно запускает это задание в соответствующем окне. 

3.4.2 Исследование эффективности метода постпланирования 

Рассмотрим факторы, влияющие на эффективность метода постпланирова-

ния: 

1. Исходная загрузка вычислителя (без постпланированияя). 

2. Характеристики основного входного потока заданий с фиксированными 

параметрами. 

3. Характеристики дополнительного входного потока адаптивных заданий. 
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4. Настройки постпланировщика (коэффициент заполнения окна, макси-

мальная длительность адаптивного задания). 

Рассмотрим влияние исходной загрузки вычислителя на эффективность ме-

тода постпланирования при фиксированных значениях остальных факторов. Для 

решения этой задачи требуется провести экспериментальное исследование с мно-

жеством входных потоков с разной загрузкой, провести с каждым потоком экспе-

римент без постпланировщика и с ним, и рассчитать показатели эффективности 

СУЗ. Для проведения экспериментов использована модель СУЗ на основе симуля-

тора СУППЗ с виртуальным вычислителем, рассмотренная в [171]. Для получения 

основной очереди заданий был применен генератор Lublin&Feitelson [187].  

Для формирования дополнительного потока заданий мы рассмотрим иде-

альную ситуацию, когда для постпланировщика доступен бесконечный поток 

идеально масштабируемых заданий.  Для проведения экспериментов было сфор-

мировано множество входных потоков по 5000 заданий каждый. В качестве ре-

шающего поля использовалась виртуальная вычислительная установка из 500 вы-

числительных модулей. Интервалы времени между заданиями были уменьшены 

так, чтобы последнее задание поступило через 120 часов (завершение 5-го дня) 

после начала эксперимента. Такое масштабирование поступления заданий в оче-

редь позволяет обеспечить одинаковую длительность каждого эксперимента. 

Для 5000 заданий и параметров по умолчанию было сгенерировано 50 набо-

ров входных потоков различной интенсивности, обеспечивающих разную загруз-

ку вычислителя. Со сгенерированными потоками были проведены эксперименты 

с целью отбора потоков, обеспечивающих без постпланирования загрузку от 60% 

до 100%.  Величина этой загрузки включена в название соответствующего потока 

после префикса flow. Например, поток с названием flow89.1 обеспечивает загруз-

ку без постпланирования в 0,984 или 98,4%.  

Для оценки эффективности СУЗ при применении постпланирования будем 

использовать следующие показатели: 

– загрузка, определяемая в соответствии с (2); 
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– время ожидания задания в очереди, определяемое в соответствии с (4); 

– длина очереди; 

– число одновременно выполняющихся заданий; 

– коэффициент замедления, определяемый в соответствии с (5). 

Для всех показателей рассчитывается среднее значение за период. В каче-

стве периода для расчёта показателей использовался промежуток времени от 24 

до 120 часов (2-5 дни). Последнее задание во всех экспериментах поступало до 

конца 6 дня после начала эксперимента. После завершения поступления заданий в 

очередь эксперимент ещё длится некоторое время до окончания обработки всех 

заданий. Для расчёта показателей эффективности используется диапазон с функ-

ционированием СУЗ в устоявшемся режиме. 

Для времени ожидания задания в очереди и коэффициента замедления в до-

полнение к среднему рассчитывалось медианное значение. 

Пример графика загрузки для потока низкой интенсивности flow59.6 пред-

ставлен на рисунке 31. В первый день постпланировщик не работает, поэтому 

графики без постпланировщика и с постпланировщиком совпадают. После 1-го 

дня включается постпланировщик, обеспечивая почти всегда 100% загрузку вы-

числительных ресурсов. 

 

Рисунок 31. Загрузка вычислителя для потока flow59.6. Красная линия без 

постпланирования, синяя – с постпланированием 
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На рисунке 32 видно, что количество заданий в очереди относительно мало. 

Применение постпланирования увеличивает очередь заданий, то есть адаптивные 

задания в некоторой степени мешают заданиям основного потока. 

Число одновременно запущенных заданий также увеличивается при приме-

нении постпланирования, как показано на рисунке 33. 

 

Рисунок 32. Число заданий в очереди для потока flow59.6. Красная линия без 

постпланирования, синяя – с постпланированием 

 

Рисунок 33. Число выполняющихся заданий для потока flow59.6. Красная линия 

без постпланирования, синяя – с постпланированием 
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Рассмотрим серию аналогичных графиков для потока высокой интенсивно-

сти. На рисунке 34 представлен график загрузки для потока flow98.4 высокой ин-

тенсивности. Загрузка без постпланирования изначально близка к 100%. 

Рассмотрим график числа заданий в очереди для того же входного потока, 

представленный на рисунке 35.  В очереди постоянно находится множество зада-

ний, и с постпланировщиком эта очередь увеличивается. 

 

Рисунок 34. Загрузка вычислителя для потока flow98.4. Красная линия без 

постпланирования, синяя – с постпланированием 

 

Рисунок 35. Число заданий в очереди для потока flow98.4. Красная линия без 

постпланирования, синяя – с постпланированием 
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Рисунок 36 демонстрирует, что число одновременно запущенных заданий 

увеличивается при постпланировании, но разница существенно меньше, чем для 

потока с невысокой интенсивностью. 

 

Рисунок 36. Число выполняющихся заданий для потока flow98.4. Красная линия 

без постпланирования, синяя – с постпланированием 

Для оценки влияния постпланирования на загрузку вычислителя для каждо-

го из 17 входных модельных потоков рассчитаем среднее значение загрузки за 

устоявшийся период (за часы с 24-го по 120-й, то есть за дни 2-5, убрав из расчё-

тов 1-й день и окончание эксперимента после 5-го дня). Рассмотрим сводный гра-

фик исходной загрузки и загрузки с постпланированием, представленный на ри-

сунке 37. Каждая линия на графике соответствует набору из 17 экспериментов. По 

оси абсцисс указана загрузка вычислителя потоком без постпланирования, по оси 

ординат – загрузка в результате проведения эксперимента. Видно, что постплани-

рование позволяет обеспечить практически 100% загрузку. 

Рассмотрим влияние постпланирования на средний коэффициент замедле-

ния, показанное на рисунке 38. Сплошная линия соответствует экспериментам без 

постпланирования, штриховая – экспериментам с постпланированием. Для отсле-

живания влияния постпланирования на задания основного потока дополнительно 

отобразим пунктирную линию, соответствующую эксперименту с постпланиро-

ванием, но коэффициент замедления для этой кривой рассчитан только для зада-
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ний основного потока без учёта заданий, добавленных постпланировщиком. Эта 

линия позволяет оценить изменение характеристик заданий исходного основного 

потока. Видно, что с уменьшением загрузки средний коэффициент замедления 

также уменьшается. Постпланировщик незначительно улучшает значение коэф-

фициента замедления для всех заданий, но при этом увеличивает этот коэффици-

ент для заданий основного потока. 

 

Рисунок 37. Загрузка для входных потоков различной интенсивности 

 

Рисунок 38. Средний коэффициент замедления для входных потоков различной 

интенсивности 
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Постпланирование также несколько ухудшает медианный коэффициент за-

медления, как показано на рисунке 39. Однако, начиная с 85% загрузки, медиан-

ный коэффициент замедления стабилизируется для совмещенного потока адап-

тивных заданий и заданий с фиксированными параметрами. 

Постпланирование незначительно увеличивает среднее число заданий в 

очереди, как показано на рисунке 40.  

 

Рисунок 39. Медианный коэффициент замедления для входных потоков 

различной интенсивности 

 

Рисунок 40. Среднее число заданий в очереди для входных потоков различной 

интенсивности 
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Рисунок 41 демонстрирует, что среднее время ожидания заданий совмещен-

ного потока в очереди уменьшается, но для заданий основного потока увеличива-

ется. При этом со снижением интенсивности входного потока отрицательное вли-

яние постпланирования уменьшается. 

 

Рисунок 41. Среднее время ожидания в очереди для входных потоков различной 

интенсивности 

На рисунке 42 представлено наглядное уменьшение негативного влияния 

постпланирования на медианное время ожидания заданий в очереди, которое су-

щественно меньше для входных потоков малой интенсивности. 

 

Рисунок 42. Медианное время ожидания в очереди для входных потоков 

различной интенсивности 
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Число одновременно выполняющихся заданий на вычислителе растёт при 

уменьшении интенсивности исходного потока, как показано на рисунке 43. 

 

Рисунок 43. Среднее число выполняющихся заданий для входных потоков 

различной интенсивности 

Постпланирование вносит отрицательный вклад в задержку заданий в оче-

реди, увеличивая коэффицент замедления, однако с уменьшением интенсивности 

входного потока это отрицательное влияние уменьшается. На рисунке 44 по оси 

ординат отложен прирост медианного коэффициента замедления, обусловленный 

применением постпланирования. Рисунок показывает, что чем меньше интенсив-

ность входного потока, тем меньше отрицательное влияние постпланирования на 

задержку заданий в очереди. 

 

Рисунок 44. Изменение медианного значения коэффициента замедления заданий 

для входных потоков различной интенсивности 
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Методы совмещения потоков стандартных и нестандартных заданий 3.5 

3.5.1 Система управления заданиями в составе облачной платформы 

Как уже упоминалось, прямое использование СУЗ для обработки потока 

облачных заданий, как и прямое использование облачных платформ для 

выполнения традиционных суперкомпьютерных вычислений невозможно. При 

участии автора в МСЦ РАН были проведены исследования [72, 73, 75, 76, 112, 174, 

188, 189] по представлению нестандартных заданий в виде виртуальных машин 

или контейнеров и разработке методов совмещения потока таких заданий с 

потоком стандартных заданий. Целью этих исследований был поиск 

перспективных решений, максимально совместимых с общепринятыми 

стандартами в облачных вычислениях, и позволяющих обрабатывать 

нестандартные задания наряду со стандартными, не изменяя при этом типовой 

порядок работы СУЗ. 

Возможны два варианта применения СУЗ в составе облачной платформы. В 

первом из них [188] облачный сервис по высокопроизводительным вычислениям 

предоставляется пользователю через интерфейс облачной платформы, а СУЗ 

непосредственно управляет решающим полем, принимая задания из облачной 

платформы. Этот вариант можно условно назвать «облако управляет СУЗ». Для 

такого варианта необходимо разработать метод совмещения локального потока 

стандартных заданий и потока нестандартных заданий, поступающих из облачной 

платформы (потока облачных заданий). Второй вариант [76], который можно 

условно назвать «СУЗ управляет облаком», подразумевает использование 

системой управления заданиями облачной платформы для развертывания 

виртуальных машин и контейнеров при обработке потока нестандартных заданий. 

3.5.2 Представление СУЗ в качестве гипервизора 

Рассмотрим вариант [188] организации облачного сервиса для 

высокопроизводительных вычислений, предоставляемого пользователю через 
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интерфейс и посредством некоторой облачной платформы. Решение этой задачи 

должно удовлетворять следующим требованиям: 

− сохранение исторически сложившегося порядка обслуживания 

пользователей через СУЗ; 

− ограничение на применение гипервизорной виртуализации с целью 

снижения накладных расходов и обеспечения непосредственного доступа 

пользователей к уникальным возможностям суперкомпьютерного оборудования; 

− максимально использование стандартных механизмов облачных 

вычислений. 

Методом, позволяющим удовлетворить перечисленным требованиям, 

является представление СУЗ в виде гипервизора, что позволяет встроить СУЗ в 

стандартный стек облачных решений.  

В исследовании [188], проведенным под руководством автора, был 

рассмотрен ряд облачных платформ, свободно распространяемых в исходных 

текстах, среди которых была выделена платформа OpenStack. Со многими 

облачными платформами OpenStack объединяет специализированная библиотека 

libvirt [190]. Библиотека управления виртуализацией libvirt представляет собой 

дополнительный уровень абстракции, позволяющий работать с виртуальными 

машинами под управлением различных гипервизоров. Библиотека поддерживает 

большое количество гипервизоров, таких как KVM, Xen, VMware ESX, VMware 

Workstation, и входит в состав множества программных продуктов, а также 

является одним из основных средств по управлению гипервизорами в облачной 

платформе OpenStack.  

В состав библиотеки libvirt входит отдельный драйвер для каждого 

гипервизора. При этом сохраняется возможность реализации и встраивания в 

библиотеку собственного драйвера для своего гипервизора. Основная идея 

заключается в представлении СУППЗ в виде некоторого специализированного 

гипервизора путём разработки соответствующего драйвера для библиотеки libvirt, 

что должно обеспечить прозрачную интеграцию СУППЗ суперкомпьютера в стек 
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программного обеспечения облачной платформы. Для сопряжения СУППЗ с 

облачной платформой OpenStack был создан собственный драйвер для библиотеки 

libvirt. Драйвер преобразует команды управлению виртуальными машинами 

облачной платформы в команды управления заданиями суперкомпьютера. Для 

этого были введены следующие абстракции. 

1. СУППЗ является гипервизором в абстракциях облачного сервиса. 

2. Задание является виртуальной машиной в абстракциях облачного сервиса. 

Как и у ВМ, у задания может быть несколько состояний: «в очереди», 

«выполняется», «не выполняется». Были введены аналогичные абстракции: «ВМ 

работает» – «задание выполняется», «ВМ не работает» – «задание не 

выполняется», «ВМ на паузе» – «задание в очереди». 

3. Суперкомпьютерные ресурсы, требуемые для выполнения задания, 

являются ресурсами ВМ. Были введены соответствующие абстракции: «число 

процессоров ВМ» – «число процессоров для задания», «размер оперативной 

памяти ВМ» – «максимальное время выполнения задания». 

В процессе работы выяснилось, что отсутствует обратная совместимость 

версий библиотеки libvirt, в связи с чем разработанный для более ранней версии 

драйвер не может быть непосредственно подключен к библиотеке более поздней 

версии. Для преодоления несовместимости авторами была разработана 

специальная методика создания драйвера библиотеки libvirt, подробно 

рассмотренная в публикации [188]. 

3.5.3 Облачный сервис для высокопроизводительных вычислений на базе 

платформы OpenStack и СУППЗ 

Структура разработанного облачного сервиса представлена на рисунке 45. 

Облачный сервис состоит из двух частей: управляющей и вычислительной. 

В управляющей части размещаются следующие основные компоненты облачной 

платформы OpenStack. 
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Рисунок 45. Структура облачного сервиса для высокопроизводительных 

вычислений на базе платформы OpenStack, библиотеки libvirt и СУППЗ 

1. Контроллер облачной платформы OpenStack. Осуществляет обработку 

поступающих платформе команд и подготовку данных для запуска 

суперкомпьютерных заданий, а также отвечает за балансировку нагрузки между 

вычислительными узлами. 

2. Служба хранения образов платформы OpenStack предназначена для 

хранения файлов, необходимых для запуска суперкомпьютерного задания. 

3. Служба сбора статистики облачной платформы OpenStack предназначена 

для сбора информации о состоянии вычислительных узлов, входящих в состав 

платформы. 

4. Интерфейс доступа пользователей к платформе, транслирует команды 

пользователей в программные вызовы облачной платформы OpenStack. 

Вычислительная часть может состоять из нескольких вычислительных 

узлов, каждый из которых представляет отдельный суперкомпьютер и имеет 

следующий состав. 

1. Вычислительный компонент облачной платформы OpenStack транслирует 

команды облачной платформы OpenStack в вызовы библиотеки виртуализации 

libvirt. 
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2. Драйвер СУППЗ транслирует вызовы библиотеки libvirt в вызовы 

команды СУППЗ управления заданиями. 

3. СУППЗ получает от драйвера команды управления заданиями. 

4. Подсистема доставки результатов облачных заданий на управляющий 

узел. 

5. Подсистема сбора информации о загруженности вычислительного узла. 

Макет представленного на рисунке 45 облачного сервиса был реализован на 

суперкомпьютерных ресурсах МСЦ РАН. В состав макета вошли один 

управляющий узел OpenStack и два вычислительных узла, каждый из которых 

представлял отдельный сегмент суперкомпьютера МВС-100К под управлением 

СУППЗ. В платформе OpenStack сегменты суперкомпьютера были видны как 

вычислительные узлы с большим числом процессорных ядер, представлявших 

ядра суперкомпьютера, и значительным объёмом оперативной памяти, 

представлявшим ёмкость очереди заданий СУППЗ. Запросы к OpenStack через 

драйвер СУППЗ библиотеки libvirt трансформировались в команды постановки в 

очередь суперкомпьютерных заданий. Платформа OpenStack адекватно 

отображала загрузку вычислительных узлов с учётом поступающих напрямую в 

СУППЗ локальных заданий, автоматически производя балансировку нагрузки 

между двумя суперкомпьютерными сегментами.  

3.5.4 Облачная среда для высокопроизводительных вычислений на базе 

платформы Proxmox и СУППЗ 

Рассмотрим вариант облачного сервиса для высокопроизводительных 

вычислений [76], использующий облачную платформу в качестве инструмента 

управления виртуальными машинами и контейнерами из состава нестандартных 

пользовательских заданий. Схема такой облачной среды для 

высокопроизводительных приложений, построенной в МСЦ РАН, представлена на 

рисунке 46. 
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Рисунок 46. Вариант построения облачной среды для высокопроизводительных 

приложений 

Облачная среда включает в себя высокопроизводительную вычислительную 

систему (суперкомпьютер), работающую под управлением СУППЗ. 

Суперкомпьютер был дополнен специально разработанной подсистемой 

управления виртуальными машинами (ПУВМ). Каждый вычислительный узел 

суперкомпьютера был оснащён гипервизором KVM. В СХД кластера была 

выделена область для хранения образов виртуальных машин (ВМ) и контейнеров. 

Для обеспечения возможности развёртывания и управления виртуальными 

машинами была применена свободно распространяемая платформа виртуализации 

Proxmox Virtual Environment (Proxmox VE) [191]. 

Облачная среда предоставляет возможность пользователю сформировать 

нестандартное задание в виде виртуальной машины на базе любой программной 

платформы (Linux/Windows и т.п.) и направить это задание в СУППЗ. Когда 

нестандартное задание попадает в СУППЗ, оно проходит через очередь наряду 

с обычными (стандартными) заданиями, рассчитанными на выполнение в 

рассмотренном в п. 1.2.2 стандартном стеке программного обеспечения. При 

запуске нестандартного задания задействуется ПУВМ, которая, в свою очередь, 

используя платформу Proxmox VE, извлекает из СХД образ виртуальной машины, 

содержащий необходимую заданию программную платформу, и разворачивает 

набор виртуальных машин из этого образа на выделенных для задания  ВУ 

суперкомпьютера. При этом автоматически конфигурируется виртуальная 

Нестандартные 
задания

Стандартные 
задания

СУППЗ

Хранилище образов 
ВМ и контейнеров
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локальная сеть, доступная пользователю для запуска его параллельного 

приложения на развёрнутой виртуальной программной платформе. 

Процесс подготовки и запуска нестандартного задания состоит из 

следующих этапов. На первом этапе пользователь или системный администратор 

подготавливают образ виртуальной машины, который сохраняется в специальном 

хранилище образов ВМ и контейнеров. На следующем этапе пользователь 

формирует паспорт нестандартного задания с включением в него информации о 

том, какой образ ВМ из хранилища будет использован, какие ресурсы (число ядер, 

объём оперативной памяти) требуются для функционирования виртуальной 

машины, развёрнутой из этого образа. Далее нестандартное задание направляется 

в очередь СУППЗ. 

После того, как нестандартное задание пройдёт через очередь, ПУВМ 

развернёт на выделенных вычислительных узлах суперкомпьютера виртуальные 

машины из указанного в паспорте задания образа. По завершении процесса 

развёртывания и конфигурирования в стандартный вывод задания будут 

помещены IP-адреса для подключения к запущенным виртуальным машинам. 

Используя выданные IP-адреса, пользователь (или запущенная им прикладная 

программная система) подключаются к виртуальным машинам и производят 

прикладные вычисления. 

Для автоматической настройки сетевого оборудования для динамической 

организации виртуальной среды А.П. Овсянниковым были предложены и 

реализованы соответствующие методы [76]. После реализации облачной среды 

авторами [76] была произведена оценка влияния средств виртуализации KVM и 

Proxmox VE, установленных на вычислительных модулях кластера, на 

производительность стандартных заданий. Оценка влияния применённых средств 

виртуализации на производительность MPI-программ осуществлялась с 

использованием стандартных тестов NAS Parallel Benchmarks 3.3 (NPB).  

Тестирование выполнялось в два этапа. На первом этапе тесты NPB 

запускались на вычислительных узлах под управлением ОС Linux Debian Jessie. 
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На втором этапе выполнялся запуск тестов NPB на тех же узлах, но с 

установленными программными компонентами KVM и Proxmox VE. Подробно 

методика проведения и результаты экспериментов рассмотрены в работе [76]. 

Результаты позволяют сделать вывод, что компоненты KVM и Proxmox VE не 

оказывают существенного влияния на производительность стандартных заданий.  

Для оценки влияния виртуальной среды на производительность MPI-

программ была проведена серия экспериментов, в ходе которых тесты NPB 

запускались в виртуальных машинах KVM. Подробно методика проведения и 

результаты экспериментов также рассмотрены в работе [76]. По итогам 

экспериментов, потери производительности составили от 3% до 9%.  

Итогом исследований стала иерархическая архитектура облачной среды для 

проведения научных исследований [189], представленная на рисунке 47. Облачная 

среда состоит из трех уровней. Каждый уровень предоставляет свой тип 

облачного сервиса: IaaS, PaaS и SaaS. Каждый пользователь может одновременно 

работать как с одним, так и с несколькими типами сервисов. 

 

Рисунок 47. Иерархическая архитектура облачной среды для проведения научных 

исследований 

Доступ пользователей к IaaS-сервисам осуществляется через командный 

интерфейс СУППЗ по протоколу SSH. Пользователю выделяется необходимое 

количество вычислительных узлов и предоставляется беспарольный доступ на 

каждый из них. Время доступа определяется через командный интерфейс СУППЗ 



170 

и ограничивается заданными системным администратором настройками. Для 

каждого пользователя автоматически создается проектный каталог, 

расположенный на сетевом дисковом пространстве, и предоставляется набор 

средств разработки MPI-, OpenMP-, Python-программ, отладки и контроля версий. 

Стандартные потоки ввода, вывода и ошибок перенаправляются в рабочий каталог 

задания пользователя. 

PaaS-сервисы функционируют под управлением платформы виртуализации 

Proxmox VE. По запросу пользователя СУППЗ выделяет требуемое количество 

вычислительных узлов и сохраняет их IP-адреса в стандартный поток вывода 

задания. Выделенные узлы образуют виртуальный вычислительный кластер, на 

котором пользователь может разворачивать как виртуальные машины KVM, так и 

контейнеры. Доступ к виртуальному кластеру и управление виртуальными 

машинами осуществляется пользователем по протоколу HTTPS через браузер. В 

качестве URL-адреса для подключения к виртуальному кластеру может быть 

использован любой IP-адрес из выделенных при старте задания. В автоматическом 

режиме выделения вычислительных узлов СУППЗ ограничивает время аренды 

виртуального кластера, но по запросу пользователей системный администратор 

может увеличить время аренды путем блокировки узлов суперкомпьютера после 

старта задания.  

SaaS-сервисы представляют собой виртуальные машины или контейнеры с 

запущенными сервисами: удаленной визуализации результатов моделирования и 

разработки CAD-моделей для проведения расчетных экспериментов, системы 

коллективной разработки программного обеспечения, организации вычислений с 

распараллеливанием по данным, почтовые службы, базы данных, VPN, 

виртуальные лаборатории, удаленные рабочие столы и др. Виртуальные машины и 

контейнеры функционируют в круглосуточном режиме на выделенных 

администраторами МСЦ РАН вычислительных модулях, объединенных в 

отказоустойчивый виртуальный кластер средствами Proxmox. В зависимости от 

вида SaaS-сервиса используется свой протокол доступа: SSH, RDP, VNC, HTTPS 
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или VPN. Для организации контроля доступа пользователей к каждому SaaS-

сервису используется LDAP или Active Directory. 

Отметим ключевые особенности предложенной архитектуры: 

– использование отечественного программного обеспечения, либо 

программного обеспечения, распространяемого в открытых исходных текстах; 

– возможность одновременного функционирования трех типов сервисов 

(IaaS, PaaS и SaaS) на одной вычислительной системе; 

– возможность объединения нескольких суперкомпьютерных систем в 

единое облако. 

Выводы к главе 3 

Для планирования заданий предложен метод, основанный на приоритетной 

невытесняющей дисциплине обслуживания с реализацией принципа «faire share» 

и применением консервативной стратегии обратного заполнения. Особенностью 

метода, определяющей его научную новизну, является выделение во входном по-

токе классов отладочных, ординарных и фоновых заданий. Отладочные задания 

предполагают малое время выполнения на небольшом числе резервируемых про-

цессорных ядер. Ординарные задания однократно запускаются на произвольном 

числе ядер на продолжительное, но ограниченное время. Фоновые задания могут 

выполняться произвольное время, но периодически прерываются системой и воз-

вращаются в очередь. Резерв процессорных ядер под отладочные задания являет-

ся «плавающим», что позволяет на непродолжительное время занимать зарезер-

вированные ядра заданиям других классов и повышать тем самым загрузку супер-

компьютера. 

Предложенный метод был реализован и применяется с 1999 года в составе 

планировщика СУППЗ. Анализ накопленной статистики суперкомпьютеров, 

установленных в МСЦ РАН и ИПМ им. М.В. Келдыша РАН, позволяет утвер-

ждать, что средний коэффициент замедления отладочных и фоновых заданий в 
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подавляющем большинстве случаев кратно ниже, чем общий коэффициент замед-

ления, а темп обработки заданий этих классов соответственно выше.  

При планировании суперкомпьютерных заданий в расписании запусков 

неизбежно образуются простаивающие вычислительные ресурсы (окна). Наличие 

окон снижает загрузку суперкомпьютера и вызывает простой его узлов. Для борь-

бы с окнами планировщики применяют различные алгоритмы обратного заполне-

ния, позволяющие заполнять окна менее приоритетными заданиями подходящего 

размера. Однако, по причине неточной оценки пользователями времени выполне-

ния заданий расписание постоянно перестраивается, и образуются новые окна. 

Предложен метод постпланирования, который позволяет динамически от-

слеживать появление окон и заполнять их за счёт совмещения разнородных пото-

ков заданий двух классов. К первому классу (основной поток заданий) относятся 

задания с фиксированными параметрами – требуемыми числом суперкомпьютер-

ных узлов и временем выполнения. Ко второму классу (дополнительный поток 

заданий) относятся адаптивные (эластичные) задания, которые могут выполняться 

разное время на разном числе узлов. Дополнительный поток адаптивных заданий 

обрабатывается специальным компонентом, названным постпланировщиком. 

Суть предлагаемого метода заключается в том, что постпланировщик при 

обнаружении окна помещает очередное адаптивное задание в основную очередь. 

Время выполнения и число узлов адаптивного задания подбирается в соответ-

ствии с размером обнаруженного окна, что за счет принципа обратного заполне-

ния влечёт практически немедленный запуск адаптивного задания основным пла-

нировщиком.   

Впервые были получены результаты имитационного моделирования, кото-

рые на входных потоках разной интенсивности продемонстрировали максимиза-

цию загрузки суперкомпьютера, минимизацию коэффициента замедления адап-

тивных заданий при незначительном увеличении коэффициента замедления ос-

новного потока заданий, а также позволили определить границы применимости 

метода постпланирования. 
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Исследованы решения для обработки входного потока пользовательских за-

даний, в котором совмещаются стандартные и нестандартные задания. Последние 

требуют для своего выполнения отдельной программной платформы, с отдельны-

ми операционной системой, прикладным и инструментальным программным 

обеспечением. Автором предложено два метода совмещения потоков стандартных 

и нестандартных заданий.  

Первый метод заключается в представлении системы управления заданиями 

в виде гипервизора виртуального многоядерного вычислительного узла с большим 

объемом оперативной памяти. Основным средством реализации метода явилось 

создание собственного драйвера для библиотеки управления виртуальными ма-

шинами libvirt, что позволило осуществить прозрачное включение СУППЗ в со-

став облачной платформы OpenStack. Предложенный метод был реализован в виде 

облачного сервиса для высокопроизводительных вычислений, развёрнутого на ре-

сурсах суперкомпьютера МВС-100К.  

Второй метод основан на использовании облачной платформы, как инстру-

мента автоматического развертывания при старте нестандартного задания вирту-

альных машин и контейнеров на вычислительных узлах суперкомпьютера. При 

этом вычислительные узлы для запуска набора виртуальных машин динамически 

выделяются средствами системы управления заданиями. Проведённые экспери-

менты показали, что применённые при реализации метода средства виртуализации 

KVM и Proxmox VE не оказывают значительного влияния на производительность 

стандартных заданий, что позволяет успешно совмещать обработку стандартных и 

нестандартных заданий в одном входном потоке. Результаты исследований позво-

лили предложить трехуровневую архитектуру облачной среды для научных иссле-

дований, предоставляющей пользователям Iaas-, PaaS- и SaaS-сервисы для высо-

копроизводительных вычислений. 
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Глава 4. Отображение параллельной программы на вычислительные узлы 

суперкомпьютера  

Задача отображения параллельной программы на вычислительные узлы 4.1 

суперкомпьютера  

Среди рассмотренных в п. 1.3 задач управления вычислительными ресурсами 

суперкомпьютерной системы коллективного пользования была отмечена задача вы-

деления заданию требуемых вычислительных ресурсов, т.е. некоторого подмноже-

ства ВУ решающего поля. Эта задача включает в себя выбор для задания ВУ из чис-

ла свободных и их конфигурацию. Задача выбора ВУ относится к третьему уровню 

иерархии управления и решается в СУППЗ средствами сервера запуска, а конфигу-

рация ВУ обеспечивается менеджером задания и надстройкой подготовки и диагно-

стики ВУ. 

Одной из целей выбора ВУ и их конфигурации является предоставление зада-

нию такого подмножества ВУ и в такой конфигурации, чтобы обеспечить как можно 

более высокую скорость выполнения прикладных расчетов. Другими словами, необ-

ходимо так подобрать подмножество ВУ из числа свободных и таким образом рас-

пределить процессы параллельной программы по выбранным ВУ, чтобы минимизи-

ровать время выполнения параллельной программы из задания пользователя. Часто 

такую задачу называют задачей отображения параллельной программы на вы-

числительные узлы суперкомпьютера или кратко задачей отображения. 

Вернемся к введенной в п. 1.6 иерархической модели управления вычисли-

тельными ресурсами и уточним ее. В общем случае модель описывает распределен-

ную вычислительную систему, состоящую из некоторого числа вычислительных уз-

лов, подмножество которых в текущий момент времени занято определенными ра-

ботами (заданиями). Представим распределенную вычислительную систему в виде 

некоторого графа GS = (VS, ES), где VS – множество вершин, каждая из которых 

представляет вычислительный узел, при этом в общем случае разные ВУ могут 

принадлежать разным суперкомпьютерным системам из состава распределенной 
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вычислительной среды, ES – множество дуг, представляющих линии связи между 

узлами. Вершины графа взвешиваются весами pi, (i = 1… NS), обозначающими 

производительность i-го вычислительного узла. Пропускная способность линии 

связи между i-м и j-м узлами характеризуется весом mij дуги (i, j)  Es.  

В каждый момент времени существует некоторый подграф GN = ( VN, EN ), 

где VN – множество вершин, представляющих свободные ВУ, EN – множество дуг, 

представляющих линии связи между свободными ВУ. Обозначим число свобод-

ных ВУ как N = | VN |. Отметим, что состав и структура подграфа GN постоянно 

изменяются в зависимости от текущей мультипрограммной ситуации. Пусть в не-

который момент из очереди поступает задание, содержащее параллельную програм-

му из M взаимодействующих процессов. Программа может быть представлена гра-

фом GM = (AM, EM), где AM – множество вершин, соответствующее процессам про-

граммы, EM – множество дуг, представляющих информационные связи между 

этими процессами. Дугам графа GM приписываются веса cij, отражающие интен-

сивность информационного обмена между i-м и j-м процессами. Граф GM называ-

ется программным или информационным графом. 

Задача отображения сводится в такой постановке к поиску отображения ин-

формационного графа GM параллельной программы на структуру свободных ВУ, 

заданную графом GN. Это отображение обозначается  : AM  VN и представляет-

ся матрицей X = { Xij : i  AM, j  VN }, где Xij = 1, если  (i) = j, и Xij = 0, если 

 (i)  j. Критерием оптимальности отображения служит целевая функция F(X) 

[40]: 
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1 1 1 1 1 1
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где первый член оценивает равномерность загрузки процессоров, причем 
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коэффициент, характеризующий идеальную загрузку ВУ. Второй член оценивает 

загрузку межпроцессорных связей, при этом mij – пропускная способность линии 

связи между i-м и j-м ВУ; cij – объем информации, передаваемой между i-м и j-м 

процессами, k1, k2 – коэффициенты пропорциональности, отражающие баланс 

между вычислительной и коммуникационной составляющими суперкомпьютер-

ной системы. 

В большинстве практических случаев задача отображения решается в усло-

виях, когда ВУ, на которые отображается параллельная программа, принадлежат 

одной однородной суперкомпьютерной системе, а процессы параллельной про-

граммы выполняют равные объемы вычислений. В этом случае коэффицент k1 

принимается равным 0, а целевая функция (10) принимает следующий вид: 

1 1 1 1

( ) m in

N N M M

ij kp k i p j

i j p k

F X m c X X

   

       (11) 

Если в качестве весов mij используются величины, обратные пропускной 

способности линии связи между i-м и j-м ВУ, то целевая функция (11) будет 

определять время информационных обменов между процессами параллельной 

программы.  

Решение задачи требуется обеспечить в системе управления заданиями су-

перкомпьютера в условиях обработки потока пользовательских заданий. При за-

пуске очередного задания узлы для него выделяются из числа свободных на мо-

мент запуска. Поскольку состав графа GN определяется текущей мультипро-

граммной ситуацией, какие конкретно узлы будут свободны при поступлении из 

очереди задания, заранее неизвестно. Для каждого задания требуется найти опти-

мальное в соответствии с (11) отображение программного графа на заранее неиз-

вестный граф подмножества свободных узлов. Отображение должно строиться за 

приемлемое время, то есть быть существенно меньше времени выполнения зада-

ния (в среднем, несколько часов) и не превышать при этом времени системных 

таймаутов (до 5-15 минут). 
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Актуальные методы и средства поиска отображения информационного графа 4.2 

программы на граф связей вычислительных узлов  

4.2.1 Обзор исследований в области поиска оптимального отображения 

программного графа  

Задача поиска оптимального отображения является частным случаем фун-

даментальной математической проблемы, известной как задача о квадратичных 

назначениях (англ. QAP – Quadratic Assignment Problem) [192]. Многочисленные 

публикации представляют разнообразные подходы и алгоритмы решения задачи 

QAP. Подробные обзоры существующих методов и алгоритмов можно найти в 

[42, 43]. 

Для нахождения оптимального отображения могут быть применены точные 

алгоритмы, которые всегда находят минимальное значение целевой функции (11). 

К точным алгоритмам относятся полный перебор всех возможных отображений и 

метод ветвей и границ. Однако еще в 1976 году [41] было показано, что задача о 

квадратичном назначении относится к классу NP-полных задач. Использование 

точных алгоритмов влечет неоправданно высокие временные затраты даже для 

графов малых или средних порядков. 

Сокращение времени до приемлемых величин возможно за счет применения 

приближенных параллельных алгоритмов. Эти алгоритмы в общем случае нахо-

дят субоптимальное отображение, обеспечивая близкое к минимальному значение 

целевой функции (11). Среди приближенных алгоритмов выделяют эвристические 

алгоритмы, которые можно разделить на итеративные и популяционные. К итера-

тивным относятся алгоритм поиска с запретами (поиск Табу), алгоритм жадного 

случайного адаптивного поиска, алгоритм имитации отжига. К популяционным 

алгоритмам относятся генетические алгоритмы, алгоритм оптимизации роя ча-

стиц и муравьиный алгоритм. 

В работе [44] сравниваются 11 эвристик, применяемых для поиска отобра-

жения. Наиболее точное решение даёт применение генетического алгоритма. Ал-
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горитм имитации отжига находит решение за самое короткое время, но при этом 

страдает точность отображения. Причина плохой точности в том, что на началь-

ных этапах работы алгоритм имитации отжига может попасть в локальный мини-

мум целевой функции (11), из которого тяжело выйти на поздних этапах. 

В работе [193] авторы разработали алгоритм, основанный на муравьином 

алгоритме, применение которого в среднем даёт решение на 16% лучше, чем дру-

гие эвристики. Алгоритм имитации отжига почти всегда находит решение хуже, 

но показывает минимальное среднее время работы.  

  В статье [52] авторы решают проблему отображения с помощью парал-

лельной версии алгоритма имитации отжига. Для всех узлов генерируется 

начальное общее решение с нулевой меткой времени. На каждом узле каждый по-

ток генерирует решение относительно глобального решения. На каждом узле су-

ществует главный поток, который обновляет решение в рамках узла. Затем он пы-

тается обновить общее глобальное решение. После обновления глобального ре-

шения все узлы генерируют решения относительно глобального.  

В статье [55] отмечают главный недостаток алгоритма имитации отжига – 

рассмотрение слишком большего числа потенциальных решений. Авторы предла-

гают применение жадной стратегии построения начального отображения, при ко-

торой задания сортируются в соответствии со своими коммуникационными по-

требностями, выбирается определённый процент заданий из верхней части сорти-

рованного списка и назначается на смежные узлы, все остальные задания назна-

чаются на узлы случайным образом. Во время генерации нового решения задания 

с большим числом связей стараются оставлять рядом друг с другом. Отметим, что 

предложенное в этой работе решение фактически нарушает иерархию уровней 

управления, что является недопустимым в рамках режима коллективного пользо-

вания суперкомпьютером. 

В статье [194] авторы представили метод имитации отжига, который может 

«правильно» определять начальную и конечную температуры и количество необ-

ходимых итераций для каждого уровня температуры с целью устранения лишних 
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итераций оптимизации. В работе [45] представлен сравнительный анализ исполь-

зования алгоритма имитации отжига в задаче отображения. Авторы приводят оп-

тимальные функции перемещения во время генерации нового отображения, срав-

нивают функции принятия решения, описывают способы задания начальной и ко-

нечной температур и способ выбора количества итераций при заданных началь-

ных параметрах алгоритма. 

Авторы работы [41] отмечают, что при поиске отображения наилучший ре-

зультат достигается путём применения генетического алгоритма, но время поиска 

отображения больше, чем у других алгоритмов. В статье [195] авторы сравнивают 

результаты поиска отображения при помощи генетического алгоритма и методов 

линейного программирования. Генетический алгоритм, в отличие от методов ли-

нейного программирования, способен находить субоптимальное решение за при-

емлемое время. В статье [196] производительность генетического алгоритма рас-

смотрена в  сравнении с другими стандартными эвристиками. Отмечается, что 

стандартных операторов генетического алгоритма для получения прироста произ-

водительности недостаточно. С целью повышения производительности авторы 

используют алгоритм локального поиска – алгоритм Кернигана-Лина [197], кото-

рый позволяет находить лучшие ближайшие решения. Модифицированная версия 

генетического алгоритма ведёт себя лучше, чем алгоритмы имитации отжига и 

многократного локального поиска. 

В статье [198] рассмотрен параллельный генетический алгоритм, усовершен-

ствованный с помощью алгоритма восхождения на вершины и позволяющий огра-

ничить пространство решений. Авторы [199] разработали параллельный генетиче-

ский алгоритм, который разбивает популяции между процессами. Периодически 

процессы обмениваются лучшими членами популяции и удаляют худшие. Для ми-

нимизации времени сетевого взаимодействия лучшими решениями обмениваются 

только соседние процессы, добиваясь этим сверхлинейного ускорения алгоритма. 

В работе [46] авторы применяют генетический алгоритм для решения зада-

чи отображения в системах на кристалле. Предлагают подход, в котором маршру-
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тизация рассматривается как функция пригодности, в отличие от классической 

аналитической оценки, в которой основными показателями оптимизации являют-

ся максимальная задержка прохождения пакетов и средняя общая задержка паке-

тов. Авторы экспериментально сравнили предложенное решение с другими алго-

ритмами, продемонстрировав его эффективность почти для всех приложений. 

Приложения продемонстрировали  прирост производительности от 2% до 30% по 

различным метрикам. 

В статье [200] вводится модель задержки вычислений, как сумма задержки 

обработки данных и задержки на коммуникации. На предложенную модель уста-

навливаются следующие ограничения: данные передаются только по кратчайше-

му пути, с любым узлом в произвольный момент времени взаимодействует только 

один другой узел. В ходе выполнения алгоритма сначала минимизируется общая 

задержка, затем происходит назначение заданий на вычислительные узлы. Для 

решения задачи используются операторы скрещивания и мутации. 

В работах [53, 201, 202] авторы описывают наиболее часто используемую 

при реализации параллельного генетического алгоритма схему «Мастер-

Рабочие». «Мастер» отвечает за генерацию новых членов популяции. Все осталь-

ные вычислители «Рабочие» рассчитывают значение целевой функции для новых 

членов популяции. В этих работах авторы рассматривают параллельный генети-

ческий алгоритм, основанный на схеме кольцевого обмена. На каждой итерации 

кольцевого обмена различные популяции обмениваются лучшими членами, что 

позволяет передавать лучшие признаки между популяциями. Количество переда-

ваемых членов популяции не должно быть большим, так как это может привести к 

максимальной схожести популяций на начальных итерациях. 

В работе [47] предлагается эвристический алгоритм для распределения про-

цессов MPI-программ по ядрам процессора с целью минимизации общего време-

ни информационных обменов. Алгоритм показал снижение времени выполнения 

MPI-программ на вычислительных кластерах, использующих коммуникационную 

сеть «Ангара». 
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В [48] для решения задачи о квадратичном назначении авторами предложен 

гибридный алгоритм, основанный на комбинировании генетических и эволюцион-

ных алгоритмов. Разработанный гибридный алгоритм продемонстрировал более 

высокую точность по сравнению с другими эвристическими подходами для графов 

небольшого размера (порядок графов 12-25), при этом обеспечивается отклонение 

точности от известных оптимальных решений не более чем на 4,2%. Отметим,  что 

авторы не привели в статье данных о времени выполнения алгоритма. 

В исследовании [49] авторы использовали параллельный генетический ал-

горитм с некоторыми модификациями для решения задачи о назначениях на ги-

бридной вычислительной системе с применением графических ускорителей. Ав-

торы обнаружили, что время работы алгоритма на ГПУ не сильно зависит от уве-

личения размера популяции или размера задачи по сравнению со временем на 

универсальном процессоре. Авторы протестировали свой алгоритм на максималь-

ном размере задачи 70, время решения которой составило около 120 секунд.  

Использование параллелизма позволяет одновременно повысить скорость и 

точность отображения. В статье [50] авторы предлагают алгоритм, основанный на 

параллельном алгоритме распространения меток (LPA). Алгоритм решает задачи 

разбиения и отображения одновременно. Авторы рассмотрели большие графы с 

миллионами вершин, значительно уменьшили их и отобразили графы на блоки из 

нескольких сотен измерений. Кроме того, этот алгоритм учитывает специфику 

поиска отображения для иерархических архитектур, в первую очередь для неяв-

ной древовидной топологии. 

В работе [51] авторы использовали комбинацию генетического алгоритма и 

оптимизации локальных решений. Авторы провели эксперимент, включавший 

проверку метода на различных наборах графов. Стоит отметить, что даже на 

средних наборах из сотен вершин время поиска решения составляет сотни секунд.  

Исследователи [203] отмечают, что качество решений, полученных с помо-

щью методов машинного обучения, пока неконкурентоспособно по сравнению с 

современными метаэвристиками. По мнению авторов, пройдет достаточно про-
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должительное время, прежде чем методы поиска отображения, основанные на 

машинном обучении, превзойдут традиционные методы оптимизации. 

В работе [54] авторы используют улучшенный гибридный алгоритм, кото-

рый включает генетический алгоритм и алгоритм имитации отжига. Авторы про-

демонстрировали результаты комбинированного алгоритма, которые превосходят 

чистые алгоритмы отжига или генетического отбора. 

Анализ научных публикаций по теме поиска оптимального отображения 

программного графа на граф вычислительной системы позволяет сделать следу-

ющие выводы.  

1. Большинство авторов отмечают экспоненциальную вычислительную 

сложность точных алгоритмов, которая делает последние неприменимыми для 

оперативного поиска отображения. В то же время, эвристические подходы позво-

ляют добиться высокой скорости поиска при достаточной точности находимого 

субоптимального решения. 

2. Среди эвристических алгоритмов наиболее широкое распространение по-

лучили алгоритмы имитации отжига и генетического отбора. В большинстве пуб-

ликаций отмечается, что генетический алгоритм превосходит остальные эвристи-

ки по точности отображения, в то время как алгоритм имитации отжига является 

одним из самых быстрых алгоритмов. 

3. Результаты многих исследований подтверждают целесообразность при-

менения параллельных версий алгоритмов поиска отображения. 

4. В последние годы многие исследователи сосредотачивают свои усилия на 

комбинировании различных базовых эвристик с целью улучшить характеристики 

(точность и скорость поиска отображения) комбинируемых алгоритмов. 

В этой связи рассмотрим общие схемы наиболее часто применяемых эври-

стик – имитации отжига и генетического отбора. 
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4.2.2 Алгоритмы имитации отжига и генетического отбора  

Широкое распространение при решении оптимизационных задач получил  

эвристический метод имитации отжига [204], который относится к классу стоха-

стических методов оптимизации [205]. Метод некоторым образом имитирует 

процесс отжига металла, заключающийся в нагревании и контролируемом охла-

ждении металла. Техника отжига в металлургии позволяет увеличить прочность 

кристаллической решетки металла и повысить его качественные характеристики. 

При охлаждении жидкого металла переход термодинамической системы из состо-

яния с энергией  E1 в состояние с энергией E2 происходит с вероятностью, рассчи-

тываемой исходя из распределения Больцмана-Гиббса: 

2 1
( )E E

kTp e

 

  

где k – постоянная Больцмана, а T – температура. 

В задачах оптимизации аналогом энергии является целевая функция, а 

«температура отжига» вступает в роли безразмерного параметра в формуле веро-

ятности перехода. Для выхода из областей притяжения локальных минимумов с 

этой вероятностью разрешается переход в точки с худшим значением целевой 

функции. Это позволяет «проскочить» локальные минимумы оптимизируемой 

функции и попасть в область притяжения глобального минимума. Попадание в 

эту область происходит с определенной вероятностью, поэтому метод имитации 

отжига не гарантирует достижения глобального минимума целевой функции. Тем 

не менее, отмечается [205], что при правильной стратегии выбора траектории из-

менения «температуры отжига» T происходит не только значимое улучшение 

начального решения, но существенное приближение к глобальному экстремуму. 

К нахождению оптимальной стратегии управления траекторией «температуры 

отжига» сводятся в конечном итоге все решаемые при помощи метода имитации 

отжига оптимизационные задачи. Важное значение при этом имеют удачное 

начальное приближение, а также выбор начальной, достаточно высокой «темпе-

ратуры отжига», которая будет понижаться с каждой итерацией алгоритма.  
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Основные шаги алгоритма имитации отжига для нахождения минимума це-

левой функции (11) следующие. 

1. Генерируется стартовое исходное решение, которое становится текущим. 

2. Генерируется новое решение путём перестановки двух произвольных 

элементов матрицы X местами. 

3. Если в результате перестановки приращение значения целевой функ-

ции (11) ΔF(X) < 0, то новое решение становится текущим. Если ΔF(X) > 0, то но-

вое решение становится текущим с вероятностью, определяемой функцией при-

нятия решения. Функция принятия решения зависит от текущей температуры от-

жига, понижающейся в процессе работы алгоритма. 

4. Температура системы понижается в соответствии с видом функции по-

нижения температуры.  

5. Алгоритм останавливается по достижении одного из значений: опреде-

ленного числа итераций, финальной температуры системы, числа подряд идущих 

итераций без улучшения значения целевой функции. Иначе – переход к п.2. 

Эффективность (скорость и точность) метода зависят от начальной темпера-

туры, предельного числа итераций (конечной температуры), размера области схо-

димости (числа последовательных итераций, в течение которых значение целевой 

остается неизменным). При увеличении начальной температуры и области сходи-

мости возрастает точность, но падает быстродействие алгоритма. 

При применении алгоритма генетического отбора [205] каждый вариант 

входной матрицы X, подаваемой на вход целевой функции (11), представляется в 

виде вектора (массива) P, i-й элемент этого массива содержит номер ВУ, на кото-

рый будет назначена i-я ветвь (i-й процесс) параллельной программы. Массив P в 

терминах генетического алгоритма называется особью, а каждый элемент массива 

P представляется как ген конкретной особи. Особи составляют популяцию, раз-

мер которой равен или больше числа вершин программного графа.  

Над популяцией и особями в ней производят генетические операции. Опе-

рация мутации случайным образом изменяет один или несколько генов у одной 
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или нескольких особей популяции. Операция скрещивания заключается в обмене 

генами между двумя особями популяции. Операция селекции выбирает из попу-

ляции особи с наименьшим значением целевой функции (11).  

Суть генетического алгоритма заключается в итеративном повторении опе-

раций мутации, скрещивания и селекции с постепенным улучшением значения 

целевой функции (11). После очередной операции селекции худшие особи  попу-

ляции отбрасываются, и их места занимают новые особи, которые формируются 

путем выполнения операций мутации и скрещивания над выбранными в результа-

те селекции лучшими особями. Алгоритм завершает работу либо по истечении 

определенного числа итераций, либо при отсутствии улучшения значения целевой 

функции в течение определенного числа итераций. 

Для оценки эффективности эвристических алгоритмов поиска отображения 

можно использовать два показателя: точность A как процент совпадений с опти-

мальным решением и среднее отклонение D от оптимального значения целевой 

функции (11). Допустим, что нам заранее известно некоторое обеспечивающее 

минимальное значение функции (11) отображение optimum информационного гра-

фа Gp параллельной программы на граф GN свободных ВУ. Пусть отображение 

optimum представляется матрицей Xoptimum = { Xij : i  AM, j  GN }, где Xij = 1, если 

 optimum (i) = j, и Xij = 0, если optimum (i)  j. Из-за стохастического характера  эври-

стических алгоритмов при каждом запуске на выходе будут получаться разные 

решения даже на одних и тех же входных данных. Пусть некоторый алгоритм был 

выполнен K раз, и каждый i-й раз на выходе алгоритма получалось отображение

i, представляемое матрицей Xi. Обозначим как bi величину, принимающую значе-

ние 1, если Xoptimum = Xi, и 0, если Xoptimum ≠ Xi. Тогда точность A алгоритма отобра-

жения можно оценить как 

1
1 0 0 %

K
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i
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
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(12) 
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Пусть для каждого отображения i значение целевой функции (11) равно Fi, 

а минимальное значение целевой функции (11) равно Fmin.Тогда среднее отклоне-

ние D целевой функции (11) можно представить как  

m in
1

m in

( )
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i
i

F F
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K F
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


 

(13) 

Следует отметить, что показатели A и D далеко не всегда коррелируют друг с 

другом. Например, алгоритм может каждый раз находить очень близкое к опти-

мальному решение и обеспечивать тем самым малое значение D, но при этом очень 

редко находить оптимальное отображение и иметь низкий показатель точности A. 

Другой алгоритм может иметь высокий процент A совпадений с оптимальным ре-

шением, но находимые алгоритмом субоптимальные решения будут иметь суще-

ственное превышение значения целевой функции (11) над её минимумом. 

Метод отображения параллельной программы на вычислительные узлы 4.3 

суперкомпьютера  

4.3.1 Общая схема и этапы метода отображения  

Предположим, что информационные графы параллельных программ из со-

става поступающих заданий произвольны, топология вычислителя известна, и 

производительность всех ВУ решающего поля одинакова. Для каждой отдельной 

программы задача распределения ее процессов по свободным ВУ сводится к по-

иску такого отображения, при котором минимизируется значение целевой функ-

ции (11). Очевидно, в этом случае одновременно будут решены две подзадачи 

управления вычислительными ресурсами: 

– подзадача 1: выбор и выделение требуемых для выполнения параллельной 

программы вычислительных узлов из числа свободных; 

– подзадача 2: назначение процессов (ветвей) параллельной программы на 

вычислительные узлы. 
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При одновременном решении этих подзадач фактически решается сразу 

подзадача 2, т.е. выделенными для параллельной программы считаются все сво-

бодные ВУ системы. В результате отображения происходит назначение ветвей 

программы на определённые ВУ. Эти ВУ становятся занятыми, а свободными 

остаются те узлы, на которые не была назначена ни одна ветвь параллельной про-

граммы. Такой подход обладает рядом недостатков.  

Во-первых, размерность задачи поиска отображения будет определяться 

числом свободных ВУ, которых почти всегда больше, чем число требуемых ВУ 

для задания. Учитывая экспоненциальную сложность поиска отображения, увели-

чение размера задачи крайне нежелательно. В некоторой мере компенсировать 

возросший размер задачи возможно за счет применения параллельных эвристиче-

ских алгоритмов поиска отображения, для выполнения которых можно использо-

вать свободные ВУ. Однако, следует отметить, что во время работы параллельно-

го алгоритма поиска отображения будет невозможен запуск других заданий, по-

скольку в это время все свободные ВУ будут заняты выполнением алгоритма по-

иска отображения. 

Во-вторых, нахождение оптимального решения (11) для одной отдельно 

взятой программы совершенно не означает, что для программ из состава следую-

щих заданий удастся произвести хорошее отображение на оставшиеся ВУ. Возь-

мем для примера топологию вычислителя МВС-1000, представленную на рисунке 

7. Пусть на выходе очереди у нас имеются два задания, требующих 24 и 8 ВУ со-

ответственно. Допустим, для первого задания было найдено отображение с мини-

мальным значением целевой функции (11). На рисунке 48 ВУ, на которые распре-

делено первое задание, отмечены цветом. Очевидно, что второе задание получит 

для выполнения «плохое», слабо связанное подмножество ВУ. 

Контрпример, представленный на рисунке 48, иллюстрирует факт, что при 

поиске отображения необходимо обеспечить сокращение как времени выполне-

ния отдельно взятого задания, так и суммарного времени выполнения всего пото-

ка задания. Другими словами, хотелось бы добиться по возможности минималь-
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ного суммарного времени исполнения заданий, но без «ущемления прав» какой-

либо отдельно взятого задания. 

 

 

Рисунок 48. Неоптимальное распределение заданий по ВУ 

   Альтернативой является последовательное решение подзадач 1-2, при ко-

тором сначала производится выбор требуемого параллельной программе количе-

ства ВУ из числа свободных, а затем решается задача назначения ветвей програм-

мы на ВУ из выделенного подмножества. 

При решении подзадачи 1 нам необходимо выделить из подграфа GN неко-

торый подграф Gjob =( Vjob, Ejob ), где множество вершин 𝑉𝑗𝑜𝑏  𝑉𝑓𝑟𝑒𝑒 , |𝑉𝑗𝑜𝑏| = 𝑀, 

представляет собой подмножество ВУ, выделенных для задания, а множество дуг 

Ejob представляет линии связи между выделенными ВУ. Напомним, что в режиме 

коллективного пользования СУЗ обрабатывает поток поступающих заданий, и 

необходимо, чтобы выделенный для очередного задания подграф Gjob обеспечивал 

минимизацию как времени исполнения очередного поступившего задания, так и 

суммарного времени исполнения всего потока задания.  

В условиях выполнения требования универсальности СУЗ не вправе требо-

вать от пользователя обязательного задания информационного графа параллель-

ной программы. В этих условиях при выборе вычислительных узлов для очеред-

ного задания СУЗ должна считать информационный граф параллельной програм-

мы неизвестным, т.е. произвольным. В этом случае весьма разумным выглядит 

следующее предположение. Из всех возможных выборок подграфа Gjob из графа 

Gfree лучшей будет выборка с наибольшим количеством внутренних межузловых 

связей Ejob. Учитывая, что поступившее задание – не последнее, и для последую-

щих заданий в свою очередь тоже понадобится возможно большее число меж-

узловых связей, выбор ВУ для очередного задания можно свести к разбиению 
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множества свободных ВУ на два подмножества из M и N-M узлов с минимальным 

количеством связей между этими подмножествами. Получаем известную задачу о 

разбиении графа на подграфы с наименьшим числом связей между этими подгра-

фами. Предлагаемое автором решение этой задачи рассмотрено в п. 4.3.2  

Выбор ВУ для очередного задания методом разрезания графа свободных ВУ 

на наименее связанные между собой подграфы обладает следующими преимуще-

ствами. Во-первых, каждому заданию предоставляется подмножество максималь-

но связных ВУ, что само по себе обеспечивает улучшение значения целевой 

функции (11). Во-вторых, обеспечивается сокращение размера подзадачи 2 до 

числа ветвей параллельной программы, что поможет сократить время решения 

этой подзадачи. 

Для решения подзадачи 2 предлагается применить параллельный эвристи-

ческий алгоритм, для выполнения которого использовать подмножество выделен-

ных для задания ВУ. В этом случае не только сокращается время поиска отобра-

жения, но одновременно СУЗ может продолжить распределять последующие за-

дания на оставшиеся свободные в системе вычислительные узлы. Предлагаемые 

автором параллельные эвристические алгоритмы решения подзадачи 2 рассмот-

рены ниже по тексту настоящей главы. 

В итоге суть предлагаемого автором метода отображения параллельной 

программы на вычислительные узлы суперкомпьютерной системы коллективного 

пользования состоит в следующем. Отображение очередного задания производит-

ся в два этапа. На первом этапе методом разрезания графа свободных ВУ на два 

минимально связанных между собой подграфа производятся выбор и выделение 

ВУ для задания. На втором этапе подмножество выделенных ВУ используется для 

выполнения параллельного алгоритма поиска оптимального отображения про-

граммного графа на граф топологии подмножества выделенных ВУ. 
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4.3.2 Выбор вычислительных узлов для очередного задания  

Выбор вычислительных узлов для очередного задания будем производить 

путем решения задачи разбиения графа свободных ВУ на подграфы в следующей 

постановке. 

Имеется неориентированный помеченный граф со взвешенными ребрами 

G = (X, U, C, A), где X = { xi } – множество вершин, U = { uij } - множество ребер, 

C = { ci } – множество весов вершин, A = { aij } – множество весов ребер. По-

скольку ВУ в общем случае неоднородны, под весом вершины можно понимать, 

например, число процессорных ядер на ВУ. Необходимо разбить G на k подгра-

фов Gi = (Xi, Ui, Ci, Ai), таких, что 
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таким образом, чтобы сумма весов ребер, связывающих эти подграфы, была ми-

нимальной, а сумма весов вершин, входящих в подграф Gi, не превышала Di, дру-

гими словами, обеспечивала бы необходимое для задания число процессорных 

ядер во множестве выделенных для задания ВУ Сумма весов ребер, связывающих 

вершины из различных подграфов называется связностью разрезания. Множе-

ство ребер, соединяющих вершины из различных подграфов, называют разрезом 

графа. Постановка задачи может варьироваться в зависимости от свойств графа, 

которые задаются моделируемым объектом.  

Обзор различных решений этой задачи представлен в работе [206], где при-

водится классификация имеющихся алгоритмов, и дан анализ их эффективности в 

зависимости от размера и вида разрезаемого графа. По размерам графы классифи-

цируются на малые (до 6 вершин), средние (от 6 до 30 вершин) и большие (свыше 

30 вершин). Алгоритмы разрезания делятся в свою очередь на точные (дающие 

точное решение задачи) и эвристические (дающее приближенное решение задачи, 

но за относительно малое время). 

Среди точных алгоритмов выделяются метод ветвей и границ, впервые рас-

смотренный в [207], и его модифицированный и более эффективный вари-
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ант [208]. Эти алгоритмы основаны на упорядоченном переборе всех возможных 

вариантов и не гарантируют того, что во время решения задачи не будет произве-

ден полный перебор. В обзоре [206] отмечается целесообразность применения 

этих алгоритмов на графах не более средней размерности.  

В общем случае задача разрезания графа на два минимально связанных меж-

ду собой подграфа является NP-полной. Например, если предположить, что СУЗ 

управляет суперкомпьютерной системой, состоящей 1024 ВУ, то в этом случае 

максимальное число вариантов выбора свободных ВУ составляет около 10
320

, что 

делает точные алгоритмы неприменимыми. 

Среди эвристических алгоритмов наиболее быстрым и простым для реали-

зации является алгоритм, рассмотренный в [209]. Его рандоминизированный ва-

риант представлен в [210]. Эвристические алгоритмы дают приближенное реше-

ние задачи, зато требуют значительно меньше времени для своего выполнения, 

что дает возможность их применения на графах большой размерности. 

Рассмотрим частный случай сформулированной задачи, когда веса всех 

вершин графа одинаковы и равны 1, т.е. мы имеем дело с однородными ВУ. Зада-

ча выбора M ВУ из N свободных, как уже говорилось, сводится к разбиению мно-

жества N свободных ВУ на два подмножества из M и из N-M ВУ с минимальным 

количеством связей между этими подмножествами. Очевидно, это эквивалентно 

разрезанию графа GN = ( XN , UN , AN ) свободных ВУ на два подграфа, 

G1 = ( X1 , U1 , A1 ) и G2 = ( X2 , U2 , A2 ),  | X1 | = M, | X2 | = N - M, причем 
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таким образом, чтобы сумма весов ребер, попавших в разрез графа GN, была ми-

нимальной. 

Учитывая большую размерность разрезаемого графа, для разбиения графа 

GN можно применить следующий эвристический алгоритм, идея которого описана 

в [209].  

В начале множества X1 и X2 выбираются произвольным образом, лишь бы 

выполнялись условия задачи. Вычисляется связность начального разрезания q0. 
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Пусть некоторая вершина xi  X попала в подграф Gj. Внутренней связно-

стью вершины xi будем называть величину, равную сумме весов всех ребер, вы-

ходящих из вершины xi и соединяющих ее с вершинами подграфа Gj. Соответ-

ственно, внешней связностью вершины xi будем называть величину, равную сум-

ме весов всех ребер, выходящих из вершины xi и соединяющих ее с вершинами 

противоположного подграфа GN\Gj.  

На каждом шаге алгоритма для всех вершин, составляющих подграфы G1 и 

G2, вычисляются значения внутренней и внешней связности. В каждом подграфе 

выделяется вершина с наибольшей разностью между внутренней и внешней связ-

ностью. Далее осуществляется обмен выделенными вершинами между подграфа-

ми, и вычисляется связность qk полученного нового разрезания, где k – номер ша-

га. Переход к следующему шагу осуществляется, если значение qk не больше зна-

чения qk-1, полученного на предыдущем шаге алгоритма, или в подграфах G1 и G2 

еще остаются нерассмотренные вершины. В противном случае алгоритм заверша-

ет работу.  

Для того чтобы в ходе работы алгоритма не «ухудшить» характеристики те-

кущего решения, была введена следующая эвристика. На каждом шаге вычисля-

ется связность выделенного подграфа как сумма весов дуг графа G1, целиком ле-

жащих внутри. Максимальное значение запоминается и в конце работы алгоритма 

сравнивается с найденным на последнем шаге разрезанием. Лучшим признается 

разрезание с максимальным значением связности. 

Рассмотренный алгоритм достаточно быстр и прост в реализации, каждая 

итерация имеет сложность, не более чем квадратичную. Однако, будучи реализо-

ванным в составе СУППЗ для МВС-1000, алгоритм показал невозможность 

нахождения точного решения задачи разрезания графа даже при небольших раз-

мерах выделяемого подграфа Gjob, продемонстрировав при этом  сильную зависи-

мость от начального разрезания. 

Для улучшения характеристик алгоритма [209] автором диссертации для 

нахождения оптимального разрезания графа было предложено [211] применить 
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метод имитации отжига. Соответствующий алгоритм получил название РГО (Раз-

резание Графа Отжигом). Алгоритм РГО, так же, как и алгоритм [209], заключает-

ся в последовательности взаимных перестановок вершин из X1 и X2, только пере-

ставляемые вершины выбираются случайно. Если связность разрезания уменьша-

ется, то перестановка фиксируется, а если нет – то фиксируется с вероятностью e 
-

q/T
, где q – приращение связности, а T – текущая температура отжига, понижа-

ющаяся в ходе работы алгоритма по закону 𝑇 =
𝑇0

𝑡
, где T0 – начальная температура 

отжига, а t – текущая итерация алгоритма.  

Экспериментально было определено оптимальное значение начальной тем-

пературы, равное 2000º. В ходе трассировки алгоритма было установлено, что на 

заключительных фазах отжига, когда текущая температура становилась менее 1°, 

происходит циклический перебор близко расположенных вершин графов G1 и G2. 

При этом каждое новое разрезание оказывается очень близко к оптимальному, не 

на «своих» местах стоят 2-4 вершины исходного графа GN, однако алгоритм не 

может выйти на оптимальное решение. Для преодоления выявленного недостатка 

была предложена следующая эвристика. До температуры отжига выше 1° выпол-

няется имитация отжига, при достижении температуры 1 осуществляется пере-

ход к алгоритму [209], который за несколько итераций достигает оптимального 

решения.  

4.3.3 Поиск отображения программного графа на граф связей выделенных для 

задания ВУ  

Рассмотрим вторую подзадачу – распределение ветвей (процессов) парал-

лельной программы по выделенным ВУ. Автором для решения которой автором 

был предложен параллельный алгоритм имитации отжига с генетическими опера-

циями (ПОГ – Параллельный Отжиг и Генетика) [211].  

Алгоритм ПОГ выполняется несколькими процессами, среди которых вы-

деляются мастер и процессы-рабочие. Начальная популяция заполняется случай-

но выбранными особями, которые распределяются между процессами-рабочими. 
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Каждый из процессов-рабочих осуществляет над своей частью популяции следу-

ющий алгоритм имитации отжига. 

1. Полагаем начальную температуру равной 𝑇0 и значение счетчика итера-

ций 𝑡 равным 1. 

2. В качестве начального отображения 𝑋 выбираем переданное процессом-

мастером решение и вычисляем целевую функцию (11). 

3. На очередной итерации случайным образом выбираем одну из вершин (𝑖) 

программного графа. Поочередно перебираем оставшиеся вершины программного 

графа. Меняем местами выбранную вершину 𝑖 и перебираемые вершины. Вычис-

ляем приращение целевой функции ∆𝐹(𝑋) при обмене местами выбранной вер-

шины 𝑖 и очередной рассматриваемой нами вершины 𝑗. Если ∆𝐹(𝑋) < 0, то заме-

на закрепляется, и осуществляется переход к новой итерации. Если ∆𝐹(𝑋) > 0, то 

замена закрепляется с вероятностью 𝑒−
∆𝐹

𝑇 , где 𝑇 – текущая температура отжига, и 

осуществляется переход к новой итерации. Если закрепления не происходит, 

осуществляется выбор новой, (𝑗 + 1)-й, вершины программного графа и ее обмен 

местами с выбранной в начале итерации вершиной 𝑖. 

4. Понижаем температуру по закону 𝑇 =
𝑇0

𝑡
. 

5. По истечении определенного числа итераций, либо если зафиксирован 

выход целевой функции 𝐹(𝑋) на стационарное значение, то завершаем алгоритм, 

в противном случае переходим к п. 3. 

Результаты каждого процесса-рабочего собираются в процессе-мастере, ко-

торый осуществляет над популяцией операции селекции, отбраковывает худшие 

особи и путем скрещивания формирует новые особи, которые вместе с отобран-

ными в результате селекции особями образуют новую популяцию. Новая популя-

ция распределяется по процессам-рабочим, и начинается очередной шаг алгорит-

ма. Алгоритм останавливается, если по истечении заданного числа шагов не про-

изошло улучшения целевой функции (11). 

Первоначальная версия алгоритма не содержала генетических операций, 

каждый процесс-рабочий производил определенное число итераций, после чего 



195 

отправлял результат процессу-мастеру. Последний выбирал лучшее решение и 

рассылал его рабочим в качестве начального решения следующего шага. Началь-

ное значение температуры отжига составляло 2000°, конечной температуры – 

0,1°, предельное число итераций, производимых за один шаг процессом-

рабочим, – 20000, область сходимости – 30 шагов. К сожалению, параллельный 

алгоритм имитации отжига с указанными параметрами для графов порядка 32 

обеспечивал точность A в соответствии с (12) не более 8% при среднем отклоне-

нии D целевой функции, определяемом в соответствии с (13), равном 40%. 

Таблица 12 отражает ход исследования и модификации параллельного алго-

ритма. Алгоритм выполнялся на 32-процессорном суперкомпьютере МВС-1000, 

который был установлен в ИПМ им. М.В. Келдыша РАН и производил отображе-

ние программного графа с топологией «решетка» 4×8 на граф ВУ с такой же то-

пологией. При запуске алгоритма каждый процесс-рабочий выполнялся на от-

дельном процессоре. 

Таблица 12. Процесс добавления генетических операций в параллельный 

алгоритм имитации отжига 

Тест 

Число 

процессов-

рабочих 

Среднее 

время, с 

Среднее  

отклонение D 
Точность A 

1 15 4,3 40% 8% 

2 31 5,7 34% 12% 

3 31 15,8 26% 28% 

4 31 29,9 22% 32% 

5 23 6,9 20% 35% 

6 23 7,1 10% 50% 

7 23 6,7 5% 3% 

 

 Тесты №1 и №2 заключались в выполнении параллельного алгоритма ими-

тации отжига разным числом процессов-рабочих. Тест №2 за примерно то же 

время перебрал примерно в два раза больше потенциальных решений, что поло-

жительно сказалось на среднем отклонении D точности A. По этой причине было 
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решено сконструировать и выполнить тесты №3 и №4, в каждом из которых па-

раллельный алгоритм имитации отжига повторялся некоторое количество шагов, 

при этом полученное на i-м шаге решение подавалось в качестве начального на 

вход (i+1)-го шага. Тест №3 состоял из 16 шагов, а тест №4 – из 32 шагов. Из таб-

лицы 12 видно, что такой экстенсивный подход привел только росту времени ра-

боты алгоритма, существенно не повлияв на точность и среднее отклонение. 

Тесты №5 и №6 демонстрируют постепенный переход к алгоритму ПОГ. В 

тесте №5 была добавлена операция селекции, а в тесте №6 – дополнительно к се-

лекции операция скрещивания. Таблица 12 показывает, что каждая генетическая 

операция внесла ощутимый вклад в улучшение показателей точности и среднего 

отклонения. 

Тест №7 демонстрирует отображение алгоритмом ПОГ программного графа 

из 32 вершин в топологии «кольцо» на граф ВУ топологии «решетка» 4×8. Алго-

ритм ПОГ продемонстрировал малое среднее отклонение от минимума целевой 

функции, но при этом практически никогда не находил оптимальное отображе-

ние. 

4.3.4 Результаты применения метода в суперкомпьютерах серии МВС-1000  

Алгоритмы РГО и ПОГ были реализованы в составе сервера запуска 

СУППЗ для суперкомпьютеров серии МВС-1000. Апробация алгоритмов была 

произведена при помощи известного стандартного набора тестов NPB (NAS Paral-

lel Benchmark) [212] версии 2.3, которые выполнялись 32-процессорной системе 

МВС-1000,  установленной в 1999 году в ИПМ им. М.В. Келдыша РАН. Каждый 

тест NPB помимо времени своей работы выдает оценку производительности P су-

перкомпьютера в миллионах операций в секунду (Мопс). Каждый тест NPB вы-

полнялся без применения алгоритмов РГО и ПОГ и с применением этих алгорит-

мов. Если обозначить производительность, оцененную тестами без применения 

алгоритмов отображения, как P1, а производительность, оцененную с применени-

ем алгоритмов, как P2, то прирост производительности W можно определить как 
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Таблица 13 демонстрирует результаты применения алгоритма РГО. Запуск 

без применения алгоритма РГО означал выделение ВУ подряд в порядке их нуме-

рации. 

Таблица 13. Результаты выполнения тестов NPB на суперкомпьютере МВС-1000 

без применения и с применением алгоритма РГО 

Тест 

NPB 

Число  

процессоров 

Выделение ВУ подряд 
Выделение по алгоритму 

РГО 
Прирост 

производи-

тельности 

W, % 
Время, 

с 

Производ. P1, 

Мопс 

Время, 

с 

Производ. P2, 

Мопс 

SP 4 954 89,1 880,2 101,1 13,5 

SP 9 880,7 96,5 650,3 136,9 41,9 

SP 16 680,2 130,9 540,8 164,6 25,7 

LU 4 747,4 159,6 692,6 172,2 7,9 

LU 8 651,6 183,1 497,5 239,6 23,6 

LU 16 856,8 139,2 531 224,7 61,4 

BT 4 1073,8 156,7 1028,7 163,6 4,4 

BT 9 698,8 240,8 581,6 289,4 20,2 

BT 16 472 356,5 415 405,5 13,7 

EP 4 68,2 7,9 68,1 7,9 0 

EP 8 34,2 15,7 34,1 15,7 0 

EP 16 17,2 31,2 17,1 31,3 0 

CG 4 38,6 38,8 38,1 39,3 1,3 

CG 8 46 32,5 41,3 36,2 11,4 

CG 16 59,5 25,1 48,8 30,7 22,3 

MG 8 34,5 112,8 29,5 132 17 

MG 16 22,1 176,2 18,2 213,9 21,4 

FT 8 128,6 55,5 101,8 70,1 26,3 

FT 16 73,6 97 63,4 112,6 16,1 

IS 4 35,7 2,3 27,3 3,1 34,8 

IS 8 40,1 2,1 28,5 2,9 38,1 

IS 16 27,3 3,1 21,5 3,9 25,8 

Усредненный по всем тестам прирост производительности от применения 

алгоритма РГО в суперкомпьютере МВС-1000 представлен в таблице 14. Макси-

мальный прирост достиг 61,4% на тесте LU на 16 процессорах. 

Алгоритм ПОГ при решении задачи отображения размером 32 показал 50% 

совпадений с оптимальным отображением при среднем отклонении от оптималь-

ного значения целевой функции около 10%, что существенно превосходило из-
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вестные на момент 1999 года результаты. Таблица 15 демонстрирует результаты 

применения алгоритма ПОГ. Тест EP не выполнялся, поскольку он не содержит 

информационных обменов, т.е. у теста фактически отсутствует программный 

граф. 

Таблица 14. Средний по всем тестам NPB прирост производительности от 

применения алгоритма РГО в суперкомпьютере МВС-1000 

Число процессоров (ВУ) 4 8 (9) 16 

Прирост производительности W 10,1% 22,3% 23,3% 

Таблица 15. Результаты выполнения тестов NPB на суперкомпьютере МВС-1000 

без применения и с применением алгоритма ПОГ 

Тест 

NPB 

Число  

процессоров 

Без применения  

алгоритма ПОГ 

С применением  

алгоритма ПОГ 
Прирост 

производи-

тельности 

W, % 
Время, 

с 

Производ. P1, 

Мопс 

Время, 

с 

Производ. P2, 

Мопс 

SP 4 444 191,4 444,1 191,3 0 

SP 9 316,4 268,7 289,9 293,2 9,1 

SP 16 341 249,3 239,8 354,6 42,2 

SP 25 305,8 278 206,2 412,3 48,3 

LU 4 367,5 324,5 367,4 324,6 0 

LU 8 311,6 382,9 266,5 447 16,7 

LU 16 340,9 350 233,7 510,4 45,8 

LU 32 277,7 430 234,4 509,5 18,5 

BT 4 455,7 369,3 455,4 369,6 0 

BT 9 251,2 700 242 670 4,5 

BT 16 225,6 845,8 189,9 886 18,8 

BT 25 195,4 861,3 139,2 1208,7 40,3 

CG 4 18,9 79 18,8 79,1 0 

CG 8 19,9 75,4 13,2 113,5 50,5 

CG 16 22,5 66,4 17,4 85,8 29,2 

CG 32 23,5 63,7 14,9 100,3 57,5 

MG 8 13,2 294,5 9,7 401 36,1 

MG 16 10 391,1 7,9 492,3 25,9 

MG 32 7,0 556,1 5,3 734,5 32 

 

Таблица 16 отражает усредненный по всем тестам NPB прирост производи-

тельности от применения алгоритма ПОГ в зависимости от числа процессоров. 

Максимальный прирост достиг 57,5% на тесте CG на 32 процессорах. 
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Таблица 16. Средний по всем тестам NPB прирост производительности от 

применения алгоритма ПОГ в суперкомпьютере МВС-1000 

Число процессоров (ВУ) 4 8 (9) 16 25 32 

Прирост производительности W 0% 23,4% 32,4% 44,3% 36% 

Апробация алгоритма ПОГ производилась также и на реальных задачах. 

Таблица 17 отражает результаты применения алгоритма ПОГ для решения задачи 

моделирования процессов структурообразования рибонуклеиновых кислот про-

граммным комплексом ГЕН-2 [213]. Прирост производительности составил от 

37,1% до 47,5% в зависимости от числа процессоров. 

Таблица 17. Результаты выполнения расчетов программным комплексом ГЕН-2 

на суперкомпьютере МВС-1000 без применения и с применением алгоритма ПОГ 

Число процессоров 4 8 16 24 29 

Время выполнения расчетов без при-

менения алгоритма, секунды 
145 566 1240 1831 1217 

Время выполнения расчетов с приме-

нением алгоритма ПОГ, секунды 
146 397 884 1336 825 

Ускорение, % 0 29,9 28,7 27 32,2 

Прирост производительности, % 0 42,6 30,3 37,1 47,5 

Во многом хорошие показатели роста скорости расчетов при применении 

предложенного метода отображения были обусловлены некоторым дисбалансом 

вычислительной и коммуникационной составляющих суперкомпьютеров 

МВС-1000. Коммуникационная среда МВС-1000, показанная на рисунке 7, пред-

ставляет собой распределенный составной коммутатор с отсутствием прямых свя-

зей между несмежными ВУ. За счет этого при информационных обменах вычисли-

тельных процессоров несмежных ВУ приходилось осуществлять промежуточные 

передачи данных между связными процессорами. Это крайне отрицательно сказы-

валось на показателях латентности и пропускной способности коммуникационной 
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среды и приводило к указанному дисбалансу с  вычислительными процессорами. В 

этих условиях применение предложенного автором метода отображения парал-

лельных программ на структуру вычислительных узлов суперкомпьютера позволи-

ло существенно поднять скорость производимых расчетов. Отметим, что заметный 

прирост производительности наблюдался даже при применении алгоритма РГО от-

дельно от алгоритма ПОГ. Последняя ситуация возникала в том случае, когда поль-

зователь по разным причинам не мог задать информационный граф своей парал-

лельной программы, что наблюдалось для большинства заданий. 

Развитие метода отображения параллельной программы на вычислительные 4.4 

узлы суперкомпьютера  

4.4.1 Программные средства и инструменты для поиска отображения 

С момента реализации алгоритмов РГО и ПОГ прошло значительное время, 

и появились новые программные инструменты решения задачи отображения. 

Например, для рекурсивного разбиения графа может быть использована библио-

тека Scotch [214], которая активно применяется исследователями. Другой извест-

ной библиотекой является LibTopoMap [215], в ней реализован ряд алгоритмов 

отображения, в том числе жадный алгоритм поиска самого загруженного процес-

са в коммуникационном плане и вычислительного элемента, имеющего наиболь-

шую коммуникационную связь, а также алгоритм Катхилла-Макки, позволяющий 

уменьшить пропускную способность разреженной матрицы расстояний. Для 

улучшения результатов отображения используются алгоритмы имитации отжига 

и алгоритм восхождения на вершину. Еще одним известным инструментом явля-

ется MPIPP [216], который позволяет осуществлять автоматический поиск опти-

мизированного отображения с целью минимизации затрат на связь типа «точка-

точка» для приложений с произвольным характером обмена сообщениями.  

При развитии алгоритма ПОГ в качестве основы была использована сво-

бодно распространяемая библиотека UGR-Metaheuristics [217]. Библиотека UGR-

Metaheuristics написана на языке программирования C++ и реализует большин-
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ство известных эвристических алгоритмов поиска отображения. Библиотека со-

держит в своем составе ряд базовых алгоритмов отображения, в том числе парал-

лельных алгоритмов генетического отбора и имитации отжига. Базовые алгорит-

мы образуют иерархию классов, допускающую наследование и добавление новых 

классов. Это позволяет разрабатывать новые алгоритмы отображения в том числе 

путем модификации базовых алгоритмов библиотеки UGR-Metaheuristics. 

Для целей развития и исследования характеристик алгоритма ПОГ под ру-

ководством автора было разработано программное средство GraphHunter [218], 

основанное на библиотеке UGR-Metaheuristics. Входными данными для про-

граммного средства  GraphHunter являются программный граф и граф подмноже-

ства ВУ суперкомпьютера. При помощи GraphHunter возможны запуск и исследо-

вание как базовых алгоритмов библиотеки UGR-Metaheuristics, так и вновь разра-

ботанных алгоритмов поиска отображения. 

4.4.2 Комбинированный параллельный алгоритм PGSA  

Для развития алгоритма ПОГ при помощи библиотека UGR-Metaheuristics 

был реализован комбинированный параллельный алгоритм, характеристики кото-

рого были сравнены с предоставляемые этой библиотекой базовыми эвристиче-

скими параллельными алгоритмами имитации отжига и генетического отбора. 

Основные результаты проведенного исследования указанных трех алгоритмов 

были изложены в публикации [219]. 

В параллельной версии алгоритма имитации отжига несколько процессов 

(потоков) участвуют в поиске решения. Лучшее найденное решение сообщается 

всем процессам (потокам), после чего каждый из них выбирает полученное реше-

ние в качестве текущего. Параллельный имитационный отжиг позволяет за одно и 

то же время просмотреть большее количество вариантов отображения из про-

странства решений по сравнению с рассмотренной в п. 4.2.2  последовательной 

версией алгоритма. Благодаря этому, полученные решения покрывают большее 

количество локальных минимумов значений целевой функции, и повышается ве-
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роятность нахождения решения, максимально близкого к глобальному минимуму 

целевой функции (11). 

Параллельный генетический алгоритм основан на кольцевой схеме инфор-

мационного обмена. Каждый процесс в ходе алгоритма выполняет следующие 

шаги. 

1. Генерация начальной популяции на основе псевдослучайной последова-

тельности и установка популяции в качестве текущей.  

2. Получение новых потомков применением операции скрещивания к вы-

бранным особям текущей популяции. 

3. Применение операции мутации к потомкам, полученным на предыдущем 

шаге. 

4. Замена худших решений в текущей популяции новыми потомками. 

5. Выбор на текущей итерации лучшего члена популяции. 

6. Коммуникационный обмен лучшими решениями между соседними про-

цессами. 

7. Замена худшего решения в текущей популяции новым решением, если 

оно лучше. 

8. Если не пройдено заданное число итераций – переход к п. 2. 

9. Выбор особи с минимальным значением целевой функции (11) среди всех 

процессов. Выбранная особь принимается в качестве решения задачи отображения. 

В отличие от алгоритма имитации отжига, сгенерированные решения в ге-

нетических алгоритмах достаточно сильно отличаются от начального. Благодаря 

этому, удаётся охватить больше локальных минимумов целевой функции и мак-

симально приблизиться к значению глобального минимума. Преимуществом ал-

горитма имитации отжига является меньшее время работы поиска приемлемого 

решения, в то время как преимуществом генетического алгоритма является полу-

чение более точного решения. Продуктивной видится идея комбинировать два 

этих алгоритма, чтобы обеспечить высокую точность отображения за приемлемое 
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время. Идея была реализована в виде комбинированного параллельного алгорит-

ма, получившего название PGSA (Parallel Genetic & Simulated Annealing). 

На первом этапе комбинированного алгоритма работает параллельный ва-

риант имитации отжига. В отличие от рассмотренного выше имитационного от-

жига, предложенный алгоритм не подразумевает обмена между процессами в хо-

де поиска решений. Каждый процесс генерирует заданное количество решений, 

которые для параллельного генетического алгоритма становятся текущей популя-

цией. Выбор типов операторов генетического алгоритма осуществляется в соот-

ветствии с заданной конфигурацией.  

Параллельный комбинированный алгоритм поиска отображения состоит из 

следующих шагов. 

1. Параллельный поиск решений каждым процессом с применением имита-

ционного отжига. 

2. Создание популяции решений для работы параллельного генетического 

алгоритма из сгенерированных решений на шаге 1. 

3. Запуск параллельного генетического алгоритма на заданное число итера-

ций. 

4. Выбор лучшего решения в каждом процессе. 

5. Выбор лучшего глобального решения. 

Отсутствие обмена на этапе работы параллельного алгоритма имитации от-

жига гарантирует, что каждый процесс сгенерирует уникальную популяцию ре-

шений. За счёт миграции решений удаётся передавать между популяциями луч-

шие признаки, которые будут наследованы потомками. 

4.4.3 Методика исследования характеристик параллельных алгоритмов 

отображения  

Параллельные алгоритмы имитационного отжига, генетический алгоритм, 

комбинированный алгоритм PGSA были реализованы в составе программного 

средства GrpahHunter [218]. Экспериментальные запуски исследуемых алгорит-
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мов производились на разделе Broadwell суперкомпьютера МВС-10П ОП, уста-

новленного в МСЦ РАН. Раздел состоит из 136 узлов со следующими характери-

стиками: 

 2 процессора Intel Xeon E5-2697Av4; 

 32 физических, 64 виртуальных ядра в узле; 

 128 Гб оперативной памяти; 

 коммуникационная сеть Intel Omni-Path. 

В качестве входных данных использовался набор taiXeyy [220, 221] графов 

различных порядков, где X – порядок графов, yy – вариант графов заданного по-

рядка. В наборе для каждого порядка указаны граф вычислительной системы и 

информационный граф программы, представленные в виде матриц расстояний. 

Для каждой пары графов из набора заранее известны матрицы расстояний и ми-

нимальное значение целевой функции (11). Наборы taiXeyy используются учёны-

ми для тестирования алгоритмов отображения при решении задач о квадратичном 

назначении [221].  

В экспериментах использовались наборы графов tai27e01, tai45e01, tai75e01, 

tai125e01, tai175e01, tai343e01, tai729e01. Эксперимент заключался в нахождении 

отображения для заданной пары графов с фиксированными параметрами алго-

ритма и числом процессов. Для усреднения результатов было выполнено не менее 

10 запусков с одинаковыми параметрами для каждого эксперимента. На первом 

этапе экспериментов производился подбор оптимальных параметров алгоритма. 

На втором этапе было выполнено экспериментальное сравнение параметров алго-

ритмов с найденными оптимальными параметрами.  

4.4.4 Результаты сравнения параллельных алгоритмов имитации отжига, 

генетического отбора и PGSA 

На характеристики параллельного алгоритма имитации отжига влияет мно-

жество параметров, оптимальные значения которых необходимо определить в хо-

де исследования. Поиск оптимальных значений параметров осуществлялся в фор-
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мате проведения вычислительного эксперимента. Эксперимент заключался в мно-

гократном поиске отображения для графов заданной размерности с разным чис-

лом ветвей параллельной программы и изменяющимся значением исследуемого 

параметра при фиксации значений остальных. Подробно поиск оптимальных зна-

чений параметров параллельного алгоритма имитации отжига рассмотрен в пуб-

ликации [219]. В результате экспериментов были установлены следующие значе-

ния основных параметров алгоритма: 

 количество просматриваемых решений при фиксированном значении 

температуры – 50; 

 в качестве функции понижения температуры выбрана функция Ко-

ши [219]; 

 число последовательных итераций работы алгоритма – 100; 

 для графов порядка не более 256 достаточно 50 000 итераций параллель-

ного алгоритма; 

 для графов порядка не более 1024 достаточно 100 000 итераций парал-

лельного алгоритма; 

 для графов порядка не более 100, число «решателей» совпадает с размер-

ностью графа, для графов порядка до 1024 число решателей должно состав-

лять 125. 

Для параметров, отвечающих за количество найденных решений при одном 

значении температуры и формирование начальной температуры, были сохранены 

значения, предложенные автором библиотеки UGR-Metaheuristics. 

При выполнении параллельного генетического алгоритма после каждой 

итерации процессы обмениваются лучшими особями. Единственным отличием от 

последовательного алгоритма является наличие информационных обменов. Для 

параллельного генетического алгоритма были применены параметры, рекоменду-

емые автором библиотеки UGR-Metaheuristics, за исключением размера популя-

ции: 

 вероятность применения операции скрещивания 1; 
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 вероятность применения операции мутации – 0,001;  

 число мигрирующих решений должно быть небольшим, эксперименты 

показали, что более 1 мигрирующего решения ухудшает качество финального 

решения; 

 число членов популяции совпадает с порядком исходных графов; 

 для графов разных порядков задано фиксированное число итераций алго-

ритма. Фиксированное число итераций работы алгоритма для графов больших по-

рядков позволяет за приемлемое время получать приемлемое решение. 

Комбинированный алгоритм PGSA фактически состоит из последователь-

ного алгоритма имитации отжига и параллельного генетического алгоритма. Ре-

шения, полученные путём применения алгоритма имитации отжига, становятся 

начальной популяцией для параллельного генетического алгоритма. Для последо-

вательного алгоритма имитации отжига задаются те же параметры, что и для па-

раллельного алгоритма имитации отжига. Параметры параллельного генетическо-

го алгоритма не были изменены. 

На втором этапе алгоритмы сравнивались по точности, определяемой зна-

чением целевой функции, и времени выполнения. Отметим, что параллельная 

схема алгоритмов такова, что увеличение числа процессов приводит к расшире-

нию пространства рассматриваемых решений. Соответственно, изменение числа 

процессов влияет на точность отображения, практически не сказываясь на време-

ни работы алгоритмов. 

Эксперименты показали, что параллельный генетический алгоритм при по-

иске отображения графов больших порядков в среднем получает решение лучше, 

чем параллельный алгоритм имитации отжига. Благодаря миграции решений 

между различными популяциями, удаётся передавать лучшие признаки. Парал-

лельный генетический алгоритм при отображении графов больших порядков име-

ет большее время поиска отображения по сравнению с алгоритмом имитации от-

жига. Это объясняется тем, что для любого нового потомка необходимо заново 

рассчитывать значение целевой функции, в отличие от имитации отжига, где зна-
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чение целевой функции рассчитывается относительно внесённых изменений в 

отображение.   

Сравнение качества полученных решений от числа процессов для набора 

данных tai343e01 представлено на рисунке 49. 

 

Рисунок 49. Зависимость значений целевой функции от числа процессов для 

набора данных tai343e01 

Сравнение качества полученных решений от числа запущенных процессов 

для набора данных tai729e01 представлено на рисунке 50. 

 

Рисунок 50. Зависимость значений целевой функции от числа процессов для 

набора данных tai729e01 
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Сравнение среднего времени выполнения алгоритмов для различных набо-

ров данных представлено на рисунке 51. 

 

Рисунок 51. Среднее время выполнения алгоритмов для различных наборов 

данных 

Таблица 18 содержит оценки точности и времени выполнения алгоритмов 

по итогам проведенных экспериментов. Оптимальное решение для наборов было 

взято из набора данных [222]. В столбце 𝐹 указано лучшее полученное в ходе 

экспериментов значение целевой функции. В столбце 𝑇 указано время в минутах, 

затраченное алгоритмом на получение лучшего решения. В столбце 𝐹0 указано 

оптимальное значение целевой функции для каждого из наборов. В столбце 𝑇0 

указано время получения оптимального отображения, полученное в работе [223]. 

В столбце 𝐷 приведена оценка точности полученного решения, показывающая 

насколько отличается значение целевой функции от оптимального в процентах: 

𝐷 = 100∙(F – F0)/ F0. 

Для 256 процессов была определена масштабируемость программы 

GraphHunter при ее запуске на разном числе узлов раздела Broadwell суперком-

пьютера МВС-10П ОП. Представленные на рисунке 52 результаты позволяют го-

ворить о достаточно хорошей масштабируемости разработанного приложения. 
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Таблица 18. Оценка точности решений, полученных при помощи параллельных 

алгоритмов имитации отжига, генетического отбора и PGSA 

Алгоритмы 

 

 

Набор 

данных 

Параллельный 

имитационный 

отжиг 

Параллельный ге-

нетический алго-

ритм 

Параллельный ком-

бинированный ал-

горитм PGSA 

Оптимальное 

решение 

𝐹 𝑇 𝐷 𝐹 𝑇 𝐷 𝐹 𝑇 𝐷 𝐹0 𝑇0 

Tai27 2558 0,05 1 3176 0,1 24 2600 0,27 2 2558 0,02 

Tai45 6724 0,3 5 8564 0,45 34 7332 0,5 14 6412 0,03 

Tai75 19380 0,6 34 18268 0,7 26 18810 0,75 29 14488 8 

Tai125 50780 1,6 43 47816 2 35 50792 1,75 43 35426 166 

Tai175 72688 2,8 26 74602 5 29 74880 3,1 29 57540 181 

Tai343 200856 3,5 37 168120 12,8 15 172466 10,1 18 145862 1026 

Tai729 724820 18,2 54 514846 50 9 498454 53,2 6 469650 1187 

 

 

Рисунок 52. Масштабируемость программного средства GraphHunter при 

поиске отображения 256-ю процессами 
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нения. GraphHunter позволяет реализовать и сравнить по точности и времени вы-

полнения произвольный параллельный алгоритм поиска отображения. 

2. GraphHunter показал близкую к линейной масштабируемость при задан-

ной точности отображения. 

3. Приемлемое время выполнения для графов больших размеров демон-

стрирует только имитационный отжиг. Только этот алгоритм затрачивает на по-

иск отображения время, сопоставимое с системными таймаутами (не более 15 ми-

нут). Генетический и комбинированный алгоритм, хотя и находят лучшие реше-

ния, выполняются неприемлемо долго. 

4. Двухэтапный метод РГО-ПОГ предполагает запуск алгоритмов отобра-

жения на выделенных для очередного задания узлах суперкомпьютера. Если при-

менять этот метод, сравнение точности параллельных алгоритмов необходимо 

производить на числе процессов, равным числу выделенных для задания ядер (уз-

лов). Как показывают результаты экспериментов, на числе процессов, равным по-

рядку графов, точность имитационного отжига сопоставима с точностью генети-

ческого и комбинированного алгоритмов. Исключение составляет случай графа из 

729 вершин, для которого генетический и комбинированный алгоритмы демон-

стрируют очень высокую точность с ошибкой в 9% и 6% соответственно. 

4.4.5 Циклический комбинированный параллельный алгоритм CPGSA 

Экспериментальное сравнение характеристик трех алгоритмов: имитации 

отжига, генетического отбора и комбинированного PGSA показало, что точность 

отображения на графах малых порядков у алгоритма PGSA сопоставима с точно-

стью алгоритма отжига. Однако на графах больших порядков, где алгоритм отжи-

га показывает себя не очень хорошо, точность и скорость алгоритма PGSA сопо-

ставимы с алгоритмом генетического отбора. При этом алгоритм PGSA суще-

ственно уступал имитации отжига по времени поиска. С целью улучшения харак-

теристик алгоритма PGSA в рамках настоящего исследования было реализовано 

несколько его модификаций. 
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Учитывая результаты [211] для графов малых порядков, было принято реше-

ние зациклить алгоритм PGSA с многократным повтором его фаз. После нахожде-

ния решения в первой итерации комбинированного алгоритма найденное отобра-

жение повторно подается на вход этого алгоритма. В связи со случайной природой 

алгоритма имитации отжига генерируется новый набор решений, которые затем 

передаются в генетический алгоритм. Процесс чередования фаз имитации отжига и 

генетического отбора повторяется несколько раз. В результате на каждой итерации 

нового составного алгоритма искомое решение демонстрирует возрастающую точ-

ность отображения от одной итерации к другой. На каждом шаге находится отоб-

ражение, которое становится все ближе к оптимальному. 

По аналогии с [219] модифицированный алгоритм получил название Cycled 

PGSA или CPGSA [224]. Алгоритм CPGA состоит из следующих фаз. 

1. Параллельный поиск решений каждым процессом с использованием ими-

тации отжига. 

2. Генерация начальной популяции решений для параллельного генетиче-

ского алгоритма из шага 1. 

3. Запуск параллельного генетического алгоритма для указанного количе-

ства итераций. 

4. Выбор оптимального решения для каждого процесса. 

5. Выбор наилучшего глобального решения. 

6. Если это не последняя итерация, генерация начальных значений для ша-

га 1. 

7. Повторение шагов 1-5 указанное количество раз. 

Алгоритм CPGSA был реализован в составе ПО GraphHunter. Эксперимен-

тальное исследование характеристик модифицированного алгоритма проводились 

с использованием раздела Broadwell суперкомпьютера МВС-10П ОП  в соответ-

ствии с рассмотренной в п.4.4.3 методикой.  

На рисунке 53 показаны сравнительные результаты экспериментов. 

Наилучшие значения решения для кривой «Оптимальный» были получены из 
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[222]. Значения для кривых «Отжига», «Генетический» и «PGSA» взяты из пред-

ставленных в п. 4.4.4 результатов. 

 

Рисунок 53. Зависимость значения функции потерь от различных программных 

графов и алгоритмов 

Рисунок 53 показывает, что на графах малых и средних порядков комбини-

рованный алгоритм PGSA находит решение, сопоставимое с наилучшим решени-

ем, полученным алгоритмом имитации отжига или генетическим алгоритмом. 

Однако, модифицированный алгоритм CPGSA предлагает более точное решение 

для отображения графа программы на граф многопроцессорной системы. Точ-

ность отображения, выраженная через отклонение значения целевой функции в 

соответствии с (13), увеличивается с 3% на графах малых порядков (набор tai45) 

до 12% на графах средних порядков (tai125). На наборе экземпляров tai175 значе-

ния целевой функции (11) сопоставимы со значением этой функции алгоритма 

имитации отжига. Вместе с тем время работы CPGSA существенно меньше, что 

показывает рисунок 54. 

Графики на рисунке 54 демонстрируют, что алгоритм CPGA позволяет зна-

чительно сократить время, необходимое для поиска решения. Ускорение состав-

ляет от 1,41 раз на наборе tai175 до 2,68 раз на наборе tai75. Стоит отметить, что 

подобное уменьшение времени работы алгоритма существенно зависит от ис-

пользуемых параметров. В проведенных экспериментах применялся подход, при 

котором происходит множество коротких итераций циклического алгоритма. 
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Кроме того, улучшение времени работы дала проведенная соавтором [224] 

К.А. Брагиным оптимизация исходного кода. 

 

Рисунок 54. Время выполнения алгоритмов в зависимости от набора графов 

Рассмотрим поведение модифицированного алгоритма CPGSA на примере 

экземпляра tai175. Точность решения увеличивается итеративно, в отличие от 

PGSA, как показано на рисунке 55. Шаги алгоритма CPGSA повторяются в цикле. 

Решение, полученное на предыдущем шаге, является входными данными алго-

ритма на следующем шаге. Каждая итерация немного улучшает решение. Кривая, 

изображающая зависимость целевой функции (11) для CPGSA от шага, принимает 

форму гиперболы, что указывает на то, что решение приближается к оптимально-

му. Алгоритм выходит на плато после большого количества шагов, находя при-

ближенное решение, которое он не может улучшить дальше. 

Оптимальное количество шагов (итераций) составляет 3-5. Соответствую-

щее ограничение на число шагов было встроено в программное обеспечение 

GraphHunter. Найденное решение считается наилучшим, если точность не улуч-

шается на следующем шаге, и поиск останавливается. 

Рассмотрим набор параметров, используемых на начальном и последующих 

шагах. Возможна тонкая настройка алгоритма отдельно на первом шаге, что су-

щественно влияет на результат, и на последующих шагах, которые улучшают ре-

шение, полученное на предыдущих шагах. 
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Рисунок 55. Зависимость функции потерь от шага (итерации) алгоритма CPGSA 

Для решения проблемы «застревания» циклического алгоритма в локальном 

минимуме было предложено динамически изменять параметры используемых на 

каждом шаге алгоритмов отжига и генетического отбора. Подобный подход при-

менялся в работе [225] на графах малой размерности, где в процессе поиска реше-

ния происходило понижение температуры отжига. В рамках циклического харак-

тера работы CPGSA на графах средней и большой размерности изменение темпе-

ратуры отжига не дало результатов. Изменение других параметров на каждом ша-

ге также не принесло улучшений характеристик алгоритма. Был сделан вывод, что 

изменение только одного или нескольких параметров не влияет на точность 

найденного отображения. Было принято решение производить изменение сразу 

всех параметров алгоритма. 

На каждом шаге алгоритма CPGSA К.А. Брагиным [224] было предложено 

применить т.н. модификаторы, которые представляют собой вещественные числа 

от 0 до 2. Например, начальное значение популяции в генетическом алгоритме 

равно 100. После первого шага, к этому значению применяется модификатор 0,8, 

и значение становится равным 80. В дальнейшем на каждом шаге размер популя-

ции будет уменьшаться в соответствии с модификатором и составит, соответ-

ственно шагам: 64, 51, 41, 32. Таким образом, на каждом шаге работа алгоритма 

CPGSA несколько отличается от работы на предыдущем шаге. Однако возникает 

задача поиска таких модификаторов. 
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Было предложено автоматически находить значения модификаторов с по-

мощью алгоритма имитации отжига. На каждой итерации CPGSA значение целе-

вой функции (11) сравнивается со значением предыдущего шага. Если значение 

уменьшилось, модификаторы сохраняются. Если значение не уменьшилось, то 

случайным образом меняется один из модификаторов, и процесс повторяется. Со 

временем доступное окно изменения модификаторов сужается, что позволяет по-

лучать более точные решения. 

Следует отметить, что процесс поиска модификаторов осуществляется 

только один раз. В следующий раз, при запуске на том же числе ядер, найденные 

модификаторы могут быть повторно применены для сокращения времени поиска 

отображения. При запуске алгоритма CPGSA на другом числе ядер необходимо 

определить новые значения модификаторов. 

На рисунке 56 представлены результаты применения модификаторов для 

различных наборов графов. Для наборов tai75 и tai125 были найдены значения 

модификаторов, максимально приблизившие целевую функцию к оптимальному 

значению. Для графов небольших порядков поиск данных модификаторов не име-

ет значения, поскольку и CPGSA, и PGSA без модификаторов находят решение, 

близкое к оптимальному. 

 

Рисунок 56. Значения целевой функции потерь для алгоритмов PGSA, CPGSA и 

CPGSA с применением модификаторов 
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Легко заметить значительное повышение точности по сравнению с алго-

ритмами без модификаторов. На примере tai75 точность CPGSA увеличилась на 

19%, а точность PGSA увеличилась на 22%. На примере tai125 точность увеличи-

лась на 10% по сравнению с CPGSA и на 32% по сравнению с алгоритмом PGSA. 

На рисунке 57 показано время поиска решения в секундах для различных 

алгоритмов и наборов графов. Алгоритм CPGSA значительно быстрее, чем PGSA 

и CPGSA с использованием модификаторов. Стоит отметить, что отклонение точ-

ности от оптимального решения составляет 5% и 8% для наборов tai75, tai125 со-

ответственно. 

 

Рисунок 57. Время выполнения алгоритмов PGSA, CPGSA и CPGSA с примене-

нием модификаторов 
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CPGSA имеет вид гиперболы, то его работу целесообразно прерывать, когда значе-

ние целевой функции (11) перестает уменьшаться в заданном диапазоне или когда 

истекает отведенное на процесс оптимизации время. Согласно статистическим 

данным, это время для суперкомпьютера МВС-10П ОП составляет 27 минут. 

Выводы к главе 4 

Одной из важных задач управления суперкомпьютерными ресурсами явля-

ется распределение ветвей (процессов) параллельной программы из состава зада-

ния пользователя по вычислительным узлам. Эта задача также известна как задача 

поиска оптимального отображения информационного графа параллельной про-

граммы на граф коммуникационных связей ВУ суперкомпьютера. Оптимальное 

отображение позволяет снизить накладные расходы на информационные обмены 

между ветвями параллельной программы и тем самым повысить быстродействие 

расчетов. Задача поиска оптимального отображения является NP-полной, и точ-

ные методы ее решения требуют значительного времени расчетов. В то же время 

в условиях режима коллективного пользования необходимо получать близкое к 

оптимальному отображение за относительно небольшое время, сравнимое с дли-

тельностью системных таймаутов. При этом информационный граф программы и 

граф коммуникационных связей свободных ВУ не всегда заранее известны, по-

скольку первый задается произвольным образом пользователем, а второй опреде-

ляется текущей мультипрограммной ситуацией. Кроме этого, при отображении на 

вычислительные узлы  параллельной программы очередного задания необходимо 

учитывать наличие в системе других заданий, которым также необходимо обеспе-

чить отображение, минимизирующее время выполнения.  

Для поиска оптимального отображения за приемлемое для системы коллек-

тивного пользования время предложен двухэтапный метод. На первом этапе ре-

шается задача выделения для очередного задания подсистемы ВУ из множества 

свободных на момент запуска задания узлов. Эта задача сведена к разрезанию 

графа свободных ВУ на минимально связанные между собой подграфы, для чего 
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предложен алгоритм РГО, основанный на имитации отжига. На втором этапе про-

изводится поиск оптимального отображения программного графа на граф выде-

ленных заданию ВУ при помощи предложенного автором параллельного алго-

ритма ПОГ имитации отжига в комбинации с генетическим алгоритмом. Для рас-

четов при этом используются выделенные для задания вычислительные узлы. 

Алгоритмы РГО и ПОГ были реализованы в СУППЗ для суперкомпьютеров 

серии МВС-1000 и обеспечили рост быстродействия расчетов как для тестовых 

программ, так и для реальных приложений. Алгоритм ПОГ получил свое развитие 

в виде параллельного комбинированного алгоритма PGSA и его циклической мо-

дификации CPGSA. Алгоритм PGSA состоит из двух фаз: имитации отжига и ге-

нетического отбора, в алгоритме CPGSA эти фазы циклически повторяются. Ука-

занные алгоритмы были реализованы в составе программного средства 

GraphHunter, с помощью которого было произведено экспериментальное исследо-

вание их характеристик. 

Эксперименты показали, что алгоритм PGSA всегда даёт среднее лучшее ре-

шение, чем генетический алгоритм и имитационный отжиг, однако его быстродей-

ствие не превышает быстродействия генетического алгоритма. Циклическое повто-

рение фаз отжига и генетического отбора в алгоритме CPGSA позволило добиться 

итерационного повышения точности найденного отображения и скорости его поис-

ка. В результате удалось достичь более высокой точности отображения графа про-

граммы на граф ВУ по сравнению с известными алгоритмами при времени поиска 

отображения, сравнимом с системными таймаутами.   
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Глава 5. Организация параллельных вычислений  

с распараллеливанием по данным  

Задача организации параллельных вычислений с распараллеливанием по 5.1 

данным 

В рассмотренной в п. 1.7 архитектуре СУППЗ на втором уровне иерархии 

управления вычислительными ресурсами можно провести разграничение условных 

«зон ответственности» СУППЗ и параллельной программы пользователя. Фактиче-

ски за управление вычислительными ресурсами на этом уровне отвечает сценарий 

выполнения задания, в большинстве случаев автоматически формируемый сценари-

ями надстройки подготовки заданий. Сценарий выполнения задания запускается с 

правами пользователя на первом по списку из выделенных заданию ВУ и обеспечи-

вает распределение процессов параллельной программы по выделенным узлам. Сто-

ит отметить, что к этому моменту СУППЗ завершила выбор  ВУ, произвела их диа-

гностику, осуществила конфигурацию ВУ в соответствии с заданной пользователем 

программной платформой (средой выполнения программ) и открыла пользователю 

доступ на подготовленные для выполнения его задания ВУ. 

За счет автоматизации подготовки паспортов заданий для стандартных про-

граммных сред с пользователя снимается значительный объем рутинной работы по 

корректному оформлению задания. При этом задача распараллеливания вычислений 

в прикладной программе остается зоной ответственности пользователя. Другими 

словами, после запуска сценария выполнения задания СУППЗ делегирует функции 

управления второго и первого уровня иерархии пользователю-программисту. С од-

ной стороны, это предоставляет пользователю широкие возможности для непосред-

ственного взаимодействия с аппаратурой ВУ и тонкой настройки своих приложений, 

с другой стороны, для того, чтобы в полной мере воспользоваться этими возможно-

стями, пользователь должен иметь определенный опыт организации параллельных 

вычислений. Для большинства пользователей-исследователей научного суперком-

пьютерного центра коллективного пользования приобретение такого опыта означает 
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непроизводительную трату усилий и времени, по сути отнятых от исследовательской 

работы в своей предметной области.  

Таким образом, автоматизация процессов организации параллельных вычис-

лений на первом и втором уровнях иерархии управления является актуальной науч-

ной задачей. Как показано в монографии [14], решение этой задачи в общем случае 

невозможно. Однако, возможно выделить отдельные классы задач высокопроизво-

дительных расчетов, для которых подобная автоматизация осуществима. Одним из 

таких классов задач являются задачи с распараллеливанием по данным. 

Распараллеливание по данным часто применяется для решения ряда важных 

прикладных вычислительных задач. В таких задачах одна и та же последователь-

ность вычислений (прикладной алгоритм) выполняется над всеми элементами 

множества (пула) входных данных. Между процессами параллельной программы 

отсутствуют информационные обмены. К типичным задачам распараллеливания 

по данным относятся виртуальный скрининг, поиск простых чисел, проверка 

стойкости паролей и др. Обычно распараллеливание по данным применяется в 

распределенных средах добровольных вычислений [226]. Однако решение подоб-

ных задач часто осуществляется на отдельных суперкомпьютерах. 

Пусть вычислительный алгоритм может быть реализован в виде одной по-

следовательной программы (ОПП), для которой порция входных данных опре-

деляется значениями одного или нескольких параметров. Из таких порций вычис-

лительной работы складывается пул входных данных – множество всех возмож-

ных значений параметров ОПП во всех их комбинациях, как показано на рисун-

ке 58. Примером ОПП может служить известная программа подбора паролей 

HashCat [227].  

При распараллеливании по данным на суперкомпьютере на каждом его узле 

выполняются один или несколько экземпляров ОПП с различными значениями 

входных параметров. Организация параллельных вычислений заключается в осу-

ществлении запусков экземпляров ОПП на всем множестве доступных узлов, как 

показано на рисунке 59. Определим технологию распараллеливания по дан-
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ным как совокупность методов, алгоритмов и средств, осуществляющих распре-

деление экземпляров ОПП и порций данных для обработки по вычислительным 

узлам суперкомпьютера. 

Экземпляр 
ОПП №1

Экземпляр 
ОПП №2

Экземпляр 
ОПП №3

Порция 1 Порция 2 Порция 4Порция 3 Порция 5 Порция 6 Порция 7 Порция 8

Набор данных

 

Рисунок 58. Схема параллельных вычислений на основе ОПП 
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Рисунок 59. Организация параллельных вычислений с распараллеливанием по 

данным с применением ОПП 

Оптимизация параллельных вычислений в модели ОПП связана с миними-

зацией доли накладных расходов на распараллеливание, которые напрямую опре-

деляют быстродействие расчетов. Пусть существует одна последовательная про-

грамма, обрабатывающая массив данных в течение некоторого времени. Если её 

запустить на p процессорах и массив данных равномерно распределить по p про-
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цессорам, то обработка ускорится в p раз. Но в действительности этого не про-

изойдёт, поскольку имеют место накладные расходы на организацию распаралле-

ливания: затраты времени на передачу данных между вычислительными узлами, 

на обращения к сервисам (база данных, веб сервер, планировщик), задержки меж-

ду получением данных и началом их обработки, между окончанием обработки и 

началом передачи результатов. Помимо этого, существенную долю накладных 

расходов может внести программист, неэффективно реализовав управляющую 

программу для запуска экземпляров ОПП на множестве вычислительных узлов. 

Помимо накладных расходов, определяющих производительность, следует 

упомянуть о таких важных показателях качества, как отказоустойчивость, предел 

масштабируемости и реакция системы на дисбаланс вычислительной нагрузки. 

Отказоустойчивость подразумевает способность системы распараллеливания по 

данным как продолжать вычисления в случае выхода из строя части ВУ, так и 

возобновлять вычисления с автоматически сохраняемой контрольной точки в 

случае отказа всех ВУ или управляющей ЭВМ.  

Предел масштабируемости показывает, какой объем данных, измеренный в 

порциях, можно обработать с помощью той или иной технологии распараллели-

вания по данным. Реакция системы на дисбаланс вычислительной нагрузки пока-

зывает, как изменяются накладные расходы и предел масштабируемости системы 

в случае, если в неоднородном решающем поле, используемом для расчётов, есть 

ВУ существенно различной производительности. 

Технологии распараллеливания по данным 5.2 

Для организации параллельных вычислений с распараллеливанием по данным 

в модели ОПП могут быть применены различные методы, алгоритмы и средства, ко-

торые в совокупности мы обозначили как технологии распараллеливания по дан-

ным. Рассмотрим наиболее известные технологии. 

Компания Google в 2004 году представила стек технологий  MapReduce [56], 

включающий модель параллельного программирования, параллельную файловую 
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систему Google File System (GFS), многомерную базу данных BigTable и высокона-

дежную службу синхронизации Chubby. Модель программирования MapReduce и 

связанная с ней реализация для обработки и генерации больших наборов данных 

применяется для широкого спектра реальных задач.  

Технология MapReduce подразумевает выполнение двух обязательных шагов: 

Map и Reduce. На Map-шаге происходит предварительная обработка входных дан-

ных, заключающаяся в анализе набора входных данных и формировании на выходе 

множества пар «ключ-значение». Важно, что Map-шаг выполняется по схеме «ма-

стер-рабочие». Процесс-мастер получает входные данные, разделяет их на части и 

передает рабочим для выполнения предварительной обработки. На Reduce-шаге 

происходит свертка полученных на Map-шаге результатов. Процесс-мастер получает 

результаты от рабочих и на их основе формирует итоговое решение исходной зада-

чи. Такая структура процесса вычислений полностью соответствует модели распа-

раллеливания по данным с ОПП. 

Для организации вычислений пользователю достаточно разработать две функ-

ции – Map и Reduce. На вход Map-функции поступает элементарная порция данных, 

на выходе должна быть сформирована пара «ключ-значение». На вход Reduce-

функции соответственно поступает набор пар «ключ-значение», функция выполняет 

заданную пользователем свертку (агрегацию) полученных пар. Реализация MapRe-

duce автоматически распараллеливает вычисления по кластерам, состоящим из мно-

жества ВУ, обрабатывает сбои ВУ и планирует межузловое взаимодействие для эф-

фективного использования сети и дисков. В случае выхода ВУ из строя, вычисли-

тельная нагрузка автоматически перераспределяется на исправные узлы. При под-

ключении новых или восстановленных узлов на них автоматически  назначается вы-

числительная работа. 

Помимо реализации MapReduce от компании Google, существует большое 

число реализаций этой технологии от сторонних производителей, в том числе сво-

бодно распространяемых. Обзор реализаций MapReduce можно найти в публикации 
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[57]. Из известных свободно распространяемых реализаций MapReduce можно вы-

делить Hadoop [57] и Disco [228]. 

Распараллеливание по данным в модели ОПП возможно также организовать 

при помощи известной платформы  BOINC (Berkeley Open Infrastructure for Network 

Computing) [58, 59]. BOINC является стандартом де-факто при организации добро-

вольных вычислений, под которыми понимается использование разнородных рас-

пределенных цифровых устройств (от университетских кластеров до персональных 

компьютеров и мобильных телефонов), добровольно предоставляемых их владель-

цами для высокопроизводительных научных вычислений.  Все предоставляемые 

устройства соединяются через Интернет с сервером BOINC, который разбивает 

входные данные на порции и раздает эти порции для обработки подключившимся 

устройствам-клиентам. Обработка данных на клиентских устройствах обычно осу-

ществляется во время их простоя и автоматически прерывается, когда владелец воз-

обновляет пользование устройством. Суммарная вычислительная мощность 

устройств добровольцев может быть значительной, однако организация упорядо-

ченного вычислительного процесса в такой системе сталкивается с массой проблем 

из-за неоднородности устройств, их ненадежности,  сильной текучести состава доб-

ровольцев, необходимости учета обработанных и необработанных порций данных и 

др. BOINC, как система промежуточного программного обеспечения с открытым 

исходным кодом для добровольных вычислений, призвана решать эти проблемы. 

Среди отечественных технологий распараллеливания по данным следует вы-

делить программный комплекс (ПК) X-COM [60, 61], разработанный специалистами 

НИВЦ МГУ им. М.В. Ломоносова.  ПК X-COM реализован на языке программиро-

вания Perl, что делает его одним из наименее ресурсоёмких средств распараллелива-

ния по данным. Архитектурно в ПК X-COM можно выделить два основных ком-

понента: сервер и вычислительные узлы. Сервер X-COM отвечает за разделение 

исходной задачи на блоки (задания), распределение заданий по узлам, координа-

цию работ всех узлов, контроль целостности результата и сбор результата в еди-

ное целое. В качестве узла может выступить любая вычислительная единица (ра-
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бочая станция, узел суперкомпьютера, виртуальная машина), имеющая возмож-

ность выполнить экземпляр прикладной программы. Узлы отвечают за расчёт 

блоков прикладной задачи (принятых от сервера заданий), запрос заданий от сер-

вера, передачу результатов расчётов на сервер. 

Платформы BOINC и X-COM предназначены для функционирования в рас-

пределённой среде, но могут быть установлены и запущены на отдельном супер-

компьютере. В этом случае один из ВУ принимает на себя функции сервера, раз-

дающего порции вычислительной работы, а остальные выступают в роли клиент-

ских устройств. Подобная организация параллельных вычислений также полно-

стью соответствует модели ОПП распараллеливания по данным. 

Другой отечественной разработкой является созданный при участии автора 

диссертации программный комплекс «Пирамида» [229, 230]. ПК «Пирамида» 

обеспечивает параллельное отказоустойчивое и масштабируемое выполнение 

множества копий последовательной программы с индивидуальными наборами 

значений входных параметров на вычислительном кластере. Значения параметров 

для каждой копии программы формируются автоматически из заданного пользо-

вателем множества значений. Отказоустойчивость вычислений обеспечивается 

записью контрольных точек и перезапуском копий программ после отказа на ра-

ботоспособных вычислительных ресурсах. Масштабируемость вычислений обес-

печивается динамическим запуском копий программы на всех доступных вычис-

лительных ресурсах. ПК «Пирамида» способен обеспечить параллельные вычис-

ления с распараллеливанием по данным в иерархически организованных гетеро-

генных вычислительных системах [231]. Развитием ПК «Пирамида» является со-

зданный под руководством автора программный комплекс XP-COM [113]. В ос-

нове обоих комплексов лежит предложенный автором метод иерархического раз-

деления данных. Этот метод, структура и алгоритмы работы программных ком-

плексов «Пирамида» и XP-COM, сравнение этих ПК с технологиями распаралле-

ливания MapReduce, BOINC и X-COM будут рассмотрены в последующих пара-

графах настоящей главы. 
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Метод иерархического разделения данных  5.3 

Семантику вычислений в ПК «Пирамида» и XP-COM пользователь определяет 

в прикладной последовательной программе с учетом следующих особенностей. Эк-

земпляры программы запускаются на выделенных заданию пользователя вычисли-

тельных узлах и выполняются независимо и асинхронно. Выполняемая программа, 

ее параметры и требования к вычислительным ресурсам задаются пользователем в 

паспорте задания.  

Множество D обрабатываемых программой данных представляет собой декар-

тово произведение множеств D = P1 × P2 × … ×Pk, задаваемых параметрами про-

граммы. Множество значений параметра может задаваться непосредственно, в виде 

списка значений, либо косвенно, в виде диапазона значений или ссылки на файл, со-

держащий множество значений. В основе организации распараллеливания по дан-

ным лежит принцип рекурсивного формирования множества подмножеств данных:  

𝐷 = {𝐷𝑖1
| 𝑖1 = 1, 𝑛1

̅̅ ̅̅ ̅̅ , 𝐷𝑖1
= {𝐷𝑖1𝑖2

| 𝑖2 = 1, 𝑛2
̅̅ ̅̅ ̅̅ , 𝐷𝑖1𝑖2

= ⋯ } … {𝐷𝑖1…𝑖𝑟
}} … } 

Назовем элемент множества 𝐷𝑖1…𝑖𝑟
 слайсом. Слайс задает элементарную рабо-

ту (элементарную порцию данных), выполняемую экземпляром программы. Множе-

ство слайсов {𝐷𝑖1…𝑖𝑟
}, выделяемых для обработки экземпляру или группе экземпля-

ров программы, называется пулом работ. Введем иерархическую систему объек-

тов, обрабатывающих множество D, с числом уровней иерархии r. Для каждого 

уровня иерархии (рекурсии) 𝑙 ∈ 1, 𝑟̅̅ ̅̅  может быть определена мощность 𝑛𝑙 пула ра-

бот. Объект, обрабатывающий пул работ на уровне l, назовем менеджером 𝑀𝑙
𝑖, где 

 𝑖 ∈ 1, 𝑐𝑙  – это номер менеджера, а  𝑐𝑙 – число менеджеров на уровне l. В подчи-

нении менеджера 𝑀𝑙
𝑖 находятся менеджеры следующего уровня иерархии 

𝑀𝑙+1
𝑗

,  𝑗 ∈ 1, 𝑐𝑙+1 .   

Каждому слайсу 𝑆 ∈ 𝐷 сопоставим номер – натуральное число 𝑖, 1 ≤  𝑖 ≤  𝑁, 

где 𝑁 =  |𝐷|, Слайсы, составляющее множество D, оказываются таким образом про-

нумерованными от 1 до N. Определим подмножество 

𝐷𝑖
𝑗

⊆  𝐷,   𝑖 ∈  1, 𝑁 ,   𝑗 ∈  1, 𝑁 ,   𝑖 < 𝑗,   |𝐷𝑖
𝑗
| = 𝑗 − 𝑖 + 1 
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как множество слайсов с последовательными номерами от i до j. Очевидно, что 

𝐷 = 𝐷1
𝑁.  

Пул работ 𝐷𝑚
𝑛  полностью определяется номерами m, n первого и последнего 

слайсов соответственно  и имеет мощность |𝐷𝑚
𝑛 | = 𝑛 − 𝑚 + 1. Определим функ-

цию 𝐶ℎ𝑖𝑝(𝐷𝑚
𝑛 , 𝑘) разделения множества 𝐷𝑚

𝑛  на два подмножества 𝐷𝑚
𝑚+𝑘−1 и 𝐷𝑚+𝑘

𝑛 . 

Функция 𝐶ℎ𝑖𝑝(𝐷𝑚
𝑛 , 𝑘) отделяет от некоторого исходного множества упорядочен-

ных слайсов 𝐷𝑚
𝑛  подмножество 𝐷𝑚

𝑚+𝑘−1 упорядоченных слайсов мощностью k, по-

лучая при этом оставшееся подмножество 𝐷𝑚+𝑘
𝑛  упорядоченных слайсов мощно-

стью n-m-k+1. 

Определим на множестве натуральных чисел 1, 𝑁  функцию S(х) с областью 

значений D. Аргументом функции S является номер х некоторого слайса 𝑑 ∈ 𝐷, а 

значением является сам слайс d. Аналогичным образом на множестве D определим 

обратную функцию 𝑆′(𝑑), аргументом которой является некоторый слайс 𝑑 ∈ 𝐷, а 

значением – порядковый номер этого слайса х ∈ 1, 𝑁 . Очевидно, что 𝑆′(𝑆(𝑥)) = 𝑥. 

При помощи функции 𝐶ℎ𝑖𝑝 возможно организовать рекурсивное разделение 

исходного множества 𝐷1
𝑁 на подмножества упорядоченных слайсов (пулы работ) 

мощностью 𝑛𝑙, где 𝑙 = 1, 𝑟̅̅ ̅̅  – это уровень иерархии (рекурсии). Любой слайс из пула 

работ любого уровня рекурсии может быть получен при помощи функции S. С дру-

гой стороны, для любого слайса 𝑑 ∈ 𝐷 при помощи функции 𝑆′(𝑑) можно одно-

значно определить его номер и подмножество 𝐷𝑖1…𝑖𝑟
, которому принадлежит этот 

слайс. 

Метод иерархического разделения данных заключается в следующем. Пусть в 

качестве пула входных данных для некоторого менеджера 𝑀𝑙
𝑚 выступает под-

множество 𝐷1
𝑛, где 𝑛 = |𝐷1

𝑛| = 𝑛𝑙. Менеджер 𝑀𝑙
𝑚 отделяет от своего пула 

бот 𝐷1
𝑛 очередную порцию 𝐷𝑖 

 𝐷𝑖 = 𝐷1+𝑖∙𝑛𝑙+1

(𝑖+1)𝑛𝑙+1 ,   𝑖 ∈ 1, 𝑘𝑙+1 ,  𝑘𝑙+1 = ⌈
𝑛𝑙

𝑛𝑙+1
⌉, 

которая передается для выполнения первому свободному менеджеру нижестоя-

щего уровня 𝑀𝑙+1
𝑗

, не занятому в этот момент вычислительной работой. Если все 
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менеджеры нижестоящего уровня заняты работой, менеджер 𝑀𝑙
𝑚 переходит в со-

стояние ожидания результатов. 

Для каждого менеджера нижестоящего уровня 𝑀𝑙+1
𝑗

, выполнившего пере-

данную ему порцию работ, вышестоящий менеджер  𝑀𝑙
𝑚 сохраняет результат об-

работки порции, отделяет от остатка пула входных данных очередную порцию 𝐷𝑖 

и передает её для выполнения освободившемуся менеджеру 𝑀𝑙+1
𝑗

. Если очередную 

порцию работы отделить нельзя по причине пустого остатка 𝐷𝑙, то запускается фаза 

перераспределения работы. Смысл этой фазы состоит в том, чтобы каждая еще не 

обработанная к текущему моменту порция работы 𝐷𝑖 была бы вновь назначена (пе-

рераспределена) освободившимся, т.е. уже выполнившим свои порции менеджерам. 

Алгоритм перераспределения следующий. 

1. Пусть в некоторый момент фазы перераспределения освободился менеджер 

𝑀𝑙+1
𝑗

, выполнив очередную порцию работы. Менеджер 𝑀𝑙
𝑚 проверяет, была ли пе-

рераспределена порция работы освободившегося менеджера 𝑀𝑙+1
𝑗

.  

2. Если порция работы освободившегося менеджера 𝑀𝑙+1
𝑗

 была перераспреде-

лена некоторому менеджеру 𝑀𝑙+1
𝑓

, то менеджер 𝑀𝑙+1
𝑓

 извещается о том, что перерас-

пределенная порция работы уже выполнена и необходимо прекратить её обработку.  

3. Назначается шаг перераспределения t, ему присваивается начальное значе-

ние 1. 

4. Если t > cl+1, то завершение алгоритма. 

5. Если порция менеджера 𝑀𝑙+1
𝑡  была обработана или перераспределена, то 

увеличиваем t на 1 и переходим к шагу 4. 

4. Менеджеру 𝑀𝑙+1
𝑗

 перераспределяется порция работы менеджера 𝑀𝑙+1
𝑡 . За-

вершение алгоритма. 

Алгоритм повторяется до тех пор, пока все выданные и перераспределенные 

порции  не будут обработаны. После этого пул работ 𝐷1
𝑛 менеджера 𝑀𝑙

𝑚 считается 

выполненным, и менеджер 𝑀𝑙
𝑚 возвращает результат работы менеджеру вышестоя-

щего уровня l-1. 
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Метод разделения данных определил архитектуру вычислительной среды, со-

здаваемой программным комплексом «Пирамида». На основе доступных ВУ супер-

компьютера ПК «Пирамида» формирует r-уровневую иерархию вычислителей, по-

казанную на рисунке 60. Первый уровень иерархии соответствует вычислителю С, 

выполняющему обработку множества данных D. Каждый следующий уровень соот-

ветствует множеству вычислителей, обрабатывающих подмножества множества 

данных предыдущего уровня. Уровню r соответствуют nr вычислителей (на рисун-

ке 60 обозначены как 𝑐𝑡), выполняющих обработку пулов работ {𝐷𝑖1…𝑖𝑟
}. 
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Рисунок 60. Пример структуры вычислительной среды, организованной на базе ВУ 

суперкомпьютера средствами ПК «Пирамида» 

Нижний уровень иерархии r может соответствовать различным видам вычис-

лителей: вычислительная система, вычислительный узел, микропроцессор, процес-

сорное ядро. 

Распределение данных для обработки вычислителями осуществляют мене-

джеры соответствующего уровня иерархии. Из пула работ, выделенных вычислите-
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лю уровня l, менеджер Мl формирует пулы работ для вычислителей уровня l+1 с 

применением рассмотренного метода разделения работ. 

В обозначении на рисунке 60 𝑐𝑡  (вычислителя уровня r) индекс t указывает 

его тип. 𝑡 ∈ {𝑡}, где {𝑡} – множество типов вычислителей. Пользователь должен 

предусмотреть подготовку вариантов исполняемых модулей своей последователь-

ной программы для всех типов вычислителей, включаемых в состав вычислительной 

среды. Обозначив как 𝑊𝑡(𝐷𝑖1…𝑖𝑟
) результат преобразования, выполняемого про-

граммой 𝑊𝑡 над слайсом D𝑖1…𝑖𝑟  на вычислителе 𝑐𝑡, можно записать требование, 

предъявляемое к различным вариантам исполняемых модулей программы:  

∀𝑡1, 𝑡2 ∈ {𝑡} (𝑊𝑡1(D𝑖1…𝑖𝑟
) = 𝑊𝑡2(D𝑖1…𝑖𝑟

)) 

Менеджеры, с учетом типа вычислителя t, осуществляют выбор варианта ис-

полняемого модуля для запуска экземпляра программы, выполняющей выделенный 

ей пул работ 𝑊𝑡({D𝑖1…𝑖𝑟
}). 

Отметим важные преимущества предложенного метода иерархического разде-

ления данных.  

Во-первых, контрольная точка на каждом уровне иерархии l в каждый момент 

времени будет определяться невыполненной на этот момент времени работой, кото-

рую составляют: 

– текущий остаток  невыполненной работы 𝐷𝑙 =  𝐷𝑖×𝑛𝑙+1+1
𝑛 , который полно-

стью определяется номерами граничных слайсов 𝑖 × 𝑛𝑙+1 + 1 и 𝑛; 

– множество из cl+1 порций работы, розданных менеджерам нижестоящего 

уровня 𝑀𝑙+1
𝑗

, причем каждая порция работы также полностью будет определяться 

номерами первого и последнего слайсов. 

Таким образом, для записи контрольной точки достаточно зафиксировать гра-

ницы текущего остатка и границы каждой порции розданной работы. Вся остальная 

вычислительная работа из пула 𝐷1
𝑛 в этот момент времени уже заведомо выполнена. 

Для восстановления менеджера 𝑀𝑙
𝑚 с контрольной точки достаточно восстановить 



231 

текущий остаток 𝐷𝑙 и розданные менеджерам 𝑀𝑙+1
𝑗

 порции работы, которые будет 

необходимо повторно передать этим менеджерам для выполнения.  

Рассмотренный подход делает контрольную точку компактной, а ее фиксацию 

быстрой. При этом отпадает необходимость ведения базы данных учета обработан-

ных и необработанных порций данных. На каждом уровне иерархии l в каждый мо-

мент времени мы имеем зафиксированную компактную контрольную точку, полно-

стью определяющую оставшуюся для выполнения вычислительную работу. Этим 

обеспечивается минимизация накладных расходов на распараллеливание, что под-

тверждается данными экспериментов, приведенными ниже в настоящей главе. 

Во-вторых, автоматически обеспечивается отказоустойчивость вычислений. 

При отсутствии ответа от любого менеджера нижестоящего уровня, его текущая 

порция вычислительной работы будет гарантированно выполнена на фазе пере-

распределения. Поэтому если какой-либо контролируемый этим менеджером вы-

числительный узел или вычислитель выходит из строя, вычисления будут выпол-

нены другими вычислителями или узлами с некоторым снижением общей произ-

водительности. 

В-третьих, аналогично отказоустойчивости обеспечивается масштабируемость 

вычислений. При появлении в решающем поле новых узлов или вычислителей до-

статочно добавить в систему менеджеров соответствующего уровня иерархии. 

Асинхронный механизм распределения работы в предложенном методе разделения 

данных обеспечит динамическое подключение новых подчиненных менеджеров, ко-

торым автоматически начнут выделяться порции вычислительной работы. 

В-четвертых, обеспечивается возможность организации вычислений на ге-

терогенных вычислителях, вычислительные узлы которых имеют архитектурные 

различия (например, построены на программно-несовместимых микропроцессо-

рах) или (и) состоят из вычислителей различного типа (например, вычислитель-

ные узлы содержат универсальные и графические процессоры). Разница в произ-

водительности ВУ будет автоматически компенсироваться асинхронным меха-

низмом распределения работы, поскольку очередная порция будет передаваться 
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соответствующему менеджеру только после его освобождения. Чем быстрее бу-

дет производить расчеты соответствующий менеджеру вычислитель, тем больше 

порций работы получит этот менеджер. 

Архитектура программного комплекса «Пирамида» 5.4 

Вычислительная система, работающая под управлением комплекса «Пирами-

да», логически организована в иерархическую структуру вычислителей, содержащих 

отдельные ВУ или вычислители (ВЧ) нижнего уровня иерархии. Для каждого вы-

числителя назначается сервер управления (сервер вычислителя – СВЧ), а для вычис-

лительной системы в целом – центральный сервер управления (сервер ВС), как пока-

зано на рисунке 61. Такая вычислительная система может быть отдельным супер-

компьютером, а может являться подсистемой ВУ, выделенных СУЗ для очередного 

задания. В последнем случае в качестве серверов ВС и серверов вычислителей могут 

выступать назначенные ВУ суперкомпьютера из состава подмножества ВУ, выде-

ленных для задания. 
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Рисунок 61. Структура иерархической массово-параллельной ВС 

Управляющие процессы ПК «Пирамида» – менеджеры –  выполняются на сер-

вере ВС (центральный менеджер, он же менеджер задания), серверах вычислителей 

(менеджер вычислителя) и вычислительных узлах (менеджер ВУ – МВУ). Менедже-

ры комплекса «Пирамида», взаимодействуя друг с другом, осуществляют запуски 

ОПП на ВУ системы со всеми допустимыми экземплярами данных, формируемыми 
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на основе заданных пользователем значений параметров. Иерархическая структура 

системы менеджеров комплекса «Пирамида» приведена на рисунке 62. 

Менеджер задания получает пул работ задания из паспорта и разделяет этот 

пул при помощи рассмотренного в п. 5.3 метода. Выделяемые менеджером задания 

порции данных становятся пулом работ для соответствующего вычислителя, мене-

джер которого повторяет алгоритм метода разделения данных на своем уровне 

иерархии. Наконец, менеджер ВУ, получая пул работ от менеджера вычислителя, 

повторяет алгоритм разделения на порции, при этом каждая такая порция определя-

ет конкретные значения параметров ОПП. Таким образом, порция работы на уровне 

менеджера ВУ выполняется путем запуска на контролируемом узле одного или не-

скольких экземпляров ОПП. Каждый из запускаемых экземпляров получает на вход 

параметры, значения которых определяются соответствующей очередной порцией 

данных, отделенной менеджером ВУ от своего текущего пула работ. Исполняемый 

модуль ОПП при этом должен соответствовать архитектуре ВУ. 
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Рисунок 62. Архитектура ПК «Пирамида» 
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Менеджеры ПК «Пирамида» имеют схожую структуру, которая на примере 

менеджера вычислителя показана на рисунке 63. Менеджер вычислителя реализован 

как многопоточное приложение. Главный поток осуществляет прием вычислитель-

ной работы от центрального менеджера, сбор и отправку результатов. По одному по-

току выделяется на каждый подчиненный менеджер ВУ или вычислителя.  
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Рисунок 63. Структура менеджера вычислителя 

Подчиненный менеджер выступает по отношению к породившему его пото-

ку в роли сервера. После порождения подчиненного менеджера соответствующий 

поток менеджера вычислителя пытается соединиться с ним в режиме клиента. 

При успешном соединении поток менеджера вычислителя в соответствии с рас-

смотренном в п. 5.3 методом начинает передавать подчиненному менеджеру пор-

ции вычислительной работы и получать в ответ результаты. Заметим, что исполь-

зование в качестве сервера именно подчиненного менеджера, а не менеджера вы-

числителя, позволяет избежать проблемы «узкого горла», когда большое число 

клиентов (подчиненных менеджеров) с различных ВУ одновременно пытаются 

соединиться с единственным сервером (менеджером вычислителя). 

Целостность установленного соединения непрерывно контролируется. При 

разрыве соединения соответствующий поток ВУ менеджера вычислителя пред-
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принимает меры по его восстановлению. При невозможности восстановления 

предпринимается попытка перезапуска подчиненного менеджера через процесс 

удаленного выполнения команд, например, rsh или ssh. 

В случае выхода из строя произвольного числа вычислительных узлов или 

вычислителей выполнение задания не прерывается, и полученные ранее результа-

ты не теряются. При восстановлении работоспособности вычислительных узлов 

производится их автоматическое подключение к процессу вычислений. Кроме 

этого, периодическое сохранение контрольных точек позволяет прервать и возоб-

новить вычисления в произвольный момент времени на каждом уровне иерархии 

менеджеров. 

Экспериментальное сравнение технологий распараллеливания по данным 5.5 

5.5.1 Методика проведения экспериментов 

Для оценки эффективности технологий распараллеливания по данным, ис-

пользуемых  в разных программных комплексах, могут применяться различные 

методики. В работе [232] для оценки эффективности Х-COM рассматриваются 

несколько вариантов методик, например, оценка эффективности  расчетов  по  ко-

личеству  избыточных  вычислений  и/или  потерь,  неизбежных  при  обеспече-

нии  надежности  методом  дублирования  расчетов.  В работе [233] производи-

тельность комплекса распараллеливания по данных предлагается определять как 

разницу между эталонным и реальным планами распределения ресурсов. В [234] 

для оценки производительности при применении MapReduce предлагается набор 

синтетических микротестов и реальных приложений Hadoop. При этом оценива-

ется как время выполнения отдельного задания, так и пропускная способность – 

число заданий в минуту. В работе [235] оценивается время завершения програм-

мы MapReduce в зависимости от размера входного набора данных и заданных ре-

сурсов кластера. В работах [236-238] для оценки производительности программ-

ных комплексов используется программа, вычисляющая частоту встречаемых в 

текстовом файле слов. В работе [237] автор применяет программу вычисления ча-
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стоты используемых RGB-цветов в изображении и программу поиска заданной 

строки (подстроки) в файле. В [238] для оценки производительности используется 

программа вычисления рейтинга посещаемости Интернет-ресурсов.  

В рамках настоящего исследования было проведено экспериментальное 

сравнение технологии распараллеливания по данным в ПК «Пирамида» с альтер-

нативными технологиями, применяемыми в различном ПО. Сравнение произво-

дилось в два этапа, при этом методика экспериментов на втором этапе была усо-

вершенствована по результатам первого.  

На первом этапе в 2014 году ПК «Пирамида» сравнивался с параллельной 

программой, использующей коммуникационную библиотеку MPI, и технологией 

MapReduce в реализации Disco [239]. 

На втором этапе [240] в 2016 году ПК «Пирамида» сравнивался с программ-

ной платформой организации добровольных вычислений BOINC и программным 

комплексом X-COM. 

В качестве экспериментального стенда была использована аппаратная плат-

форма aTCA-8214 Series, состоящая из восьми вычислительных узлов, один из ко-

торых играл роль управляющей ЭВМ. Характеристики ВУ платформы aTCA-8214 

Series приведены в таблице 19. 

Таблица 19. Характеристики вычислительного узла платформы aTCA-8214 Series 

 Модель процессора Intel Xeon L5408 

Архитектура процессора x64 

Количество процессоров 2 

Тактовая частота процессора 2,13 ГГц 

Количество процессорных ядер 4 

Количество потоков на ядро 1 

Размер кэш-памяти второго уровня 12 Мб 

Тип оперативной памяти DDR2 

Объём оперативной памяти 8 Гб 

Эксперименты проводились путем запуска разных тестовых примеров, каж-

дый из которых представлял собой одну последовательную программу (ОПП). На 
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первом этапе [239] исследований в качестве тестовых примеров были разработа-

ны ОПП, получившие названия «Сочетания» и «Штурм». В программе «Сочета-

ния» осуществляется перебор и вывод в стандартный вывод всех возможных ком-

бинаций из трех диапазонов, переданных в качестве параметров. Программа про-

изводит случайную задержку в заданном интервале, моделирующую обработку 

входных параметров. Программа «Штурм» осуществляет подбор пароля пользо-

вателя ОС Linux. Программа генерирует пароли заданного алфавита в соответ-

ствии с переданным ей диапазоном,  производит их хеширование и сравнение с 

эталонным хешэм, моделируя тем самым проверку системным администратором 

стойкости паролей пользователей. 

Сравнение технологий распараллеливания по данным производилось по по-

казателям производительности и отказоустойчивости. 

Для оценки производительности определялось время, затраченное на обра-

ботку всех входных параметров. Для некоторых из сравниваемых технологий тре-

бовалась подготовка входных данных. Например, в технологии MapReduce, необ-

ходимо было произвести загрузку данных для расчетов в распределенную файло-

вую систему. Если данные необходимо было загружать каждый раз при запуске 

ОПП, то это время обязательно учитывалось. Если же было возможно загрузить 

некоторые вспомогательные данные один раз и далее использовать их для всех 

запусков ОПП, то время загрузки в таком случае не учитывалось.  

Эксперименты первого этапа проводились на аппаратной платформе aTCA-

8214 Series с установленной средой виртуализации VMware vSphere, в которой бы-

ли развернуты три виртуальных кластера, реализующие технологии MapReduce, 

MPI и ПК «Пирамида». Сравнение было проведено последовательно для каждого 

виртуального кластера. Количество процессорных ядер (56) и объем оперативной 

памяти (8 ГБ) были одинаковыми для всех сравниваемых технологий. 

Для оценки производительности тестовые примеры запускались с несколь-

кими наборами входных данных, каждый из наборов обеспечивал свой объем вы-

числений. Для каждого набора входных данных осуществлялось не менее десяти 
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запусков, после чего для оценки статистической значимости результатов рассчи-

тывались математическое ожидание, дисперсия коэффициент вариации. При по-

лучении статистически значимых оценок определялось среднее значение для каж-

дого варианта входных данных. 

Для оценки отказоустойчивости сравниваемых технологий применялась сле-

дующая методика. Все потенциальные отказы можно разделить на три группы: свя-

занные с перезагрузкой ВУ, связанные с аварийным отключением питания одного 

или нескольких ВУ и связанные с разрывом соединения в коммуникационной сети. 

Для имитации отказов первой группы во время вычислений осуществлялась переза-

грузка одного из ВУ командой перезапуска виртуальной машины на панели инстру-

ментов гипервизора. Отказы второй группы имитировались выключением ВУ в про-

цессе вычислений командой выключения виртуальной машины на панели инстру-

ментов гипервизора. Для имитации отказов третьей группы осуществлялось отклю-

чение виртуального коммутатора. 

Результаты первого этапа экспериментов представлены в п. 5.5.2  

На втором этапе [240] было принято решение оценить производительность 

и масштабируемость сравниваемых технологий путем определения зависимости 

величины накладных расходов на распараллеливание от числа используемых про-

цессорных ядер и параметров ОПП. Накладные расходы на распараллеливание 

как доля времени, затрачиваемого каждым сравниваемым ПК на организацию вы-

числительного процесса, определялись следующим образом.  

Введём понятие элементарной вычислительной работы, под которой будем 

понимать выполнение обработки неделимой (элементарной) порции входных 

данных. Элементарной работой могут быть обработка строки, сгенерированной на 

основе переданных параметров или считанной из файла, либо перебор вариантов 

значений в некотором минимальном диапазоне входных данных. Важно, что эле-

ментарная работа не может быть разделена на более мелкие части и, следователь-

но, не может быть распараллелена.  
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Пусть элементарная вычислительная работа выполняется за время τ, а весь 

объём входных данных составляют N элементарных порций. Следовательно, на 

одном процессорном ядре весь объём входных данных будет обработан за время 

T1 = N∙τ. При использовании p процессорных ядер идеальное время обработки Tp 

составит 

p

N

p

T
T

p




1

 

Пусть исследуемый ПК произвёл обработку входных данных на p процес-

сорных ядрах за время Tэкс(p). Тогда доля накладных расходов μ, привносимых 

ПК, составит 
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(14) 

Как видим, доля накладных расходов зависит от параметров N, τ и p. Варьи-

руя значения одного из параметров при фиксированных значениях двух других, 

можно оценить динамику изменения накладных расходов на организацию распа-

раллеливания по данным для каждого из исследуемых ПК. 

Для экспериментального определения накладных расходов были разработа-

ны тестовые примеры ОПП, удовлетворяющие следующим требованиям. 

1. Тестовая ОПП должна иметь возможность обработки от одной до произ-

вольного числа элементарных порций входных данных, т.е. быть способной вы-

полнить произвольное число N элементарных работ. 

2. Для тестовой ОПП должна быть предусмотрена возможность задания 

времени τ выполнения элементарной работы. 

3. Если тестовая ОПП выполняет N элементарных работ, за время τ каждую, 

то время выполнения ОПП на одном процессорном ядре должно составлять N∙τ. 

4. Обрабатываемая тестовой ОПП порция данных должна полностью опре-

деляться значениями её параметров. 

5. Случай, когда обрабатываемая ОПП порция данных определяется значе-

нием (диапазоном значений) только одного параметра, встречается на практике 
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довольно часто, поэтому целесообразно при сравнении ПК рассмотреть этот слу-

чай отдельно с использованием соответствующего тестового примера. 

6. Отдельно следует рассмотреть случай, когда обрабатываемая ОПП пор-

ция данных определяется комбинацией значений (диапазонов значений) несколь-

ких параметров, что существенно повышает трудоёмкость организации парал-

лельных вычислений. Заметим, что именно этот случай является типичным при 

практическом применении ПК «Пирамида». 

7. Отдельно следует рассмотреть случай, когда обрабатываемая ОПП пор-

ция данных определяется строкой (диапазоном строк) файла входных данных. 

Этот случай является типичным при применении ПК X-COM и BOINC. 

Приведенная методика проведения экспериментов на втором этапе хорошо 

согласуется в рассмотренной в [232] оценкой производительности как отношени-

ем  времени,  затраченного  на  организацию  и  поддержку  расчетов,  ко  времени  

проведения  самого  расчета. 

В качестве ОПП, удовлетворяющих выдвинутым требованиям, были разра-

ботаны три тестовых примера. 

Тестовый пример Opp_one моделирует работу ОПП с одним входным пара-

метром, значение которого задаёт диапазон входных данных в виде тройки чисел 

"a b s", где a – начало диапазона, b – конец диапазона, s – шаг. Например, тройка 

"10 20 3" задаёт последовательность перебираемых чисел 10, 13, 16, 19, каждое из 

которых определяет элементарную порцию данных. Для теста Opp_one есть воз-

можность указания времени τ обработки одной элементарной порции данных. 

Например, если указать τ = 1 c, то время обработки порции данных, заданной зна-

чением входного параметра "10 20 3", составит 4 с. 

Тестовый пример Opp_three моделирует работу ОПП с тремя входными па-

раметрами. Значения первых двух параметров задают диапазоны входных данных 

в виде троек чисел "a b s", где a – начало диапазона, b – конец диапазона, s – шаг. 

Значение третьего параметра задаёт список перебираемых строк. Например, если 

значение первого параметра – "10 15 3", значение второго – "1 2 1", значение тре-
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тьего – "str1 str2", то порцию входных данных будут определять 8 возможных 

комбинаций значений трёх параметров: 

10 1 str1 

10 1 str2 

10 2 str1 

10 2 str2 

13 1 str1 

13 1 str2 

13 2 str1 

13 2 str2 

Так же как для теста Opp_one, для теста Opp_three предусмотрена возмож-

ность указания времени τ обработки одной комбинации значений входных пара-

метров, т.е. времени обработки одной элементарной порции данных. Для нашего 

примера при τ = 1 c время обработки 8 комбинаций составит 8 с. 

Тестовый пример Opp_file моделирует обработку строк, считываемых из 

переданного ему в качестве параметра файла. Программа принимает на вход два 

параметра – имя файла со строками и время τ  обработки одной строки из файла. 

Например, если в файле 20 строк, и время τ  обработки одной строки равняется 

2 с, то время работы тестового примера Opp_file на одном процессорном ядре со-

ставит 40 с. 

На втором этапе экспериментов для оценки отказоустойчивости сравнивае-

мых ПК была применена методика, аналогичная методике первого этапа. Допол-

нительно, помимо имитации отказа одного ВУ, была произведена имитация отказа 

всех ВУ решающего поля и управляющей машины. После выключения ВУ они за-

пускались повторно, и осуществлялась попытка продолжить прерванные вычисле-

ния. 

Результаты экспериментов второго этапа представлены в п. 5.5.3  
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5.5.2 Результаты сравнения ПК «Пирамида», MapReduce и MPI 

При сравнении ПК «Пирамида», MapReduce и MPI возникла дополнитель-

ная сложность. Если для запуска тестовых примеров под управлением ПК «Пира-

мида» достаточно составить паспорт задания, то для MapReduce и MPI требуется 

разработка управляющих программ. От качества этих программ во многом зави-

сит итоговая производительность вычислений. Чтобы обеспечить сравнительно 

одинаковое качество для разных технологий, было принято во внимание следую-

щее предположение. 

Как уже упоминалось, освобождение пользователя от рутинной работы по 

организации параллельных вычислений являлось одной из целей создания ПК 

«Пирамида». Другими словами, комплекс позволяет производить расчеты пользо-

вателям, которые не являются глубокими специалистами в параллельном про-

граммировании. Логичным выглядит использование для экспериментов управля-

ющих программ для MapReduce и MPI, разработанных «начинающим» програм-

мистом. В качестве такого «начинающего» специалиста выступил соавтор работы 

[239] А.В. Алексеев, который на момент проведения экспериментального иссле-

дования являлся студентом выпускного курса. Его усилиями были разработаны 

соответствующие управляющие программы для MapReduce и MPI. 

Рассмотрим организацию параллельных вычислений с использованием 

MapReduce-кластера Disco [228]. Основу кластера составляет распределенная фай-

ловая система Disco – DDFS, которая позволяет хранить объекты различного 

формата от текстовых данных системных журналов до больших файлов мульти-

медиа. DDFS представляет собой распределенное хранилище данных, представ-

ленных в формате «ключ-значение». DDFS оперирует понятиями тега и объекта. 

Тег является ключом, а объект, в свою очередь, значением ключа. Один тег может 

ссылаться на несколько объектов, и таким образом можно удобно организовать 

хранение различных объектов, характеризующих одну сущность. 

Для работы ОПП  «Штурм» в составе кластера необходимо запускать её эк-

земпляры на каждом ВУ и передавать им соответствующие порции данных для пе-
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ребора. После получения входного пула работ управляющая программа должна раз-

бить его на порции, которые будет перебирать каждый экземпляр ОПП «Штурм». 

Затем необходимо поместить в DDFS объекты, количество которых будет равно 

числу порций. В каждом объекте будут записаны начальный и конечный номер па-

роля для перебора в конкретной порции. 

Операция загрузки объектов с порциями занимает значительное время и по-

этому каждый раз при решении задачи перебора в DDFS один раз размещалось 

большое количество объектов, содержащих числа от 0 до N, где N – большое число 

порядка 10
12

. Управляющая программа в ходе вычислений, с помощью специально 

разработанной функции преобразует эти числа в соответствующие порции для пере-

бора и передает их ОПП «Штурм» в качестве входных данных.  

Для работы второго тестового примера, ОПП «Сочетания», в составе кластера 

Disco было необходимо реализовать разделение данных на поддиапазоны для обра-

ботки ВУ кластера. Разбиение на поддиапазоны производилось по значениям перво-

го параметра, которым также сопоставлялись числа от 0 до N, содержащиеся в зара-

нее записанных в DDFS объектах. 

В управляющих программах с использованием MPI было применено разде-

ление вычислительной работы по рангам MPI-процессов, значения которых опре-

деляли диапазоны порций вычислительной работы для тестовых примеров.  Для 

ОПП «Штурм» каждый MPI-процесс осуществлял генерацию очередной порции 

данных для передачи ПС «Штурм», затем происходило ожидание завершения об-

работки первой порции всеми процессами, и осуществлялся сбор результатов. В 

противном случае происходили генерация новой порции и ее передача экземпля-

ру ПС «Штурм». 

Работа ОПП «Сочетания» с использованием MPI была организована путем 

разбиения данных на поддиапазоны по значениям первого параметра. Каждый 

MPI-процесс осуществлял обработку очередного значения первого параметра, пе-

ребирая значения остальных двух. После обработки всеми MPI-процессами своего 

очередного значения первого параметра осуществлялось сохранение контрольной 
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точки, после чего каждый MPI-процесс переходил к обработке следующего зна-

чения первого параметра. Сохранение контрольных точек позволило обеспечить 

отказоустойчивость вычислений с применением MPI. 

Следует отдельно отметить, что перед началом основной серии эксперимен-

тов для каждой из сравниваемых технологий была проведена предварительная се-

рия с целью подбора такого размера порции для обработки, при котором та или 

иная технология демонстрирует лучшую производительность. Другими словами, 

была произведена оптимизация конфигурации входных данных для каждой тех-

нологии распараллеливания. 

Результаты экспериментов для тестового примера «Штурм» представлены в 

таблице 20. Для всех технологий для выполнения тестовых наборов данных ис-

пользовались 56 процессорных ядер платформы aTCA-8214 Series. 

Таблица 20. Время выполнения тестового примера «Штурм» при применении 

технологий ПК «Пирамида», MapReduce и MPI  

Набор 

данных 

Искомый па-

роль 

Время выполнения теста, с 

MapReduce MPI Пирамида 

1 cwWqM 151 125 7,33 

2 fUJIo 482 250 203,46 

3 mGkhC 738 549 500,74 

4 GY5Zi 1546 1237 1150,70 

 

Результаты экспериментов для тестового примера «Сочетания» представле-

ны в таблице 21. Для всех технологий для выполнения тестовых наборов данных 

использовались 56 процессорных ядер платформы aTCA-8214 Series. 

Результаты экспериментов по сравнению производительности  значительно 

различаются для двух тестовых примеров «Штурм» и «Сочетания». Для случая, 

когда в ОПП один динамический параметр (ОПП «Штурм»), все сравниваемые 

технологии распараллеливания показывают примерно одинаковое быстродей-

ствие с некоторым преимуществом ПК «Пирамида».  
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Таблица 21. Время выполнения тестового примера «Сочетания» при применении 

технологий ПК «Пирамида», MapReduce и MPI  

Номер  

набора 

данных 

Диапазон входных данных 

Время выполнения теста, с 

MapReduce MPI Пирамида 

1 «0 10000» «0 5000» «str1 str2 str3» 40 37 8,92 

2 «0 30000» «0 5000» «str1 str2 str3» 130 109 19,13 

3 «0 60000» «0 5000» «str1 str2 str3» 267 218 35,24 

4 «0 120000» «0 5000» «str1 str2 str3» 542 437 64,18 

 

В случае перебора трех параметров (ОПП «Сочетания») наблюдается крат-

ное преимущество ПК «Пирамида». Это логичный и ожидаемый результат, по-

скольку ПК «Пирамида» изначально рассчитан на организацию вычислений с пе-

ребором всех возможных комбинаций нескольких параметров ОПП при помощи 

рассмотренного в п. 5.3 метода иерархического разделения данных.  При исполь-

зовании ПК «Пирамида» прикладной пользователь имеет возможность гибкой 

настройки распределения вычислительной работы по уровням иерархии вычисли-

телей, за счет чего минимизируется число запусков ОПП, и повышается быстро-

действие.  

Технологии, основанные на моделях MapReduce и MPI, подобной возмож-

ностью не обладают, и работа по эффективной организации параллельных вычис-

лений целиком ложится на пользователя-программиста. В случае, когда пользова-

тель не является специалистом в области параллельных вычислений и сосредото-

чен на решении своей прикладной задачи, применение ПК «Пирамида» может 

дать кратный эффект по быстродействию при распараллеливании по данным. 

Результаты оценки отказоустойчивости сравниваемых технологий для трех 

вариантов аварийных ситуаций собраны в таблице 22. 

Сравнение технологий распараллеливания по отказоустойчивости показало 

ожидаемые результаты. Две технологии (ПК «Пирамида» и MapReduce), в кото-

рые разработчиками были заложены механизмы отказоустойчивости, продемон-
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стрировали одинаковое поведение: при возникновении отказов вычислительная 

работа перераспределяется между рабочими ВУ. После восстановления вычисли-

тельных узлов им автоматически начинает выделяться вычислительная работа. 

При распараллеливании при помощи MPI-программы отказоустойчивость вычис-

лений фактически целиком зависит от заложенных разработчиком в эту програм-

му возможностей.  

Таблица 22. Результаты оценки отказоустойчивости технологий ПК «Пирамида», 

MapReduce и MPI  

Аварийная си-

туация 

Реакция программного средства  

MapReduce MPI Пирамида 

Перезагрузка вы-

числительного уз-

ла 

После перезагрузки ВУ 

ему автоматически 

выделяется 

вычислительная работа. 

При отказе управляющей 

машины вычисления 

прекращаются. 

Вычисления 

аварийно за-

вершаются 

После перезагрузки ВУ 

ему автоматически 

выделяется 

вычислительная работа. 

При отказе управляющей  

машины вычисления пре-

кращаются. 

Выключение вы-

числительного уз-

ла 

Вычислительная работа 

перераспределяется 

между рабочими узлами. 

При отказе управляющей 

машины вычисления 

прекращаются. 

Вычисления 

аварийно за-

вершаются 

Вычислительная работа 

перераспределяется 

между рабочими ВУ. 

При отказе управляющей 

машины вычисления пре-

кращаются. 

Сбой в работе сети 
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После нескольких попы-

ток, если соединение не 
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числения прекращаются. 
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5.5.3 Результаты сравнения ПК «Пирамида», BOINC и X-COM 

В ходе проведения экспериментов для каждого из сравниваемых комплек-

сов были осуществлены замеры времени выполнения трёх тестовых примеров – 

Opp_one, Opp_file и Opp_three, после чего по формуле (14) были вычислены 

накладные расходы на организацию распараллеливания по данным. Измерения 

времён выполнения для каждого тестового примера были проведены в три этапа: 

– при переменном числе процессорных ядер p и постоянных объёме вычис-

лений в N элементарных порций и времени τ обработки элементарной порции 

данных; 

– при переменном τ и постоянных p и N; 

– при переменном N и постоянных p и τ. 

На рисунке 64 представлена динамика изменения накладных расходов на 

организацию распараллеливания ПК X-COM, BOINC и «Пирамида» для тестового 

примера Opp_one перебора значений одного параметра при переменном числе 

процессорных ядер, объёме данных в 10
5
 элементарных порций, времени обра-

ботки элементарной порции 1 с. Отметим рост накладных расходов ПК BOINC с 

6% до 36%. У ПК X-COM и «Пирамида» наблюдается медленный рост накладных 

расходов с 2% до 6-7%. 

 

Рисунок 64. Накладные расходы для перебора значений одного параметра,  

N = 10
5
 элем. порций, время обработки одной элем. порции τ = 1 с 
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На рисунке 65 представлена динамика изменения накладных расходов на 

организацию распараллеливания ПК X-COM, BOINC и «Пирамида» для тестового 

примера Opp_one перебора значений одного параметра при переменном значении 

времени обработки элементарной порции данных, объёме данных в 10
5
 элемен-

тарных порций, числе процессорных ядер 56. При увеличении времени обработки 

элементарной порции у ПК BOINC отмечается снижение накладных расходов с 

51% до 20%, после чего накладные расходы устанавливаются у отметки в 18-20%. 

У ПК X-COM и ПК «Пирамида» доля накладных расходов плавно снижается с 

12% до 2%. 

 

Рисунок 65. Накладные расходы для перебора значений одного параметра, 

N = 10
5
 элем. порций, число ядер p = 56 

На рисунке 66 представлена динамика изменения накладных расходов на 

организацию распараллеливания ПК X-COM, BOINC и «Пирамида» для тестового 

примера Opp_one перебора значений одного параметра при переменном объёме 

данных, числе процессорных ядер 56, времени обработки элементарной порции 

1 с. Наблюдается уменьшение накладных расходов ПК BOINC с 34% до 20%, по-

сле чего снижение останавливается у отметки в 20%. У ПК X-COM и ПК «Пира-

мида» накладные расходы плавно снижаются с 6% до 1%. 

Представленные на рисунках 65 и 66 результаты свидетельствуют о повы-

шении эффективности сравниваемых ПК как при укрупнении зерна параллелизма, 

так и при увеличении объёма входных данных. 
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Рисунок 66. Накладные расходы для перебора значений одного параметра, число 

ядер p = 56,  время обработки одной элементарной порции τ = 1 c 

На рисунке 67 представлена динамика изменения накладных расходов на 

организацию распараллеливания ПК X-COM, BOINC и «Пирамида» для тестового 

примера Opp_file перебора строк файла при переменном числе процессорных 

ядер. Объём данных во входном файле составил 10
5
 строк, время обработки эле-

ментарной порции данных (одной строки файла) – 1 с. Наблюдается рост наклад-

ных расходов у всех сравниваемых ПК. У ПК X-COM доля накладных расходов 

увеличивается с 2% до 6%, у ПК «Пирамида» – с 7% до 14%, у ПК BOINC – с 5% 

до 36%. 

 

Рисунок 67. Накладные расходы для перебора строк файла,  

число строк N = 10
5
, время обработки одной строки τ = 1 с 
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На рисунке 68 представлена динамика изменения накладных расходов на 

организацию распараллеливания ПК X-COM, BOINC и «Пирамида» для тестового 

примера Opp_file перебора строк файла при переменном числе строк во входном 

файле, времени обработки одной строки 1 с, числе процессорных ядер 56. Наблю-

дается уменьшение накладных расходов ПК X-COM с 7% до 2%, при объёме фай-

ла 50 тыс. строк и более накладные расходы составляют 2%. Накладные расходы 

ПК «Пирамида» уменьшаются с 15% до 11% и при объёме файла 20 тыс. строк и 

более находятся в пределах 10-11%. Накладные расходы ПК BOINC сравнительно 

быстро снижаются при увеличении объёма файла до 100 тыс. строк, далее наблю-

дается незначительное изменение накладных расходов в пределах 20-22%. 

 

Рисунок 68. Накладные расходы для перебора строк файла,  

число ядер p = 56, время обработки одной строки τ = 1 с 

На рисунке 69 представлена динамика изменения накладных расходов на 

организацию распараллеливания ПК X-COM, BOINC и «Пирамида» для тестового 

примера Opp_file перебора строк файла при переменном значении времени обра-

ботки одной строки, объёме данных 10
5
 строк в файле и числе процессорных ядер 

56. Наблюдается быстрое снижение  накладных расходов ПК X-COM с 15% до 

5%, далее они медленно снижаются до значения 2%. Доля накладных расходов 
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порции до 2000 мс, далее наблюдается незначительное изменение накладных рас-

ходов в пределах 20-22%. 

 

Рисунок 69. Накладные расходы для перебора строк файла при переменном 

времени обработки одной строки, N = 10
5
 строк, число ядер p = 56 

На рисунке 70 представлена динамика изменения накладных расходов на 

организацию распараллеливания ПК X-COM, BOINC и «Пирамида» для тестового 

примера Opp_three перебора комбинаций значений трех параметров при перемен-

ном числе процессорных ядер, объёме данных в 10
5
 элементарных порций (ком-

бинаций значений), времени обработки элементарной порции (одной комбина-

ции) 1 с. Наблюдается рост накладных расходов у ПК X-COM до значения 23%, 

затем наблюдается снижение до 13%. У ПК «Пирамида» наблюдается медленный 

рост величины накладных расходов с 2% до 5%. Накладные расходы ПК BOINC 

быстро растут с 11% до 33%. 

На рисунке 71 представлена динамика изменения накладных расходов на 

организацию распараллеливания ПК X-COM, BOINC и «Пирамида» для тестового 

примера Opp_three перебора комбинаций значений трех параметров при перемен-

ном значении времени обработки элементарной порции данных (одной комбина-

ции), объёме данных в 10
5
 комбинаций, числе процессорных ядер 56. Наблюдает-

ся снижение доли накладных расходов у ПК X-COM с 14% до 11%, у ПК «Пира-

мида» – с 9% до 1%, у ПК BOINC – с 54% до 24%. 
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Рисунок 70. Накладные расходы для перебора комбинаций значений трех 

параметров, число комбинаций N = 10
5
 элем. порций, время обработки одной 

комбинации τ = 1 с 

 

Рисунок 71. Накладные расходы для перебора комбинаций значений трех 

параметров, число ядер p = 56, число комбинаций N = 10
5
 элем. порций 

На рисунке 72 представлена динамика изменения накладных расходов на 

организацию распараллеливания ПК X-COM, BOINC и «Пирамида» для тестового 

примера Opp_three перебора комбинаций значений трех параметров при перемен-

ном объёме данных, числе процессорных ядер 56, времени обработки элементар-

ной порции (одной комбинации) 1 с. Доля накладных расходов у ПК X-COM 

находится в диапазоне с 11% до 12%. Накладные расходы ПК «Пирамида» сни-

жаются с 4% до 2%, ПК BOINC – с 34% до 20%. 
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Рисунок 72. Накладные расходы для перебора комбинаций значений трех 

параметров, число ядер p = 56, время обработки одной комбинации τ = 1 с 

В ходе экспериментальных тестов на отказоустойчивость все сравниваемые 

ПК продемонстрировали одинаковую реакцию на все смоделированные согласно 
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сложной структурой комплекса, которую составляют множество компонентов, 

включая СУБД. ПК BOINC создавался для надёжного функционирования в рас-

пределённой среде, и его применение в рамках отдельных кластерных вычисли-

тельных систем нецелесообразно. 

2. Накладные расходы всех ПК во всех тестовых примерах растут при уве-

личении числа процессорных ядер и, как правило, снижаются при увеличении 

объёма входных данных и времени обработки элементарной порции данных. 

3. ПК X-COM показал кратно лучшие результаты при обработке строк, счи-

тываемых из входного файла, причём наивысшей эффективности (накладные рас-

ходы около 2%) комплекс достигает на больших файлах и при крупном зерне па-

раллелизма. 

4. ПК «Пирамида» показал кратно лучшие результаты при обработке не-

скольких параметров ОПП, что логично, поскольку этот ПК – единственный из 

исследуемых комплексов, обладающий встроенным механизмом перебора комби-

наций значений нескольких параметров. 

5. Все исследуемые ПК продемонстрировали одинаково высокие показатели 

отказоустойчивости. 

Гибридный программный комплекс XP-COM 5.6 

5.6.1 Архитектура и алгоритмы гибридного программного комплекса XP-COM 

Рассмотренное в п. 5.5.3 экспериментальное сравнение программных ком-

плексов X-COM и «Пирамида» показало кратно лучшие результаты ПК X-COM 

при обработке строк, считываемых из входного файла. Анализ возможностей ПК 

X-COM позволил сделать вывод, что этот комплекс обладает более совершенной 

транспортной подсистемой. В то же время ПК «Пирамида» показал кратно луч-

шие результаты при обработке комбинаций нескольких параметров ОПП. Это 

естественно, поскольку Пирамида обладает встроенным механизмом перебора 

комбинаций параметров, основанным на методе иерархического разделения дан-

ных. Для совмещения указанных достоинств ПК «Пирамида» и X-COM было 
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принято решение о разработке гибридного программного комплекса, получивше-

го название XP-COM [113]. 

Для возможности запуска при помощи X-COM множества экземпляров 

ОПП необходимо разработать серверную и клиентскую управляющие программы. 

Серверная программа должна обеспечивать логику деления вычислительной ра-

боты на порции, а клиентская – запуск ОПП с параметрами, задающими очеред-

ную порцию работы. X-COM обеспечит передачу порций работы от сервера кли-

ентам, а в обратном направлении – получение результатов. Сам X-COM не содер-

жит механизмов деления работы и запуска ОПП, соответствующие управляющие 

программы должен разработать пользователь. Основная идея гибридного ПК XP-

COM заключается в реализации в составе управляющих серверной и клиентских 

программ X-COM метода иерархического разделения данных и связанной с ними 

вычислительной работы, запуска множества экземпляров ОПП, а также автомати-

ческого сохранения контрольных точек.  

Названные механизмы были заимствованы из исходных текстов ПК «Пира-

мида» и реализованы в виде следующих отдельных программных модулей. 

1. Модуль деления вычислительной работы Divisio предназначен для выде-

ления порций данных вычислительным клиентам по требованию сервера X-COM 

и сохранения контрольных точек через определенные промежутки времени. При 

выделении порций данных применяется рассмотренный в п. 5.3 метод. 

2. Модуль запуска ОПП Divisio_client предназначен для преобразования по-

лученной от сервера X-COM порции в параметры запуска ОПП и последующего 

запуска ОПП. 

Внедрение указанных модулей в ПК X-COM было осуществлено через раз-

работанные авторами [113] на языке Perl управляющие серверную и клиентскую 

программы, как показано на рисунке 73. Управляющие программы были разрабо-

таны в соответствии с правилами и руководством пользователя ПК X-COM [241]. 
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Рисунок 73. Архитектура гибридного ПК XP-COM 

Взаимодействие клиентской и серверной частей гибридного ПК осуществ-

ляется по следующему алгоритму. 

1. Запуск серверной части и модуля Divisio. 

2. Запуск клиента X-COM. 

3. Запрос порции данных клиентом у сервера.  

4. Выделение порции данных сервером (взаимодействие с Divisio), если не 

получается выделить, то завершение работы. 

5. Отправка порции данных клиенту. 

6. Обработка клиентом полученной порции (запуск Divisio_client). 

7. Отправка результатов обработки серверу. 

8. Запись полученных от клиента результатов. 

9. Переход к пункту 3. 

Отметим важную деталь сопряжения ПК X-COM и «Пирамида». В ПК «Пи-

рамида» распределение вычислительной работы и учет порций ведется по номе-

рам менеджеров нижестоящего уровня иерархии и обслуживающих их клиент-

ских потоков, как показано на рисунке 63. В ПК X-COM отсутствует нумерация 

клиентов. Для возможности сопряжения в Divisio был реализован механизм дина-

мического выделения клиентских номеров. При обращении за очередной порцией 

работы клиенту автоматически назначается наименьший свободный номер. 
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Назначенный номер записывается в метаданные порции работы и с этого момента 

считается занятым. Получивший порцию клиент, выполнив работу, возвращает 

результат серверу. В метаданных результата указывается полученный клиентом 

номер. При получении результата сервером этот номер освобождается. 

Для возможности запуска на суперкомпьютере в режиме коллективного поль-

зования под управлением системы управления заданиями ПК XP-COM был реализо-

ван в виде контейнеров Docker. Было сформировано два образа контейнеров – для 

серверной и клиентской частей XP-COM. Образы помещены в репозиторий МСЦ 

РАН в соответствии с подходом, рассмотренным в п. 2.1.2 и публикации [75]. В ка-

честве системы управления заданиями была применена СУППЗ. При запуске зада-

ния СУППЗ извлекает образы сервера и клиентов XP-COM, копирует их на выде-

ленные для задания узлы суперкомпьютера, запускает на узлах экземпляры контей-

неров, связывая их при этом в единую виртуальную сеть. После этого в контейнерах 

начинают функционировать процессы комплекса XP-COM. 

5.6.2 Экспериментальная оценка производительности ПК XP-COM 

Эксперименты производились в МСЦ РАН на разделе Broadwell суперком-

пьютера МВС-10П ОП. Выполнение тестов происходило в режиме коллективного 

пользования под управлением СУППЗ. Характеристики раздела Broadwell супер-

компьютера МВС-10П ОП представлены в п.2.5 и работах [10, 66]. 

Для экспериментов была применена рассмотренная в п. 5.5.1 и использо-

ванная в п. 5.5.3 методика. Производительность ПК XP-COM выражалась через 

долю накладных расходов на распараллеливание, которая определялась в соответ-

ствии с формулой (14). В экспериментах использовались те же тестовые примеры 

ОПП, что применялись в п. 5.5.3 : тест Opp_one моделирует работу ОПП с одним 

входным параметром, тест Opp_three моделирует работу ОПП с тремя входными 

параметрами и перебирает все комбинации их значений, тест Opp_file моделирует 

обработку строк, считываемых из переданного ему в качестве параметра файла. В  

[240] вычислительная работа ОПП моделировалась вызовом функции sleep стан-
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дартной библиотеки C, т.е. тестовая программа «засыпала» на заданное время, 

имитируя работу. В экспериментах с ПК XP-COM функция sleep была заменена 

на вычисление хеш-функции md5 заданное число раз. 

На рисунке 74 представлена сравнительная диаграмма накладных расходов 

ПК XP-COM, X-COM и «Пирамида» для теста Opp_one перебора одного парамет-

ра при переменном значении числа вычислительных ядер, при объеме данных в 

10
5
 элементарных порций, при количестве подсчетов хеш-функции на одну эле-

ментарную порцию 1,3 млн. раз (~1 секунда). Как видно, гибридный XP-COM по-

казывает лучшую производительность. 

 

Рисунок 74. Накладные расходы ПК XP-COM, X-COM и «Пирамида» для 

перебора значений одного параметра 

На рисунке 75 представлены графики зависимостей накладных расходов 

ПК XP-COM для теста Opp_one перебора одного параметра при переменном зна-

чении времени обработки элементарной порции данных (количества подсчетов 

хеш-функции), при объеме данных в 10
5
 элементарных порций и размере разовой 

порции на одного клиента в 98 элементарных порций. 

На рисунке 76 представлена диаграмма накладных расходов XP-COM, X-

COM и «Пирамида» для теста Opp_file перебора строк файла при переменном 

значении числа ядер, объеме данных в 10
5
 элементарных порций, числе подсчетов 

хеш-функции на одну элементарную порцию 1,3 млн. раз (~1 секунда). Видно, что 

гибридный XP-COM показывает наилучшую производительность. 
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Рисунок 75. Накладные расходы XP-COM при изменении времени обработки 

одной элементарной порции для перебора одного параметра  

 

Рисунок 76. Накладные расходы для ПК XP-COM, X-COM и «Пирамида» для 

перебора строк файла 

На рисунке 77 изображены графики зависимостей накладных расходов ПК 

XP-COM для теста Opp_file перебора строк файла при переменном значении вре-

мени обработки элементарной порции данных (количества подсчетов хеш-

функции), при объеме данных в 10
5
 элементарных порций и размере разовой пор-

ции на одного клиента в 98 элементарных порций. Из графиков рисунка 77 видно, 

что вне зависимости от количества вычислительных узлов, с увеличением време-

ни обработки элементарной порции происходит снижение накладных расходов. 
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Рисунок 77. Накладные расходы для ПК XP-COM при изменении времени 

обработки одной элементарной порции для перебора строк файла 

На рисунке 78 представлена диаграмма накладных расходов ПК XP-COM, 

X-COM и «Пирамида» для теста Opp_three перебора комбинаций значений трех 

параметров при переменном числе ядер, объеме данных в 10
5
 элементарных пор-

ций, числе подсчетов хеш-функции на одну элементарную порцию 1,3 млн. раз 

(~1 секунда). Из диаграммы видно, что гибридный ПК показывает наилучшую 

производительность. 

 

Рисунок 78. Накладные расходы ПК XP-COM, X-COM и «Пирамида» для 

перебора комбинаций значений трех параметров 

На рисунке 79 изображены графики зависимостей накладных расходов ПК 

XP-COM для теста Opp_three перебора комбинаций значений трех параметров 
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при переменном значении времени обработки элементарной порции данных (ко-

личества подсчетов хеш-функции), объеме данных в 10
5
 элементарных порций и 

размере разовой порции на одного клиента в 98 элементарных порций. Из графи-

ков рисунка 79 видно, что вне зависимости от количества вычислительных узлов, 

с увеличением времени обработки элементарной порции происходит снижение 

накладных расходов. 

 

Рисунок 79. Накладные расходы ПК XP-COM при изменении времени обработки 

одной элементарной порции для перебора комбинаций значений трех параметров 

Как показывают результаты экспериментов, гибрибный ПК XP-COM пока-

зывает меньшие накладные расходы по сравнению с ПК «Пирамида» и X-COM. 

Однако, во всех тестах наблюдалось резкое увеличение накладных расходов при 

количестве клиентов более 256. Проблема может быть связана с тем, что в 

XP-COM используется двуранговая структура (отсутствуют промежуточные сер-

веры), и сервер X-COM не успевает обрабатывать все поступающие от клиентов 

запросы. Клиенты, не получившие в ответ на запрос очередную порцию данных, 

по истечению времени ожидания снова посылают запрос (во время ожидания кли-

ент не выполняет вычислительной работы – простаивает). 

Проблема решается за счет добавления промежуточных серверов. На выде-

ленных вычислительных узлах размещаются промежуточные серверы, которые 

будут аккумулировать часть от общей работы и обслуживать нижестоящих кли-

ентов. Такой подход прямо рекомендуется разработчиками X-COM [61]. Создание 
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древовидной структуры позволит снизить нагрузку на основной сервер, так как 

все запросы вычислительных клиентов будут равномерно распределены между 

несколькими серверами.  

Выводы к главе 5 

Среди различных классов задач, требующих для своего решения высоко-

производительных вычислительных ресурсов, можно выделить задачи с распа-

раллеливанием по данным. Пул входных данных при решении таких задач разби-

вается на независимые порции, каждая из которых может быть обработана на от-

дельном вычислителе (процессорном ядре) при помощи последовательной про-

граммы, реализующей прикладной алгоритм. Организация параллельных вычис-

лений с распараллеливанием по данным заключается в запуске множества экзем-

пляров последовательной программы на доступных вычислительных ресурсах и 

распределении порций входных данных запущенным экземплярам. 

Автором предложен метод иерархического (рекурсивного) разделения дан-

ных, основанный на организации вычислительного процесса в виде иерархической 

системы менеджеров, каждый из которых контролирует либо группу менеджеров 

нижестоящего уровня иерархии, либо запускаемые на вычислительном узле после-

довательные программы. Метод подразумевает деление на каждом уровне иерар-

хии входного пула данных на порции заданного размера и асинхронное распреде-

ление этих порций между менеджерами нижестоящего уровня иерархии в качестве 

входных пулов. Пулы данных при этом представляются виде упорядоченного 

набора нумерованных слайсов – элементарных порций данных. Каждая порция 

(пул) данных при таком представлении однозначно определяется номерами перво-

го и последнего слайсов порции. При разделении данных на каждом уровне иерар-

хии фиксируется компактная контрольная точка в виде текущих выделенных пор-

ций и остатка входного пула данных, что позволяет обойтись без специализиро-

ванной базы учета обработанных порций данных и одновременно свести к мини-

муму накладные расходы на распараллеливание. За счет асинхронного распределе-
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ния и механизма перераспределения порций данных обеспечиваются отказоустой-

чивость вычислений и возможность применения для решения одной задачи вычис-

лительных средств разной производительности и архитектуры. 

Метод иерархического деления данных был реализован в составе про-

граммного комплекса распараллеливания по данным «Пирамида». Эксперимен-

тальное сравнение ПК «Пирамида» с программными средствами, реализованными 

на основе технологий MapReduce, MPI, BOINC, а также с разработанным в НИВЦ 

МГУ им. М.В. Ломоносова ПК X-COM, показало, что ПК «Пирамида» вносит су-

щественно меньшие накладные расходы при распараллеливании, основанном на 

переборе комбинаций параметров. В ходе экспериментов было обнаружено, что 

ПК «Пирамида» уступает ПК X-COM при обработке пула входных данных, пред-

ставленного в виде набора строк в файле. 

Для устранения обнаруженного недостатка была предложена и реализована 

архитектура гибридного программного комплекса XP-COM, в котором были сов-

мещены достоинства программных комплексов X-COM и «Пирамида». Основу 

гибридного комплекса составили транспортная инфраструктура ПК X-COM и 

программные модули, реализующие предложенный метод иерархического деле-

ния данных. Результаты экспериментов продемонстрировали, что созданный ги-

бридный комплекс XP-COM опередил по производительности как ПК X-COM, 

так и ПК «Пирамида». 
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Заключение 

 В диссертационной работе обобщен многолетний опыт автора по разработке, 

созданию и практическому применению методов и средств управления вычисли-

тельными ресурсами суперкомпьютерных систем коллективного пользования. В ре-

зультате представлен комплекс новых научно обоснованных архитектурных, техни-

ческих и технологических решений, внедрение которых вносит значительный вклад 

в развитие научных суперкомпьютерных центров коллективного пользования, как 

неотъемлемой части исследовательской инфраструктуры страны.  

Основные результаты диссертационной работы следующие. 

1. Построена иерархическая пятиуровневая модель управления вычисли-

тельными ресурсами суперкомпьютерных систем коллективного пользования. На 

основе модели предложена архитектура системы управления заданиями, обеспе-

чивающая выполнение таких требований, как универсальность, надежность, им-

перативность управления, модульность. 

Для каждого уровня построенной модели предложены технические и техноло-

гические решения по управлению вычислительными ресурсами этого уровня иерар-

хии. На основе предложенной архитектуры, разработанных технических и техноло-

гических решений создана Система управления прохождением параллельных зада-

ний (СУППЗ), обеспечивающая комплекс возможностей,  качественных характери-

стик и количественных показателей, соответствующий мировому уровню. 

Эффективность СУППЗ подтверждается ее успешным применением в 

наиболее мощных российских суперкомпьютерах, установленных в 1999-2024 гг. 

в МСЦ РАН,  ИПМ им. М.В. Келдыша РАН и ряде других научных и образова-

тельных организаций. Услугами СУППЗ воспользовались более 1240 пользовате-

лей-исследователей из 135 организаций, выполнивших свыше 3,7 млн. заданий 

при реализации более чем 530 научных проектов.  

Объем и характеристики предоставляемых под управлением СУППЗ услуг 

по высокопроизводительным вычислениям позволяют говорить о формировании 

на основе СУППЗ цифровой экосистемы в виде информационно-вычислительной 
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среды суперкомпьютерного центра коллективного пользования, доступной прак-

тически для всех российских ученых. Сформированная цифровая экосистема вы-

сокопроизводительных вычислений обеспечила возможность проведения научных 

исследований, результаты которых опубликованы в более чем 6500 научных ста-

тьях в ведущих отечественных и зарубежных изданиях. 

2. Предложен и реализован в составе СУППЗ метод планирования заданий, 

основанный на выделении во входном потоке классов отладочных, ординарных и 

фоновых заданий. Выделение отдельного класса фоновых заданий было предло-

жено впервые и определяет научную новизну метода планирования. Кроме этого, 

для повышения загрузки суперкомпьютера метод применяет стратегию плаваю-

щего резерва, позволяющей при отсутствии в системе отладочных заданий ис-

пользовать выделенные для них вычислительные узлы заданиям других классов.  

Эффективность предложенного метода планирования подтверждена статистикой 

суперкомпьютеров под управлением СУППЗ, показывающей кратное снижение 

коэффициента замедления для классов отладочных и фоновых заданий.  

3. Предложен метод постпланирования, позволяющий совмещать потоки 

заданий с фиксированными параметрами и адаптивных заданий. Эффективность 

метода подтверждается результатами имитационного моделирования, которые на 

входных потоках разной интенсивности продемонстрировали максимизацию за-

грузки суперкомпьютера при незначительном увеличении коэффициента замед-

ления основного потока заданий с фиксированными параметрами. 

4. Предложены методы совмещения потоков заданий, поступающих от об-

лачных платформ, и локальных заданий СУЗ, в том числе представленных в виде 

виртуальных машин и контейнеров. Эффективность методов подтверждена экс-

периментальной оценкой накладных расходов, которые сведены к минимуму для 

заданий, использующих типовой стек программного обеспечения. 

5. Предложен двухэтапный метод и алгоритмы отображения параллельной 

программы на вычислительные узлы суперкомпьютера. Идея метода, определяю-

щая его научную новизну, состоит в том, что на первом этапе решается задача 
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выделения для очередного задания подсистемы узлов из множества свободных на 

момент запуска задания. Эта задача сведена к разрезанию графа свободных узлов 

минимально связанные между собой подграфы. Для решения этой задачи автором 

предложен эвристический алгоритм, научная новизна которого состоит в том, что 

для разрезания графа на минимально связанные между собой подграфы впервые 

было применено сочетание алгоритма имитации отжига и алгоритма случайного 

перебора вершин.   

На втором этапе производится поиск оптимального отображения программ-

ного графа на граф выделенных заданию узлов при помощи предложенного авто-

ром параллельного алгоритма, для работы которого используются выделенные 

для задания вычислительные узлы. Научная новизна предложенного параллельно-

го алгоритма состоит в циклическом повторении фаз имитации отжига и генети-

ческого отбора, что позволило добиться лучших характеристик точности и скоро-

сти поиска отображения по сравнению с известными решениями.  

Эффективность предложенных метода и алгоритмов подтверждена резуль-

татами экспериментов на суперкомпьютерах серии МВС. 

6. Предложен и реализован в составе программных комплексов «Пирамида» 

и XP-COM метод иерархического разделения данных для организации параллель-

ных вычислений с распараллеливанием по данным. Метод обеспечивает меньшие 

накладные расходы по сравнению с известными решениями, что подтверждается 

результатами экспериментов. 

Основные результаты, выводы и рекомендации, изложенные в диссертации, 

получены и использовались при реализации следующих проектов: 

- программ фундаментальных научных исследований государственных ака-

демий наук на 2008-2012 годы, на 2013-2020 годы и на 2021-2030 годы; 

- программ фундаментальных исследований Президиума и Отделения ма-

тематических наук РАН; 

- проектов Российского фонда фундаментальных исследований. 
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Результаты диссертации изложены в 45 печатных работах [10, 67, 69, 70, 72-

77, 82-84, 101, 102, 106, 109, 112, 113, 118, 121-123, 131, 134-137, 140, 155, 156, 

169-171, 174, 188, 189, 211, 218, 219, 224, 230, 231, 239, 240], по теме диссертации 

получено 6 свидетельств [100, 103, 127, 128, 132, 229] о государственной реги-

страции программ для ЭВМ и баз данных. 

Результаты диссертации внедрены в практическую деятельность Федераль-

ного научного центра Научно-исследовательский институт системных исследова-

ний Национального исследовательского центра «Курчатовский институт», Феде-

рального исследовательского центра Институт прикладной математики 

им. М.В. Келдыша Российской академии наук, Научно-исследовательского инсти-

тута «Квант», Института математики и механики им. Н.Н. Красовского Уральско-

го отделения Российской академии наук, а также использованы для проведения 

высокопроизводительных расчетов в практике Института биохимической физики 

им. Н.М. Эмануэля Российской академии наук и Физико-технического института 

им. А.Ф. Иоффе Российской академии наук. 

Материалы диссертации были использованы в учебном процессе при подго-

товке специалистов по специальностям «Вычислительные машины, комплексы, 

системы и сети» и «Информационная безопасность автоматизированных систем», 

а также при создании учебника «Организация ЭВМ и систем» [242] для студентов 

высших учебных заведений, обучающихся по направлению «Информатика и вы-

числительная техника» специальности «Вычислительные машины, системы, ком-

плексы и сети». 

Результаты диссертационной работы могут быть использованы для иссле-

дований и разработки систем управления заданиями суперкомпьютеров, органи-

зации параллельных вычислений с распараллеливанием по данным, создания и 

развития суперкомпьютерных центров коллективного пользования.   
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