
На правах рукописи

Гаджиев Дмитрий Александрович

Взаимодействие вихревых течений с твёрдыми
поверхностями и акустическими возмущениями

Специальность 01.02.05 —
«Механика жидкости, газа и плазмы»

Автореферат
диссертации на соискание учёной степени
кандидата физико-математических наук

Жуковский — 2021



Pa6ota BLI[oJIIIeHa B Qe4epa.nbHoM rocyAapcrBeuHoM aBToHoMHou o6pasona-
TeJIbHoM yrrpex(AeHlllr Bbrclrero o6paaoBanr{s <<Mocr<oscxuilt $usuro-rexHurle-
cxnfi IIIHCTI{Tyr (naquonanrnufi r,rccJreAoBareJrbcKrlrft ynurnepcurer) >> .

Hay.ruuft pyKoBoAr,rreJrb: IaftSytJrr4H A.nexcanAp MapKcoBr4rr,
AoKTop $uar,rro-vrareMarrrrrecKurx HayK,
rrreH-KoppecrrouAeur PAH,
OfYtI <<[exrpanrnuft
agporfiApoAr{HaMrr.recKraft TTHCTLTTyT

fiMeHV upo$eccopa H. E. )Kyr<oBcKoro>>,

ruanurrft uayuHuft corpyAHLtK.

O$uqzanbubre orroHeHTbr: Izlcaen Ceprefi A.nexcaHApoBtrq,
AoKTop Snszr<o-rvrareMarr4rrecKrrx HayK,
npo$eccop,
AfBOy BO <<CaHrr-flerep6yprcr<2ft
rocyAapcrneuurrft yur{Bepcr{Ter rpuKAaHcroft
aBrIarI?II4>>,

3aBeAyroquft .rra6oparopneft I

flerpon Anercan4p leoprraeBurr,
AoKTop Szszr<o-vraTeMaTzrrecKrirx HayK,
npoSeccop,
OfByH <<Tlncrraryr upo6reM MexaHrlrKr,l

uvr. A.IO. ?hu"iruHcKoro>> PAH,
negyqnft nayvurrfi corpyAH?rK.

Be4yrqaa opraHl{Bal{us: @fBOy BO <.Mocrcoacxvrilr rocyAapcrseHHrrft
yHrlrBepcr4Ter vM. M. B. JlovrouocoBa>>.

3arquta cocrol/trclr 9 4era6pa 202L r. e 15 qacoB rra BaceAa:atttr flzccepraqra-
oHHoro coBera 8002.073.03 upu OIrIU I4y PAH ro aApecy: 119333, Mocxaa,
yn. BaaraJroBa, A. 40, xonSepeHrl-Barr.

C 4raccepraqneft MoN(Ho oaHaKoMr.trbcs e 6:ti6rturoreKe BU OmU I4y PAH
rro aApecy: 119333, Mocr<aa, yJr. Banrnlona, A. 42, a raKx<e Ha caftre
https: I I www. frccsc. ru/ diss- council/ 0 0 207 303 I diss / Iist / gadj iev _ da.

AnropeSepar pasocJrarr

V.reuuft ceKperapb

Ar,rcceprarlzounoro coBera A 002.073.03,

AoKTop Sraelrxo-vrareMarrarrecKr.rx HayK

2021 roAa.

@LI.Beapo4u,x



Общая характеристика работы

Работа посвящена исследованию эволюции вихревых течений вблизи
твёрдых тел и взаимодействию вихрей с акустическими возмущениями.

Актуальность темы исследования определяется распространён­
ностью вихревых течений в природе и технике. Вихри являются структур­
ными единицами турбулентного течения жидкости или газа, участвуют в
формировании подъёмной силы крыла самолёта, возникают в океанах и
атмосфере Земли.

Ряд практически важных задач связан с эволюцией вихревых те­
чений жидкости или газа вблизи твёрдых поверхностей. Существенно
вихревым является течение в вязком пограничном слое вблизи твёрдой
поверхности. Отрыв пограничного слоя, возможный при условии небла­
гоприятного градиента давления, может приводить к появлению вихрей
вдали от твёрдых границ в изначально потенциальном потоке. Аналогич­
но ряд вихревых течений можно создать движением твёрдых тел в вязкой
среде.

Другие актуальные задачи возникают при распространении через
область вихревого течения сжимаемого газа акустических волн. Среди
них проблемы рассеяния, излучения и поглощения звука вихревыми и
турбулентными течениями, акустической диагностики вихревых течений
(определения расположения вихрей на основе картины рассеяния звука),
потери устойчивости ламинарных вихревых течений под воздействием зву­
ка.

Степень разработанности темы. Аналитическое решение двумер­
ной задачи о диффузии точечного вихря с полем окружной скорости
Γ/(2𝜋𝑟), Γ = Γ0 при 𝑡 = 0, в рамках уравнений Навье–Стокса несжима­
емой жидкости известно с 1912 г. (C. Oseen): Γ/Γ0 = 1 − e−𝑟2/(4𝜈𝑡), где
𝜈 – кинематический коэффициент вязкости. Для случая пары точечных
вихрей с циркуляциями Γ0 и −Γ0 имеется асимптотическое решение при
числах Рейнольдса Γ0/𝜈 → ∞ (А. М. Гайфуллин, А. В. Зубцов). При
наличии твёрдых границ картина существенно иная, что обнаружено на
примере лётных испытаний (F. W. Dee, O. P. Nicholas), экспериментов
в аэродинамической трубе (J. K. Harvey, F. J. Perry) и численного мо­
делирования в рамках уравнений Навье–Стокса (A. J. Peace, N. Riley;
Z. C. Zheng, R. L. Ash; L. Türk и др.) пары прямолинейных вихревых
трубок над бесконечной прямолинейной твёрдой поверхностью при боль­
ших числах Рейнольдса. Происходит глобальный отрыв пограничного слоя
от поверхности, нестационарный из-за перемещения вихрей. В результа­
те траектории движения вихрей ±𝑥𝑣(𝑡), 𝑦𝑣(𝑡) существенно отличаются от
траекторий 𝑥−2

𝑣 + 𝑦−2
𝑣 = const при безотрывном течении в рамках уравне­

ний Эйлера (𝜈 = 0). Явление отрыва пограничного слоя известно с 1904
г. (L. Prandtl); существует теория стационарного отрыва, учитывающая
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сильное взаимодействие (обратное влияние пограничного слоя на внешний
поток) (В. В. Сычёв). Для нестационарного отрыва известен критерий его
возникновения (N. Rott, W. R. Sears, F. K. Moore), но согласованная тео­
рия на данный момент не построена.

Поле скорости точечного вихря обладает бесконечной кинетической
энергией и не может существовать в неограниченном пространстве, но
может быть создано в ограниченной области с помощью равномерного вра­
щения кругового цилиндра начиная с некоторого момента 𝑡 = 0. Решение
такой задачи в рамках уравнений Навье–Стокса несжимаемой жидкости
вдали от цилиндра Γ/Γ0 = e−𝑟2/(4𝜈𝑡) переходит в поле точечного вихря
при 𝑟/

√
𝜈𝑡→ 0. В случае сжимаемого газа существует стационарное реше­

ние для вихря, который мог бы возникнуть за бесконечно большое время
(L. Mack). Обобщение нестационарного решения на случай сжимаемого га­
за до сих пор не было известно.

Теория взаимодействия акустических волн с течением газа в рам­
ках линеаризованных уравнений Эйлера разработана в середине XX в.
(Д. И. Блохинцев, M. J. Lighthill). С 1980-х гг. известны решения задач рас­
сеяния плоской волны exp(i(𝑘 ·𝑟−𝜔𝑡)) парой точечных вихрей (K. Tanaka,
S. Ishii), вихревым кольцом (T. Kambe, U. M. Oo; M. S. Howe; В. Ф. Ко­
пьёв, Е. А. Леонтьев), вихрем Хилла (В. В. Климов, В. Л. Прозоровский)
в борновском приближении, в котором поле возмущений рассеянной вол­
ны удовлетворяет волновому уравнению. Задача рассеяния плоской волны
вихрем с ненулевой циркуляцией в рамках волнового уравнения являет­
ся некорректно поставленной из-за медленного затухания поля скоростей
на бесконечности (T. Colonius и др.; R. Berthet, F. Lund; В. Ф. Копьёв,
И. В.‘Беляев). Все попытки решения данной задачи были основаны на
некорректных подходах (В. Ф. Копьёв, И. В. Беляев) и давали одно
из двух противоречивых выражений: цилиндрическую волну exp(i(𝑘𝑟 −
𝜔𝑡))/

√
𝑘𝑟 𝑓(𝜃) с особенностью 𝑓(𝜃) → ∞ при 𝜃 → 0 (Л. П. Питаевский;

A. L. Fetter; J. H. Ferziger; S. O’Shea; S. M. Candel; А. Л. Фабрикант;
В. Ф. Копьёв, Е. А. Леонтьев; T. Colonius и др.) либо незатухающую волну
(П. В. Саков; R. Ford, S. G. Llewellyn Smith; M. S. Howe). Гладкое решение,
вдали от области малых углов близкое к решению Л. П. Питаевского, суще­
ствует для случая вихря с циркуляцией Γ = Γ0e

−𝑟/𝐿 (R. Berthet, F. Lund).
Затухающее решение, близкое в некоторой области к решению П. В. Са­
кова, до сих пор не было известно.

Целью данной работы является выявление механизмов и опреде­
ление характеристик диффузии и генерации вихрей в вязкой среде в
присутствии твёрдых границ и взаимодействия вихрей с акустическими
возмущениями на примере двух реализуемых на практике конфигураций.
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Для достижения поставленной цели решены следующие задачи:

1. Определение сценариев эволюции пары прямолинейных вихревых
нитей с равной по модулю и противоположной по знаку циркуляци­
ей в вязкой несжимаемой жидкости вблизи твёрдой поверхности.

2. Определение асимптотических характеристик течения, возникаю­
щего в вязком сжимаемом газе при вращении кругового цилиндра,
на больших временах при больших числах Рейнольдса в предполо­
жении осесимметричности.

3. Определение асимптотических характеристик взаимодействия
плоской акустической волны с цилиндрическим вихрем из задачи
2 в невязком совершенном газе в случае, когда характерные числа
Маха малы, а эффективный радиус вихря велик по сравнению
длиной волны.

4. Определение асимптотических характеристик взаимодействия
плоской акустической волны с вихревой парой вблизи твёрдой
поверхности из задачи 1 в невязком совершенном газе в случае,
когда характерные числа Маха малы, а расстояние между вих­
рями и высота вихрей над поверхностью велики по сравнению
длиной волны.

Научная новизна:

1. Впервые дано описание локальной структуры нестационарного
отрыва пограничного слоя, происходящего при взаимодействии
вихрей с твёрдой поверхностью.

2. Впервые построено решение задачи о порождении вихря вра­
щающимся цилиндром с учётом сжимаемости, удовлетворяющее
условию затухания возмущений на бесконечности. Обнаружено яв­
ление «скачка циркуляции»: в сжимаемом газе с коэффициентом
вязкости, зависящим от температуры, внутренний предел внешне­
го решения для циркуляции скорости в общем случае отличается
от значения циркуляции на поверхности цилиндра.

3. Впервые получено решение, включающее в себя в качестве пре­
дельных случаев в различных асимптотических областях оба
известных решения классической задачи взаимодействия плоской
акустической волны с вихревой нитью.

4. Получено решение в дальнем поле задачи взаимодействия течения
с акустическими возмущениями нового типа: рассеянная волна,
отличная от цилиндрической и удовлетворяющая условию излуче­
нию Зоммерфельда.

Теоретическая и практическая значимость:

1. Качественное описание отрыва пограничного слоя в задаче об эво­
люции вихрей над твёрдой поверхностью может послужить опорой
для развития теории нестационарного ламинарного отрыва.
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2. Физическая интерпретация обнаруженных эффектов, таких, как
«скачок циркуляции» в задаче о порождении вихря, может быть
полезной для понимания физики более сложных течений сжимае­
мого газа с переменной вязкостью.

3. Установленные асимптотические решения для задачи о порожде­
нии вихря вращающимся цилиндром и для задачи о взаимодей­
ствии звука с цилиндрическим вихрем могут быть использованы
для валидации численных методов и интерпретации соответству­
ющих экспериментов.

4. Анализ решения задачи взаимодействия плоской акустической
волны с экспоненциально затухающим цилиндрическим вихрем по­
казывает, какое из двух известных решений для случая вихревой
нити реализуется в физическом и численном эксперименте.

5. Новый масштаб длины, характерный для решения задачи взаимо­
действия звука с экспоненциально затухающим цилиндрическим
вихрем и превосходящий как длину акустической волны, так
и эффективный радиус вихря, определяет минимальный размер
области, которую необходимо разрешать в физическом или чис­
ленном эксперименте.

Методология и методы исследования:
1. Асимптотические методы решения уравнений в частных производ­

ных и вычисления интегралов с малым параметром, в том числе
метод сращиваемых асимптотических разложений и метод перева­
ла.

2. Методы программ символьной математики.
3. Конечно-объёмные и конечно-разностные алгоритмы численного

решения уравнений Навье–Стокса.
Основные положения, выносимые на защиту:
1. Сценарий нестационарного ламинарного отрыва пограничного

слоя при взаимодействии вихрей с твёрдой поверхностью.
2. Асимптотическое решение задачи о порождении цилиндрического

вихря вращающимся круговым цилиндром в вязком сжимаемом
газе на больших временах.

3. Асимптотическое решение задачи рассеяния плоской волны цилин­
дрическим вихрем с экспоненциально затухающим полем скорости
в коротковолновом приближении.

4. Асимптотическое решение в дальнем поле задачи рассеяния плос­
кой волны вихревой парой вблизи твёрдой поверхности.

Достоверность полученных результатов обеспечивается
1. Использованием классических уравнений гидродинамики, урав­

нений Навье–Стокса и линеаризованных уравнений Эйлера, с
применением общепринятых методов интегрирования.
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2. Согласованием асимптотических и численных решений в соответ­
ствующих областях пространства.

3. Согласованием с хорошо апробированными решениями других ав­
торов в соответствующих пределах и диапазонах параметров.

Апробация работы. Основные результаты работы докладыва­
лись соискателем лично на следующих конференциях и семинарах: 58-я,
59-я, 60-я, 61-я, 62-я, 63-я научные конференции МФТИ (г. Жуковский,
2015–2020); XXVII, XXVIII, XIX, XXX, XXXI научно-технические конфе­
ренции по аэродинамике (п. Володарского, 2016, 2017; д. Богданиха, 2018;
п. Володарского, 2019, парк-отель Яхонты, 2020); XVI Международная
школа-семинар «Модели и методы аэродинамики» (г. Евпатория, 2016);
Международные конференции по дифференциальным уравнениям и ди­
намическим системам (г. Суздаль, 2018, 2020); XIX Международная
конференция по методам аэрофизических исследований (ICMAR 2018,
г. Новосибирск, 2018); Седьмая всероссийская конференция с междуна­
родным участием «Тепломассообмен и гидродинамика в закрученных
потоках» (г. Рыбинск, 2019); IX Международная конференция «Лаврен­
тьевские чтения по математике, механике и физике» (г. Новосибирск,
2020); 11-я международная конференция — школа молодых учёных «Вол­
ны и вихри в сложных средах» (г. Москва, 2020); Международная научная
конференция по механике «IX Поляховские чтения» (г. Санкт-Петербург,
2021); 25th International Congress of Theoretical and Applied Mechanics
(г. Милан, Италия, 2021); семинар по механике сплошных сред под
руководством А. Г. Куликовского, В. П. Карликова, О. Э. Мельника,
А. Н. Осипцова (г. Москва, НИИ механики МГУ, 12 мая 2021); видеосе­
минар по аэромеханике ЦАГИ — ИТПМ СО РАН — СПбГПУ — НИИМ
МГУ (г. Жуковский, ЦАГИ, 14 сентября 2021).

Личный вклад. Результаты глав 1 и 3 получены соискателем само­
стоятельно. В главе 2 соискателем получено решение задачи при вращении
цилиндра с характерными числами Маха порядка единицы. Решение
в случае чисел Маха много больших единицы получено совместно с
А. М. Гайфуллиным и А. В. Зубцовым.

Публикации. Основные результаты изложены в 9 печатных издани­
ях [1–9], рекомендованных ВАК для публикации результатов диссертации.

Соответствие паспорту специальности. Содержание диссерта­
ции соответствует паспорту специальности 01.02.05 «Механика жидкости,
газа и плазмы» по следующим пунктам:

− п. 4: течения сжимаемых сред и ударные волны;
− п. 11: пограничные слои, слои смешения, течения в следе;
− п. 14: линейные и нелинейные волны в жидкостях и газах;
− п. 15: тепломассоперенос в газах и жидкостях;
− п. 18: аналитические, асимптотические и численные методы ис­

следования уравнений кинетических и континуальных моделей
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однородных и многофазных сред (конечно-разностные, спектраль­
ные, методы конечного объема, методы прямого моделирования и
др.).

Объем и структура работы. Диссертация состоит из введения, 3
глав, заключения и 1 приложения. Полный объём диссертации составля­
ет 120 страниц, включая 40 рисунков и 2 таблицы. Список литературы
содержит 128 наименований.

Содержание работы

Во введении даётся общая характеристика и приводятся данные о
публикациях и апробации работы.

Первая глава посвящена численному решению двумерной задачи
о паре вихрей с противоположными циркуляциями вблизи бесконечной
прямолинейной твёрдой поверхности в вязкой несжимаемой жидкости при
больших числах Рейнольдса [1] с анализом структуры нестационарного от­
рыва пограничного слоя [2].

В разделе 1.1 приводится постановка задачи (рис. 1). Решение удо­
влетворяет двумерным уравнениям Навье–Стокса:

𝑢𝑥 + 𝑣𝑦 = 0, (1)
𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −𝜌−1𝑝𝑥 + 𝜈(𝑢𝑥𝑥 + 𝑢𝑦𝑦), (2)
𝑣𝑡 + 𝑢𝑣𝑥 + 𝑣𝑣𝑦 = −𝜌−1𝑝𝑦 + 𝜈(𝑣𝑥𝑥 + 𝑣𝑦𝑦), (3)

где 𝜌 = const, 𝜈 = const. Начальное условие имеет вид суперпозиции полей
скорости вихревой пары и её отражения относительно твёрдой поверхно­
сти:

(𝑢− i𝑣)
⃒⃒
𝑡=0

=

4∑︁
𝑘=1

Γ𝑘

2𝜋i
(︀
𝑧 − 𝑧𝑘

⃒⃒
𝑡=0

)︀ , Γ𝑘 = (−1)𝑘−1Γ0, (4)

𝑧1
⃒⃒
𝑡=0

= 𝑙 + iℎ, 𝑧2 = −𝑧1, 𝑧3 = −𝑧1, 𝑧4 = 𝑧1.

Граничные условия при 𝑡 > 0: условия прилипания 𝑢 = 𝑣 = 0 на твёрдой
поверхности 𝑦 = 0, затухания возмущений 𝑢2 + 𝑣2 → 0 при 𝑥2 + 𝑦2 → ∞
и отсутствия особенностей |𝑢2 + 𝑣2| <∞. Решение зависит от двух безраз­
мерных параметров: числа Рейнольдса Re = Γ0/𝜈 → ∞ и относительной
высоты вихрей ℎ/𝑙 = 𝑂(1).

В разделе 1.2 строится решение задачи в главном приближении на
малых временах

√
𝜈𝑡/𝑙 → 0. Вдали от центров вихрей и пограничного слоя

вблизи твёрдой поверхности справедливы уравнения Эйлера. Решение в
каждый момент времени имеет вид аналогичный (4), причём вихри дви­
жутся по тем же траекториям, что в идеальной жидкости. В окрестности
центра вихря |𝑧 − 𝑧1|/

√
𝜈𝑡 = 𝑂(1) решение аналогично решению задачи о
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Рис. 1 — Два вихря над плоскостью

диффузии одиночного вихря. В пограничном слое 𝑦/
√
𝜈𝑡 = 𝑂(1) уравне­

ния (2)–(3) переходят в уравнения Прандтля

𝑢𝑡 + 𝑢𝑢𝑥 + 𝑣𝑢𝑦 = −𝜌−1𝑝𝑥 + 𝜈𝑢𝑦𝑦, 𝑝𝑦 = 0, (5)

с граничными условиями прилипания 𝑢 = 𝑣 = 0 при 𝑦 = 0, симметрии 𝑢 = 0
при 𝑥 = 0 и сращивания с решением уравнений Эйлера при 𝑦/

√
𝜈𝑡 → ∞.

Начальное условие – решение задачи Рэлея 𝑢 = 𝑢𝑒erf(𝑦/2
√
𝜈𝑡), где 𝑢𝑒 со­

ответствует (4) при 𝑦 = 0. Уравнения (1), (5) решены численно маршевым
методом с помощью неявной абсолютно устойчивой схемы второго поряд­
ка точности.

Решение уравнений (1), (5) показывает, что в некоторый момент 𝑡 = 𝑡𝑠
происходит отрыв пограничного слоя: 𝑢𝑦 = 0 при некотором 𝑥 = 𝑥𝑠,
𝑦 = 𝑦𝑠. Метод решения на временах 𝑡 ≈ 𝑡𝑠 и 𝑡 > 𝑡𝑠, когда уравнения (5)
несправедливы, описан в разделе 1.3. Уравнения (1)–(3) переписываются
в переменных завихренности Ω = 𝑣𝑥 − 𝑢𝑦 и функции тока 𝜓 (𝑢 = 𝜓𝑦,
𝑣 = −𝜓𝑥):

Ω𝑡 + 𝜓𝑦Ω𝑥 − 𝜓𝑥Ω𝑦 = 𝜈(Ω𝑥𝑥 +Ω𝑦𝑦), (6)
𝜓𝑥𝑥 + 𝜓𝑦𝑦 = −Ω. (7)

Уравнения (6)–(7) решаются численно в области 0 ≤ 𝑥 ≤ 𝑥𝑚, 0 ≤ 𝑦 ≤ 𝑦𝑚,
вне которой завихренность мала. Для уравнения (6) используется неявная
абсолютно устойчивая схема метода чередующихся направлений второго
порядка точности. Граничные условия: условия прилипания при 𝑦 = 0
(выводится из 𝜓𝑦 = 0), симметрии Ω = 0 при 𝑥 = 0, затухания возмущений
Ω = 0 при 𝑦 = 𝑦𝑚 и Ω𝑥 = 0 при 𝑥 = 𝑥𝑚. Уравнение (7) решается с
помощью быстрого преобразования Фурье с граничными условиями 𝜓 = 0
при 𝑥 = 0 и 𝑦 = 0 и 𝜓(𝑧) = −(2𝜋)−1

∫︀
Ω(𝜉, 𝜂) ln

√︀
(𝑥− 𝜉)2 + (𝑦 − 𝜂)2d𝜉d𝜂

при 𝑥 = 𝑥𝑚 и 𝑦 = 𝑦𝑚.
В разделе 1.4 приводится описание картины нестационарного от­

рыва пограничного слоя и эволюции сходящих с твёрдой поверхности
вихревых структур. Отрыв пограничного слоя происходит в точке 𝑥 =
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𝑥𝑠(𝑡), 𝑦 = 𝑦𝑠(𝑡) > 0 нулевого трения 𝑢𝑦 = 0, лежащей на некотором рас­
стоянии от поверхности (рис. 2). Внутренняя часть 𝑦 < 𝑦𝑠 пограничного
слоя остаётся присоединённой; внешняя часть 𝑦 > 𝑦𝑠 отходит от твёр­
дой поверхности и образует спиралевидный завихренный слой (рис. 4).
Противоположно завихренный пограничный слой внутри рециркуляцион­
ной зоны также терпит отрыв под действием неблагоприятного градиента
давления. В некоторой момент рециркуляционная область отделяется от
поверхности и далее движется вокруг начального вихря; вдали от по­
верхности появляется критическая точка (рис. 4б). То же происходит с
рециркуляционными областями, возникающими позже.

Рис. 2 — Профиль продольной скорости 𝑢(𝑥𝑠, 𝑦) в системе координат, свя­
занной с точкой отрыва 𝑥 = 𝑥𝑠, при 𝑙2(𝑡− 𝑡𝑠)/Γ0 = 26, Re = 8000, ℎ = 8

В разделе 1.5 показано, что отрыв пограничного слоя существен­
но ускоряет затухание вихрей (рис. 3а). Здесь Γ =

∫︀
Ω>0

Ωd𝑥d𝑦 учитывает
только положительную завихренность в полуплоскости 𝑥 > 0.

Раздел 1.6 иллюстрирует отличие траекторий движения центров
вихрей 𝑥𝑣(𝑡), 𝑦𝑣(𝑡) от траекторий вихрей в идеальной жидкости (рисунок
3б). Вместо равномерного движения параллельно поверхности вихри отда­
ляются от неё, и скорость их движения со временем уменьшается.

Вторая глава посвящена асимптотическому решению задачи о ци­
линдрическом вихре, образующемся в сжимаемом совершенном газе с
линейной зависимостью коэффициентов динамической вязкости и теп­
лопроводности от температуры при вращении бесконечно протяжённого
кругового цилиндра [3—5].

В разделе 2.1 приводится постановка задачи (рис. 5). Решение удо­
влетворяет уравнениям Навье–Стокса:

𝜌𝑡 + (𝑟𝜌𝑣)𝑟/𝑟 = 0, (8)
𝜌(Γ𝑡 + 𝑣Γ𝑟) = 𝜇 (Γ𝑟𝑟 − Γ𝑟/𝑟) + 𝜇𝑟 (Γ𝑟 − 2Γ/𝑟) , (9)

𝜌
(︀
𝑣𝑡 + 𝑣𝑣𝑟 − Γ2/𝑟3

)︀
= 4/3 𝜇

(︀
𝑣𝑟𝑟 + 𝑣𝑟/𝑟 − 𝑣/𝑟2

)︀
+ 2/3 𝜇𝑟 (2𝑣𝑟 − 𝑣/𝑟) ,(10)

𝜌𝑐𝑝 (𝑇𝑡 + 𝑣𝑇𝑟) = 𝑝𝑡 + 𝑣𝑝𝑟 + 𝜆 (𝑇𝑟𝑟 + 𝑇𝑟/𝑟) + 𝜆𝑟𝑇𝑟 + (11)

+𝜇
[︁
(Γ𝑟 − 2Γ/𝑟)

2
/𝑟2 + 4/3

(︀
(𝑣𝑟)

2 − 𝑣𝑣𝑟/𝑟 + 𝑣2/𝑟2
)︀]︁
,
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а) б)
Рис. 3 — а – уменьшение со временем циркуляции Γ правого вихря при
Re = 1000: 1 — при ℎ = ∞, 2 — при ℎ = 3; б – траектории движения центра
правого вихря 𝑥𝑣 (𝑡), 𝑦𝑣 (𝑡) при ℎ = 2: 1 — в вязкой жидкости при Re = 1000
(числами отмечены моменты времени 𝑙2𝑡/Γ0), 2 — в идеальной жидкости

а) б)
Рис. 4 — Поля завихренности и линии тока при Re = 8000, ℎ = 8 в моменты

времени: а – 𝑙2(𝑡− 𝑡𝑠)/Γ0 = 36, б – 𝑙2(𝑡− 𝑡𝑠)/Γ0 = 90

где Γ = 2𝜋𝑟𝑤, 𝜇/𝜇∞ = 𝜆/𝜆∞ = 𝑇/𝑇∞, и уравнению состояния 𝑝 = 𝑅𝜌𝑇 . В
момент 𝑡 = 0, а также при 𝑟 → ∞, 𝑡 > 0 газ покоится: Γ = 0, 𝑣 = 0, 𝜌 = 𝜌∞,
𝑇 = 𝑇∞. Скорость вращения и температура поверхности цилиндра поддер­
живаются постоянными: Γ = Γ*, 𝑣 = 0, 𝑇 = 𝑇* при 𝑟 = 𝑟*. Решение зависит
безразмерных параметров числа Рейнольдса Re = Γ*/𝜈∞ → ∞, числа Ма­
ха 𝑀* = Γ*/(𝑟*𝑐∞), температурного фактора 𝑇*/𝑇∞ и числа Прандтля
Pr = 𝜇∞𝑐𝑝/𝜆∞. Ищется асимптотическое решение на больших временах
𝜀0(𝑡) = 𝑟*/

√
𝜈∞𝑡 << 1.

В разделе 2.2 определяется решение в области 𝜏 = 𝑟/
√
𝜈∞𝑡 = 𝑂(1).

Решение для циркуляции представляется в виде Γ/Γ* = Γ𝑒(𝜏)+𝑂(1/ ln 𝜀0)
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Рис. 5 — Диск, вращающийся в сжимаемом газе

и в главном приближении удовлетворяет линейному уравнению

Γ′′
𝑒 − Γ′

𝑒

𝜏

(︂
1− 𝜏2

2

)︂
= 0, (12)

условиям затухания Γ𝑒 → 0 при 𝜏 → ∞ и сращивания с решением во
внутренней области. Решение имеет вид

Γ𝑒 = 𝐴e−𝜏2/4, (13)

где 𝐴 определяется из условия сращивания.
В разделе 2.3 определяется решение в области 𝜂 = 𝑟/𝑟* = 𝑂(1).

Решения для циркуляции и температуры представляются в виде Γ/Γ* =
Γ𝑖(𝜂) + 𝑂(1/ ln 𝜀0), 𝑇/𝑇∞ = 𝑇𝑖(𝜂) + 𝑂(1/ ln 𝜀0) и в главном приближении
удовлетворяют уравнениям

Γ′′
𝑖 − Γ′

𝑖

𝜂
= −𝑇

′
𝑖

𝑇𝑖

(︂
Γ′
𝑖 −

2Γ𝑖

𝜂

)︂
, 𝑇 ′′

𝑖 +
𝑇 ′
𝑖

𝜂
+

(𝑇 ′
𝑖 )

2

𝑇𝑖
= − (𝛾 − 1)𝑀2

*
𝜂2

(︂
Γ′
𝑖 −

2Γ𝑖

𝜂

)︂2

,

(14)
условиям Γ𝑖 = 1, 𝑇𝑖 = 𝑇*/𝑇∞ при 𝜂 = 1 и сращивания с решением во
внешней области. Решение для циркуляции представляется в виде

Γ𝑖 = 2𝐴𝜂2
∞∫︁
𝜂

d𝜂

𝜂3𝑇𝑖
, 𝐴 =

1

2

⎛⎝ ∞∫︁
1

d𝜂

𝜂3𝑇𝑖

⎞⎠−1

. (15)

Доказана теорема: в случае 𝑇* ≥ 𝑇∞ и возрастающей зависимости дина­
мической вязкости от температуры d𝜇/d𝑇 > 0 циркуляция в сжимаемом
газе в области 𝑟/

√
𝜈∞𝑡 = 𝑂(1) будет превышать циркуляцию в несжимае­

мой жидкости при тех же 𝑟 и 𝑡 (рис. 7), т.е. 𝐴 > 1.
В разделе 2.4 с помощью мультипликативного составления внеш­

него и внутреннего решений в областях строится равномерно пригодное
решение с точностью до 𝑂

(︀
1/ ln2 𝜀0

)︀
для температуры (рис. 6а) и циркуля­

ции (рис. 6б). В отличие от случая несжимаемой жидкости или сжимаемого
газа с постоянной вязкостью, имеется участок с Γ > Γ*(рис. 7).
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а) б)
Рис. 6 — Решение при 𝑀* = Pr = 𝑇*/𝑇∞ = 1, 1/ ln 𝜀0 = −0.189: составное
решение и численное решение уравнений Навье–Стокса: а – температура

𝑇/𝑇∞(𝜏), б – циркуляция Γ/Γ*(𝜏)

Рис. 7 — Решение для циркуляции Γ/Γ*(𝜏) в случае сжимаемого газа при
𝑀* = Pr = 𝑇*/𝑇∞ = 1, 1/ ln 𝜀0 = −0.189 (сплошная кривая) и несжимаемой

жидкости (пунктир)

В разделе 2.5 приведено асимптотическое представление решения
при малых числах Маха 𝑀* << 1.

В разделе 2.6 описывается схема решения задачи при больших чис­
лах Маха𝑀* >> 1, когда𝑀4

*/ ln 𝜀0 ≥ 𝑂(1) и уравнения во внешней области
нелинейны. Максимум температуры имеет порядок 𝑂(𝑀2

* ). Максимум цир­
куляции достигает порядка 𝑂(𝑀2

* ) только на экспоненциально больших
временах 𝑀2

*/ ln 𝜀0 << 1, а при 𝑀2
*/ ln 𝜀0 ≥ 𝑂(1) остаётся порядка 𝑂(1).

В разделе 2.7 описана постановка и набор параметров, для которых
получено численное решение задачи в рамках уравнений Навье–Стокса.

Третья глава посвящена двум задачам взаимодействия плоской аку­
стической волны со стационарным течением [6]: с осесимметричным вихрем
с экспоненциально убывающим полем скорости и с парой вихрей с проти­
воположными циркуляциями вблизи твёрдой поверхности.
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В разделе 3.1 рассматривается общая задача (рис. 8) в рамках урав­
нений Эйлера сжимаемого газа

𝜌𝑡 +∇ · (𝜌𝑣) = 0, (16)
𝑣𝑡 + (𝑣 · ∇)𝑣 + 𝜌−1∇𝑝 = 0, (17)
(𝑝𝜌−𝛾)𝑡 + (𝑣 · ∇) (𝑝𝜌−𝛾) = 0. (18)

В случае плоской монохроматической падающей волны с безразмерной ам­
плитудой 𝑎 << 1 и малого характерного числа Маха течения 𝑀 << 1
периодическое по времени решение представимо в виде

𝜌/𝜌∞ = 1 + 𝑎ei(𝑘·𝑟−𝜔𝑡) +𝑀𝑎e−i𝜔𝑡𝜌11(𝑟) +𝑂(𝑀2, 𝑎2), (19)
𝑣/𝑐∞ = 𝑀𝑣10(𝑟) + 𝑘̂𝑎ei(𝑘·𝑟−𝜔𝑡) +𝑀𝑎e−i𝜔𝑡𝑣11(𝑟) +𝑂(𝑀2, 𝑎2), (20)
𝑝/𝑝∞ = 1 + 𝛾𝑎ei(𝑘·𝑟−𝜔𝑡) +𝑀𝑎e−i𝜔𝑡𝑝11(𝑟) +𝑂(𝑀2, 𝑎2). (21)

Нулевые члены в (19)–(21) соответствуют невозмущённому газу, сумма
степеней 𝑀 – стационарному течению, 𝑂(𝑎) – падающей волне; эти слагае­
мые задаются по условию. Искомое поле рассеянной волны имеет порядок
𝑂(𝑀𝑎).

Рис. 8 — Взаимодействие течения со звуковой волной

Поле рассеянной волны в главном приближении описывается урав­
нением

∇2𝜌11 + 𝑘2𝜌11 = 𝑞, 𝑞 = −2i(𝑘 · ∇)(𝑘̂ei𝑘·𝑟 · 𝑣10), (22)

следующим из подстановки (19)–(21) в (16)–(18), с граничным условием
излучения Зоммерфельда

𝑟1/2 [(𝜌11)𝑟 − i𝑘𝜌11] → 0 при 𝑟 → ∞. (23)

Условия существования и единственности решения задачи (22)–(23) рас­
смотрены в разделе 3.2. Решение представляется в виде свёртки правой
части уравнения с функцией Грина

𝜌11 = − i

4

∫︁
R2

𝑞(𝑟′)𝐻
(1)
0 (𝑘|𝑟 − 𝑟′|) d2𝑟′, (24)

где 𝐻(1)
0 (𝑟) — функция Ганкеля 1-го рода. Решение существует и единствен­

но тогда и только тогда, когда интеграл (24) сходится:

𝑟3/2𝑞 → 0 при 𝑟 → ∞, (25)
14
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Рис. 9 — Асимптотическая структура решения при 𝜆/𝐿 << 1

В частности, задача рассеяния плоской волны вихрем с ненулевой цирку­
ляцией |𝑣10| ∝ 𝑟−1 некорректна.

В разделе 3.3 рассмотрен случай цилиндрического вихря, порож­
дённого равномерным вращением кругового цилиндра.

В разделе 3.3.1 описаны физическая реализация и математическая
постановка задачи. Рассматривается вихрь с

𝑣10 =
Γ

2𝜋𝑘𝑟
𝜃, Γ = e−𝑟2/𝐿2

. (26)

Поле скоростей (26) возникает при равномерном вращении бесконечно про­
тяжённого кругового цилиндра нулевого радиуса в вязкой несжимаемой
жидкости и соответствует решению задачи из главы 2 при 𝑀* = 0 (рис. 7)
и 𝐿 = 2

√
𝜈∞𝑡0, где 𝑡0 – время вращения. Рассматривается случай 𝜆/𝐿 << 1,

где 𝜆 = 2𝜋/𝑘 – длина волны.
В разделе 3.3.2 получены точное представление решения задачи,

эквивалентное (24), и асимптотическое представление в дальнем поле

𝜌11 ∼ ei𝑘𝑟−i𝜋/4

√
𝑘𝑟

𝑓(𝜃) при
𝑟

𝐿2/𝜆
→ ∞. (27)

В разделе 3.3.3 проанализирована асимптотическая структура рас­
сеянной волны (рис. 9). В асимптотических областях 1a, 1b, 2 величина
|𝜌11| имеет разный порядок. Характерный линейный масштаб 𝑟 = 𝑂(𝐿2/𝜆)
намного превосходит эффективный радиус вихря 𝐿 и длину акустической
волны 𝜆.

В разделе 3.3.4 с помощью интегрирования (24) с (22), (26) полу­
чено асимптотическое решение в дальнем поле 𝑟 >> 𝐿2/𝜆 вида (27) с
амплитудой рассеяния (рис. 11)

𝑓 ∼
√︂
𝜋

2
cos 𝜃 ctg

𝜃

2

(︁
1− e−𝑘2𝐿2𝜃2/4

)︁
. (28)

Решение (28) достигает максимума на малых углах 𝜃 = 𝑂(𝜆/𝐿) и пере­
ходит в решение Питаевского для случая вихря с ненулевой циркуляцией
при 𝜃 >> 𝜆/𝐿 (рис. 10). Аналогичное решение для случая Γ = exp(−𝑟/𝐿)
получили R. Berthet, F. Lund.
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Рис. 10 — Решение в дальнем поле при 𝜆/(2𝜋𝐿) = 0.05: Γ = 1 (чёрный
пунктир), Γ = e−𝑟2/𝐿2

(серая сплошная) (28), Γ = e−𝑟/𝐿 (чёрная сплошная)
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|f|
θ

0
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|f|
θ
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Рис. 11 — Диаграммы рассеяния при 𝜆/(2𝜋𝐿) = 𝜀 = 0.05: а – в дальнем
поле (решение (28) (чёрный пунктир) и численное решение при 𝜀2𝑟 = 0.5
(чёрная сплошная), 𝜀2𝑟 = 1 (серая сплошная)); б – в ближнем поле (реше­
ние, соответствующее (29), (пунктиры) и численное решение при 𝜀2𝑟 = 0.1

(чёрные), 𝜀2𝑟 = 0.2 (серые))

В разделе 3.3.5 получено асимптотическое решение в области 𝑟 <<
𝐿2/𝜆 (рис. 11)

𝜌11 ∼ 𝜋i

⎧⎨⎩ei𝑘𝑟 cos 𝜃

⎡⎣ 1

𝜋

ctg 𝜃∫︁
0

e−𝑟2𝐿−2 sin2 𝜃(1+𝜉2)

1 + 𝜉2
d𝜉 +

1

2

(︂
sgn(𝜃)− erf

(︂
𝑟 sin 𝜃

𝐿

)︂)︂⎤⎦−

−ei𝑘𝑟(1−𝜃2/2) 𝜃

2
cos 𝜃 ctg

𝜃

2

[︃
sgn(𝜃)− erf

(︃
e−i𝜋/4

√
𝑘𝑟𝜃√

2

)︃]︃}︃
. (29)

Амплитуда решения (29) всюду сохраняет порядок |𝜌11| = 𝑂(1). В полосе
𝑟 << 𝐿2/𝜆, 𝑟 sin 𝜃 << 𝐿 решение (29) переходит в решение Сакова для
случая вихря с ненулевой циркуляцией.

В разделе 3.3.6 приведено асимптотическое решение в области 𝑟 =
𝑂(𝐿2/𝜆) на больших углах 𝜃 >> 𝜆/𝐿, имеющее вид (27).

В разделе 3.3.7 приведено сравнение с результатами численного ин­
тегрирования (24) (рис. 11).
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В разделе 3.3.8 вычисляется полное сечение рассеяния и сечение пе­
реноса импульса. Сечение рассеяния в области 𝐿 << 𝑟 << 𝐿2/𝜆 совпадает
с сечением рассеяния в дальнем поле 𝑟 >> 𝐿2/𝜆, что согласуется с услови­
ем сохранения потока энергии в области невозмущённого газа 𝑟 >> 𝐿.

В разделе 3.4 обсуждается применение представлений из
раздела 3.3 к случаю вихря с ненулевой циркуляцией. Показано, что
различные методы интегрирования приводят либо к незатухающему реше­
нию Сакова, либо к решению Питаевского с особенностью.

В разделе 3.5 рассмотрена задача взаимодействия пары вихрей с
противоположными циркуляциями, расположенными на равной высоте
над бесконечной прямолинейной твёрдой поверхностью, с плоской акусти­
ческой волной от источников, расположенных на поверхности.

В разделе 3.5.1 изложена постановка задачи. Поле скорости со­
ответствует начальному условию задачи из главы 1. Вихри считаются
неподвижными и расположенными в точках 𝑥 = ±𝑙, 𝑦 = ℎ. Решение урав­
нения (22) должно удовлетворять условию на бесконечности и условию
непротекания на твёрдой поверхности 𝑘̂ · ∇𝜌11 = 0 при 𝑘̂ · 𝑟 = 0.

В разделе 3.5.2 получено представление решения задачи рассеяния
в полуплоскости в виде свёртки правой части с функцией Грина

−i/4
[︁
𝐻

(1)
0 (𝑘|𝑟 − 𝑟′|) +𝐻

(1)
0 (𝑘|𝑟 − (𝑟′ − 2(𝑘̂ · 𝑟′)𝑘̂)|)

]︁
.

В разделе 3.5.3 получено асимптотическое решение для случая
𝑙/ℎ = 𝑂(1) в дальнем поле 𝑟 >> 𝑙2/𝜆. Решение имеет вид (27) с комплекс­
нозначной амплитудой рассеяния 𝑓 = 𝐴𝑓e

i𝜙𝑓 , где

𝐴𝑓 =
√
2𝜋

cos 𝜃 sin(𝑘𝑙 sin 𝜃)

sin(𝜃/2)

√︁
cos2 𝜃 cos2(𝑘ℎ cos 𝜃) + sin2(𝑘ℎ cos 𝜃), (30)

𝜙𝑓 =
𝜋

2
+ 𝑘ℎ− arctan

tg(𝑘ℎ cos 𝜃)

cos 𝜃
. (31)

Амплитуда (30) достигает максимума порядка 𝑂(𝑙/𝜆) в направлении рас­
пространения падающей волны 𝜃 = 0 и имеет число нулей порядка 𝑂(𝑙/𝜆).
Зависимость фазы от угла означает, что рассеянная волна отлична от
цилиндрической. Это качественно отличает решение данной задачи от ре­
шений задач рассеяния в пространстве без твёрдых границ (K. Tanaka,
S. Ishii; K. Naugolnykh; T. Kambe, U. M. Oo; В. В. Климов, В. Л. Прозо­
ровский; решение из раздела 3.3).

В заключении приведены основные результаты работы, которые за­
ключаются в следующем:

1. Получено численное решение двумерной задачи об эволюции в
вязкой несжимаемой жидкости двух вихрей с противоположны­
ми циркуляциями вблизи бесконечной прямолинейной твёрдой
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поверхности. Описан механизм глобального нестационарного от­
рыва пограничного слоя. Рассчитаны модификация траекторий
движения вихрей и уменьшение со временем их циркуляции под
влиянием отрыва.

2. Впервые на основе асимптотического анализа уравнений На­
вье–Стокса определены характеристики цилиндрического вихря,
возникающего при вращении кругового цилиндра в вязкой среде,
для случая сжимаемого газа с линейной зависимостью коэффици­
ентов диффузии от температуры. Найдены условия, при которых
циркуляция скорости будет на больших расстояниях от цилин­
дра выше, чем в случае несжимаемой жидкости, и в некоторой
промежуточной области — выше, чем на поверхности цилиндра.

3. Впервые рассмотрена задача взаимодействия цилиндрического
вихря, возникающего при вращении кругового цилиндра в вязкой
среде, с плоской акустической волной. Построено асимптотическое
решение для случая, когда характерный масштаб области тече­
ния велик по сравнению с длиной волны. Два известных решения
для случая вихревой нити, решение Л. П. Питаевского и решение
П. В. Сакова, содержатся в качестве предельных случаев в двух
различных асимптотических областях. Получено решение в даль­
нем поле задачи взаимодействия плоской акустической волны и
двух вихрей с противоположными циркуляциями вблизи бесконеч­
ной прямолинейной твёрдой поверхности. Рассеянная волна имеет
вид уходящей на бесконечность волны, отличной от цилиндриче­
ской.

Публикации автора по теме диссертации в изданиях,
рекомендованных ВАК РФ

1. Гаджиев Д. А., Гайфуллин А. М. Эволюция двух вихрей вблизи твер­
дой поверхности // Прикладная механика и техническая физика. —
2018. — Т. 59, № 2. — С. 31—38.

2. Gadzhiev D. A., Gaifullin A. M. Structure of laminar unsteady boundary
layer separation under an airplane wake vortex interaction with a ground
surface // AIP Conference Proceedings. –– 2018. –– Vol. 2027. –– P. 030125.

3. Gaifullin A. M., Gadzhiev D. A., Zubtsov A. V. Vortices appearance and
diffusion // Journal of Physics: Conference Series. –– 2017. –– Vol. 894. ––
P. 012017.

4. Gadzhiev D. A., Gaifullin A. M., Zubtsov A. V. An axisymmetric vortex
around a rotating infinitely elongated circular cylinder in a viscous heat­
conducting gas // AIP Conference Proceedings. –– 2020. –– Vol. 2211. ––
P. 030009.

18



5. Гаджиев Д. А., Гайфуллин А. М., Зубцов А. В. О порождении вихря
вращающимся цилиндром // Прикладная математика и механика. —
2020. — Т. 84, № 5. — С. 570—589.

6. Gadzhiev D. A., Gaifullin A. M. Sound scattering by a vortex: case of
exponentially decaying velocity // Journal of Fluid Mechanics. –– 2021. ––
Vol. 918. –– A46.

7. Gaifullin A. M., Gadzhiev D. A. Evolution of vortex wake near the Earth’s
surface // AIP Conference Proceedings. –– 2016. –– Vol. 1170. –– P. 020019.

8. Vortical structures interaction / A. M. Gaifullin [et al.] // Journal of
Physics: Conference Series. –– 2019. –– Vol. 1268. –– P. 012016.

9. Gadzhiev D. A., Gaifullin A. M. Waves propagation through a localized
axisymmetric vortical flow // Journal of Physics: Conference Series. ––
2021. –– Vol. 1959. –– P. 012020.

19



Гаджиев Дмитрий Александрович

Взаимодействие вихревых течений с твёрдыми поверхностями и акустическими
возмущениями

Автореф. дис. на соискание ученой степени канд. физ.-мат. наук

Подписано в печать 05.10.2021. Заказ № _05/10-1_
Формат 60×90/16. Усл. печ. л. 1. Тираж 100 экз.
Типография ЗАО НПКФ «МаВР» г. Жуковский,

Ул. Гагарина, д. 2, офис 208
Тел. 8-495-723-71-74


