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Введение

Работа посвящена исследованию эволюции вихревых течений вблизи твёр­
дых тел и взаимодействию вихрей с акустическими возмущениями.

Актуальность темы исследования определяется распространённо­
стью вихревых течений в природе и технике. Вихри являются структурными
единицами турбулентного течения жидкости или газа, участвуют в формирова­
нии подъёмной силы крыла самолёта, возникают в океанах и атмосфере Земли.

Ряд практически важных задач связан с эволюцией вихревых течений
жидкости или газа вблизи твёрдых поверхностей. Существенно вихревым явля­
ется течение в вязком пограничном слое вблизи твёрдой поверхности. Отрыв
пограничного слоя, возможный при условии неблагоприятного градиента дав­
ления, может приводить к появлению вихрей вдали от твёрдых границ в
изначально потенциальном потоке. Аналогично ряд вихревых течений можно
создать движением твёрдых тел в вязкой среде.

Другие актуальные задачи возникают при распространении через область
вихревого течения сжимаемого газа акустических волн. Среди них проблемы
рассеяния, излучения и поглощения звука вихревыми и турбулентными течени­
ями, акустической диагностики вихревых течений (определения расположения
вихрей на основе картины рассеяния звука), потери устойчивости ламинарных
вихревых течений под воздействием звука.

Известно, что за самолётом с крылом большого удлинения возникает вих­
ревой след в виде двух вихревых трубок с циркуляциями, равными по величине
и противоположными по знаку, опускающихся вниз за счёт взаимоиндукции.
По порядку величины циркуляции вихрей равны циркуляции присоединённого
вихря на крыле, обеспечивающего подъёмную силу. Интенсивный след за боль­
шим самолётом живёт порядка одной — двух минут и тянется на расстояние
порядка 10 километров [10]. Попадание одного самолёта в след за другим может
привести к потере устойчивости первого. Нахождение характеристик вихрево­
го следа за самолётом на режиме посадки важно с точки зрения определения
безопасного предпосадочного расстояния между самолётами. На режиме посад­
ки механизация крыла отклонена, и за самолётом образуется многовихревая
структура. На расстоянии за самолётом порядка 5 — 10 размахов крыла она пре­
вращается в пару концентрированных вихрей с циркуляциями равной величины
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Рисунок 1 — Эволюция вихревого следа за самолётом с крылом большого удли­
нения [10]

и противоположного знака [10] (см. рисунок 1). При больших числах Рейнольд­
са характерный размер вихрей будет малым. Кроме того, на таких расстояниях
в системе координат, движущейся вместе с самолётом, будет справедлива неста­
ционарная аналогия: трёхмерное стационарное течение в дальнем следе будет
эквивалентно двумерному нестационарному течению в плоскости, движущейся
со скоростью набегающего потока. Поэтому в случае пролёта на малой высоте
над поверхностью Земли развитие течения в фиксированном сечении, перпенди­
кулярном вектору скорости самолёта, можно моделировать с помощью задачи
о двух точечных вихрях вблизи бесконечно протяжённой твёрдой поверхности.

Задачи взаимодействия течений жидкости или газа с акустическими
возмущениями часто встречаются в практике, например, при исследовании рас­
пространения звука от источников, расположенных на поверхности Земли в
вихревом следе за самолётом. Одной из классических проблем является задача
рассеяния плоской акустической волны цилиндрическим вихрем — двумерным
осесимметричным течением с полем окружной скорости 𝑤(𝑟), величина которой
зависит от расстояния до оси 𝑟 (см. рисунок 2). В наиболее распространённой
постановке рассматривается вихревая нить, или потенциальный вихрь, с завих­
ренностью сосредоточенной на оси и окружной скоростью затухающей обратно
пропорционально расстоянию 𝑟 до неё:

𝑤 =
Γ

2π𝑟
, (1)
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где циркуляция скорости Γ постоянна. Эквивалентной является постановка с
завихренностью, локализованной в ограниченной области — например, с вих­
рем Ранкина или вихрем Лэмба–Озеена — если масштаб данной области мал
по сравнению с длиной акустической волны. Попытки решения задачи рассея­
ния в такой постановке многочисленны [11—22] и ведут счёт начиная с 1950-х
гг. Имеющиеся решения проанализированы в разделе «Степень разработан­
ности темы». Вопросы, послужившие предпосылкой, включают излучение и
рассеяние звука турбулентным течением [23], теорию генерации аэродинамиче­
ского шума струи и теорию флейты [24], акустическую неустойчивость вихря
Ранкина [25] и вихревого кольца [17], поглощение звука тонкими вихревыми
нитями [26; 27], влияние океанических течений на поверхностные волны [28].
Данная задача имеет аналоги в различных разделах механики и физики за
пределами аэроакустики и классической гидродинамики, например, в динамике
сверхтекучей жидкости и в квантовой механике. В первом случае плоская волна
моделирует фононы, которые наряду с ротонами составляют нормальную ком­
поненту сверхтекучего гелия; вихревая нить — сверхтекучую компоненту; учёт
их взаимодействия необходим для вычисления фононной части силы взаимного
трения, что было проделано Л. П. Питаевским [11]. Во втором случае задача свя­
зана с эффектом Ааронова–Бома (и была рассмотрена его первооткрывателями
[29]): пучок электронов, взаимодействуя с локализованным внутри кругового
цилиндра вихревым магнитным полем, «чувствует» его влияние вне цилиндра,
где величина магнитного поля равна нулю, но не равен нулю электромагнит­
ный потенциал; роль падающей плоской волны здесь играет волновая функция
свободной частицы. В борновском приближении линеаризованные уравнения
Эйлера и уравнение Шрёдингера сводятся к одному и тому же двумерному
волновому уравнению с правой частью. То же получается из линеаризованных
уравнений мелкой воды [30], линеаризованных уравнений Гросса-Питаевского
[31] и уравнений Максвелла [32]. Аналогии продемонстрированы в работах [30;
33; 34]. Необходимым условием применимости борновского приближения в за­
даче рассеяния звука вихрем является малость чисел Маха.

Принципиальное значение имеет поле окружной скорости, определяющее
описанную выше задачу рассеяния: для корректности постановки задачи в
борновском приближении 𝑤(𝑟) должно достаточно быстро затухать на беско­
нечности. В случае вихревой нити (1) (как и в случае вихря Ранкина или
Лэмба–Озеена) с 𝑤 ∝ 𝑟−1 задача оказывается некорректной [18; 34; 36; 37].
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Рисунок 2 — Рассеяние плоской акустической волны цилиндрическим вихрем
(схема) [35]

В этом нет парадокса, поскольку течение с 𝑤 ∝ 𝑟−1 в неограниченном про­
странстве обладает бесконечной кинетической энергией на единицу длины 𝐸 ∝∫︀
𝑤2𝑟𝑑𝑟 ∝

∫︀
𝑑𝑟/𝑟 и, следовательно, не может быть создано физически. В ре­

альности возникают либо замкнутые, либо уходящие в бесконечность вихревые
структуры с нулевой суммарной циркуляцией скорости по любому поперечно­
му сечению. Таким образом, устраняется особенность при 𝑟 → ∞. В качестве
примеров можно привести вихревой след за самолётом с крылом большого
удлинения, состоящий из двух вихревых трубок с противоположными цирку­
ляциями, и вихревое кольцо вертолёта. Особенность при 𝑟 → 0 устраняется за
счет того, что образующийся вихрь не является бесконечно тонким, а имеет
структуру. В случае, когда борновское приближение не предполагается, задача
для вихревой нити может быть поставлена корректно [29; 30; 33; 37].

Для корректной постановки в рамках борновского приближения задачи,
близкой к предыдущей, естественным вариантом видится выбор цилиндриче­
ского вихря, близкого к вихревой нити в ограниченной части пространства, но
с более быстрым затуханием окружной скорости. Отсюда встаёт вопрос о фи­
зических способах генерации таких вихрей. Данная проблема интересна и без
отсылки к задаче рассеяния, поскольку вихревая нить (1) в пространстве, или
точечный вихрь на плоскости, является одним из распространённых модельных
объектов в механике несжимаемой жидкости. Это объясняется высокой степе­
нью симметрии поля окружных скоростей (1) и тем, что оно является точным
решением как уравнений Эйлера, так и уравнений Навье–Стокса; в вязком слу­
чае для его поддержания необходим постоянный подвод энергии [10; 38]. При
этом, с точки зрения применения в постановке задачи рассеяния и её решения с
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высокой точностью по числам Маха, решение задачи о порождении вихря необ­
ходимо иметь для случая сжимаемого газа. Чтобы не иметь дело с особенностью
на оси, следует рассматривать вихрь с распределённой завихренностью.

Степень разработанности темы. Хорошо известны задача о диффузии
бесконечно протяжённой одиночной прямолинейной вихревой нити в безгранич­
ной несжимаемой жидкости с полем окружной скорости (1) [39] и обратная
задача создания поля скоростей (1) в ограниченной области пространства с
помощью вращения цилиндра нулевого радиуса [10]. Под действием сил вязко­
сти жидкость около цилиндра в первом случае будет тормозиться, а во втором
разгоняться. Характерная вязкая область будет расширяться со временем про­
порционально

√
𝑡.

Поскольку эволюция вихревых структур часто происходит в присутствии
твердых поверхностей, ряд работ посвящён исследованию диффузии для мо­
дельного случая — над прямолинейной подстилающей поверхностью в вязкой
ламинарной жидкости. Известны исследования эволюции одиночной вихревой
нити бесконечной протяженности над прямолинейной твёрдой поверхностью в
вязкой жидкости [40]; при этом неясно, возможно ли физически создать та­
кое начальное поле скоростей даже в ограниченной области: при вращении
цилиндра начнётся вязкое взаимодействие приведённой в движение жидкости с
поверхностью. Близкой конфигурацией, реализуемой на практике при пролёте
самолета с прямоугольным крылом большого удлинения вблизи поверхности
Земли, является пара вихревых нитей противоположной интенсивности над
твёрдой поверхностью. В этом случае вихри расположены на равной высоте
над поверхностью, которая за счёт взаимоиндукции со временем уменьшается.
В пределе, когда высота вихрей намного меньше расстояния между ними, такая
задача близка к задаче о диффузии одиночного вихря над плоскостью. В про­
тивоположном случае — к задаче о диффузии двух вихрей в неограниченном
пространстве, для которой существует асимптотическое решение при больших
числах Рейнольдса Re → ∞ [41]. Согласно [41], со временем циркуляция вихрей
уменьшается за счёт двух механизмов: аннигиляции завихренности при перехо­
де через линию симметрии в результате диффузии и «выброса» завихренности
за пределы замкнутой области, движущейся вместе с вихрями.

В случае идеальной жидкости задача о двух точечных вихрях вблизи
бесконечной плоскости решается применением теории потенциальных течений,
откуда получаются выражения для траекторий перемещения вихрей [42] (1.3).
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Рисунок 3 — Траектории движения двух точечных вихрей над бесконечной
плоскостью [43]

На больших временах вихри будут двигаться с постоянными скоростями в раз­
ные стороны параллельно плоскости (см. рисунок 3).

В лётных испытаниях [42], экспериментах в аэродинамической трубе [44]
и расчётных исследованиях для случая ламинарного течения вязкой жидкости
при больших числах Рейнольдса [45; 46] показано, что вихри, опустившись до
некоторого уровня, вместо движения параллельно поверхности начинают под­
ниматься вверх, отклоняясь от траектории в случае идеальной жидкости (см.
рисунок 3) существенно сильнее, чем предсказывает оценка вытесняющего дей­
ствия пограничного слоя. В [44] при числах Рейнольдса Re ∼ 105 обнаружено
торможение и, в некоторых случаях, разворот вихрей в горизонтальном направ­
лении. Причиной является отрыв пограничного слоя от твёрдой поверхности
вследствие сильного неблагоприятного градиента давления на определённом
участке (см. рисунок 7). В результате отрыва у поверхности образуются об­
ласти рециркуляционного течения («бабблы»), завихренность внутри которых
по знаку противоположна завихренности ближайшего вихря; в некоторый мо­
мент они отдаляются от поверхности, что приводит к качественной перестройке
картины течения. В [43] обнаружена особенность в решении уравнений Прандт­
ля, проявляющаяся в резком увеличении размеров рециркуляционной зоны и
предвещающая появление глобального отрыва. При численном решении задачи
в рамках уравнений Навье — Стокса отрыв пограничного слоя наблюдался в
диапазоне Re ∼ 103 ÷ 105 [46] и не наблюдался при Re ∼ 102 [45], при этом
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Рисунок 4 — Профиля продольной компоненты скорости в стационарном погра­
ничном слое вблизи точки отрыва 𝑥𝑠 [54]

«отскок» вихрей от поверхности имел место во всех случаях. При увеличе­
нии числа Рейнольдса характеристики течения приобретают более сложный,
немонотонный характер [46]. Качественно похожая картина наблюдалась при
других начальных конфигурациях вихрей: одиночной вихревой нити [40], вих­
ревого диполя с линейной связью между завихренностью и функцией тока [47],
вихревого кольца [48].

Явление стационарного отрыва пограничного слоя было описано Л.
Прандтлем [49]. Согласно критерию Прандтля, отрыв пограничного слоя про­
исходит в точке на твёрдой поверхности, в которой трение обращается в нуль
(рисунок 4). Позже Л. Д. Ландау и Е. М. Лифшицем [50] и С. Гольдштейном
[51] была обнаружена особенность в решении уравнений пограничного слоя при
приближении к точке отрыва, свидетельствующая о невозможности дальнейше­
го решения в рамках концепции слабого взаимодействия. Теория двумерного
стационарного отрыва с учётом сильного взаимодействия для сверхзвуковых
течений была построена В. Я. Нейландом [52], а для течений несжимаемой жид­
кости — В. В. Сычёвым [53]. В несжимаемой жидкости перед точкой отрыва
толщина пограничного слоя резко увеличивается, что приводит к появлению
добавочного градиента давления, ликвидирующего особенность; такой отрыв
называется самоиндуцированным и может быть разрешён только путём совмест­
ного решения уравнений Эйлера и уравнений Прандтля в окрестности точки
отрыва [53].

Отрыв пограничного слоя от поверхности Земли в области вихревого
следа будет существенно нестационарным из-за изменения положения вихрей
со временем. Физика нестационарного отрыва пограничного слоя значительно
сложнее, и соответствующая теория до сих пор не построена, несмотря на то,
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Рисунок 5 — Профиля продольной компоненты скорости, соответствующие друг
другу: а — в стационарном пограничном слое вблизи точки отрыва на поверх­
ности, движущейся вниз по потоку, б — в нестационарном пограничном слое

[54]

что это явление встречается во многих задачах. Предпринимались попытки све­
сти нестационарный отрыв пограничного слоя от неподвижной поверхности к
стационарному отрыву от подвижной поверхности, исследованному для случая
несжимаемой жидкости Вик. В. Сычёвым [55] (см. рисунки 5, 6) и С. Н. Ти­
мошиным [56]. Такой отрыв происходит в точке внутри пограничного слоя, в
которой продольная компонента скорости 𝑢 и трение 𝜕𝑢/𝜕𝑦 обращаются в нуль.
В [54] приведён критерий Мура–Ротта–Сирса [57—59] наступления соответству­
ющего нестационарного отрыва. Заметим, что более сложным является случай,
когда точка отрыва движется вниз по потоку (или твёрдая поверхность – вверх)
(рисунок 6), поскольку на течение в окрестности точки отрыва будут влиять воз­
мущения, приходящие из зоны возвратных токов [54]. Применение результатов
теории отрыва от движущейся поверхности к нестационарному отрыву ослож­
няется тем, что: 1) скорость точки отрыва неизвестна заранее [60]; 2) не всякое
течение можно представить как стационарное в некоторой системе координат.

Вышеописанные трудности относятся к получению решения в окрестности
точки нестационарного отрыва. Вместе с тем во многих течениях, в частности,
при нестационарном обтекании профиля на больших углах атаки [61] и обтека­



12

Рисунок 6 — Профиля продольной компоненты скорости, соответствующие друг
другу: а — в стационарном пограничном слое вблизи точки отрыва на поверх­
ности, движущейся вверх по потоку, б — в нестационарном пограничном слое

[54]

нии пластины с подвижной поверхностью [62—65], наблюдается более сложная
картина — глобальный нестационарный отрыв. Другим примером является вза­
имодействие вихревого следа за самолётом с поверхностью Земли в тех случаях,
когда полёт происходит на малой высоте. Рассмотрим эволюцию самолётных
вихрей в фиксированном сечении за удаляющимся самолётом. Благодаря вза­
имной индукции вихри сначала уменьшают свою высоту над поверхностью.
При этом на самой поверхности образуется нестационарный пограничный слой,
скорость на внешней границе которого растёт по мере опускания вихрей. В
некоторый момент происходит отрыв пограничного слоя. Завихренная жид­
кость отходит от твёрдой поверхности, образуя сложную вихревую систему
[66], взаимодействующую с самолётными вихрями. Вследствие этого картина
внешнего течения непрерывно меняется, и характеристики отрывной зоны бу­
дут существенно нестационарными. Отрыв пограничного слоя приводит к тому,
что самолётные вихри сперва начинают увеличивать свою высоту, и впослед­
ствии их координаты меняются немонотонно [66] [1].

Для реального турбулентного вихревого следа существуют расчётные ис­
следования с применением различных моделей турбулентности [67] [1]. Из-за
пространственной синусоидальной неустойчивости вихревых трубок в турбу­
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Рисунок 7 — Отрыв пограничного слоя от твёрдой поверхности, индуцирован­
ный вихревым течением [44]

лентной атмосфере в определённый момент происходит их перезамыкание в
вихревые кольца, после чего след быстро разрушается (см. рисунок 1). Ли­
нейная теория устойчивости развита в [68; 69]. Влияние бокового ветра и
температурная стратификация учтены в [46]. Турбулентный отрыв двумерно­
го пограничного слоя от шероховатой твёрдой поверхности рассмотрен в [70]
для пологого холма и в [71] для поверхности периодической формы. Снижение
турбулентного трения в пограничном слое за счёт использования податливых
покрытий обсуждается в [72].

Два противоположно закрученных вихря вблизи поверхности возникают,
помимо следа за самолётом, в некоторых неустойчивых течениях [43] — в те­
чении Куэтта между двумя вращающимися цилиндрами и в пограничном слое
на вогнутой поверхности из-за центробежной неустойчивости (вихри Гёртлера)
— и в турбулентных пограничных слоях.

Теория рассеяния акустических волн течениями газа развита в 1940-е
гг. Д. И. Блохинцевым [73] и в 1950-е гг. М. Дж. Лайтхиллом [23]. Д. И.
Блохинцев получил линейное уравнение для распространения малых акусти­
ческих возмущений в потенциальном потоке и показал предельный переход
к геометрической акустике в случае малых длин волн [73; 74]. Позже ана­
логичный результат был получен М. Хоу [24]. М. Дж. Лайтхилл рассмотрел
распространение звука в завихренной среде с малыми числами Маха в бор­
новском приближении и получил ряд общих выражений для интенсивности
рассеянной волны [23; 75; 76]. В борновском приближении, когда амплиту­
да рассеянной волны предполагается намного меньше амплитуды падающей,
уравнение Блохинцева–Хоу для суммарного акустического поля (суперпозиции
падающего и рассеянного) при заданном падающем поле сводится к неодно­
родному волновому уравнению для рассеянного поля. В качестве граничного
условия для волнового уравнения используется условие излучения Зоммер­
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фельда [77], согласно которому на больших расстояниях от вихря существуют
только волны, уходящие на бесконечность, и отсутствуют приходящие из бес­
конечности. Решение неоднородного волнового уравнения, удовлетворяющее
граничному условию излучения Зоммерфельда, представляется в виде свёртки
правой части уравнения с функцией Грина. Для корректно поставленной зада­
чи интеграл свёртки сходится, решение единственно [78] и в некоторой дальней
области («дальнем поле») имеет вид в трёхмерном случае сферической волны:

ρ𝑠𝑐𝑎𝑡 ∝ 𝑝𝑠𝑐𝑎𝑡 ∝
ei(𝑘𝑟3−ω𝑡)

𝑘𝑟3
𝑓3(θ3,φ3), 𝑣𝑠𝑐𝑎𝑡 ∝ 𝑟3ρ𝑠𝑐𝑎𝑡, (2)

а в двумерном — цилиндрической:

ρ𝑠𝑐𝑎𝑡 ∝ 𝑝𝑠𝑐𝑎𝑡 ∝
ei(𝑘𝑟−ω𝑡)

√
𝑘𝑟

𝑓(θ), 𝑣𝑠𝑐𝑎𝑡 ∝ 𝑟ρ𝑠𝑐𝑎𝑡. (3)

Здесь ρ𝑠𝑐𝑎𝑡, 𝑝𝑠𝑐𝑎𝑡, 𝑣𝑠𝑐𝑎𝑡 — возмущения плотности, давления и скорости в рассе­
янной волне; 𝑡 — время, 𝑟3 — радиус-вектор в трёхмерном пространстве, 𝑟3, θ3,
φ3 — сферические координаты, 𝑟 — радиус-вектор в двумерном пространстве,
𝑟, θ — полярные координаты; ω — угловая частота и 𝑘 — волновой вектор па­
дающей волны; 𝑟 = 𝑟/𝑟, 𝑟3 = 𝑟3/𝑟3 и 𝑘̂ = 𝑘/𝑘 — соответствующие единичные
вектора; 𝑓3(θ3,φ3) и 𝑓(θ) — амплитуды рассеяния. Степень затухания решений
(2) и (3) на бесконечности согласуется с условием сохранения потока энергии
[50] в трёхмерном и двумерном пространстве, соответственно.

В 1980-х гг. в рамках борновского приближения были найдены решения
в дальнем поле вида (2) или (3) для ряда частных трёхмерных и двумерных
задач рассеяния: с однородной плоской волной в качестве падающего акусти­
ческого поля для случая вихревого кольца [17; 79; 80], вихревой пары [81],
дорожки Кармана [82], вихря Хилла [83], вихря Тейлора (численно) [18], ди­
поля Лэмба–Чаплыгина [84].

Двумерная задача рассеяния однородной плоской волны на вихревой нити
(1) или на прямолинейном вихре со структурой с

Γ(𝑟) → const при 𝑟/𝑟* → ∞, где 𝑘𝑟* << 1, (4)

𝑘 — волновое число падающей волны, 𝑟* — характерный радиус вихря, иссле­
дуется с конца 1950-х гг. [11—22]. Для краткости в диссертации этой случай
именуется ПВТВ (плоская волна, точечный вихрь). Из литературы [11—22] из­
вестны два качественно отличных друг от друга решения, каждое из которых
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физически противоречиво. Более раннее, впервые полученное Л.П. Питаевским
[11] в 1958 г., в области 𝑘𝑟 → ∞ имеет вид цилиндрической волны (3) с ам­
плитудой рассеяния

𝑓(θ) ∝ cos θ ctg
θ

2
(5)

с особенностью в направлении падения волны θ = 0, т.е. на линии за вихрем
(рисунок 8а). С помощью различных подходов и для разных распределений
завихренности, выражение (5) было получено также в [12—18]. Второе решение,
в отличие от (5), не имеет особенностей, но и не сводится к виду (3), обладая
более сложной структурой; амплитуда рассеянной волны остаётся конечной на
сколь угодно больших расстояниях от вихря (рисунок 8б):

max
θ

|ρ𝑠𝑐𝑎𝑡| → const при 𝑘𝑟 → ∞. (6)

Данное решение было впервые получено П.В. Саковым в 1991 г. [19] и позднее
в [20—22]. Для краткости будем называть решение вида (5) выражением (i), а
решение со свойством (6) выражением (ii).

Γ
k θ

а)

Γ
k

kr→∞

б)
Рисунок 8 — Особые решения задачи рассеяния плоской акустической волны ци­
линдрическим вихрем (4): а — выражение (i), б — выражение (ii). Пунктирами

показаны особые зоны

Прямая подстановка в исходное уравнение показывает, что выражение (ii)
является его решением в главном приближении при 𝑘𝑟 → ∞, в то время как
выражение (i) нет: в главном приближении оно удовлетворяет однородному вол­
новому уравнению и, следовательно, является некорректным. Численные [15;
18; 85—89] и экспериментальные [33; 90—93] результаты для акустических волн и
волн на поверхности воды однозначно опровергают выражение (i) и качественно
подтверждают выражение (ii) в случаях, соответствующих борновскому при­
ближению (примеры показаны на рисунках 9, 10). При этом выражение (ii) не
удовлетворяет граничным условиям излучения. Оба выражения (i) и (ii) обла­
дают бесконечным потоком энергии. Решение вида цилиндрической волны (3)
без особенностей до сих пор неизвестно.
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а) б)
Рисунок 9 — Наблюдаемое акустическое поле ρ𝑖𝑛𝑐 + ρ𝑠𝑐𝑎𝑡: а — эксперимент [92],

б — расчёт [94]

а) б)
Рисунок 10 — Диаграмма направленности 𝑓(θ): а — эксперимент [90], б — расчёт

[18]

Парадоксальные свойства выражений (i) и (ii) обусловлены некоррект­
ностью задачи рассеяния плоской волны вихревой нитью [18; 34; 36; 37].
Некорректность связана с медленным затуханием на бесконечности правой ча­
сти волнового уравнения, пропорциональной 𝑟−1 при 𝑟/𝑟* → ∞, вследствие чего
взаимодействие волны с вихрем существенно во всём пространстве; дальнее
поле, в котором решение имело бы вид (3) и удовлетворяло условию излу­
чения, отсутствует. Постановка условия излучения несмотря на физические
противоречия приводит к выражению (i), а постановка других граничных усло­
вий — к выражению (ii). Вместе с тем И.В. Беляев и В.Ф. Копьёв отмечают
некорректность каждой из постановок, использующей борновское приближе­
ние [37]. Действительно, во всех случаях неявно используются дополнительные
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предположения, которым само решение (ii) не удовлетворяет. В [19] решение
представляется через расходящийся интеграл, значение которого зависит от
способа вычисления. В [20; 21] вместо условия уходящих волн выставляется
условие причинности: к волновому числу падающей волны прибавляется бес­
конечно малая положительная мнимая часть. Условие причинности следует
из принципа предельного поглощения [78], эквивалентного условию излучения;
при этом неявно предполагается затухание рассеянной волны на бесконечности,
что противоречит решению (6). Известные решения, полученные без использо­
вания борновского приближения, соответствуют выражению (ii). Так, решение
[29; 33] воспроизводит выражение (ii) во всём пространстве. Решение [37], по­
лученное при замене плоской волны цилиндрической волной, индуцируемой
точечным источником, расположенным на конечном расстоянии 𝑅0 от вихря,
воспроизводит выражение (ii) в области 𝑟 << 𝑅0.

Некорректность постановки является специфическим свойством именно
задачи рассеяния плоской волны вихревой нитью, не имеющим аналогов в трёх­
мерном случае [95] и в случае двумерного течения без циркуляции [16]. Плоская
волна с фронтом бесконечной ширины, как и вихревая нить, не может суще­
ствовать в реальности, поскольку обладает бесконечным потоком энергии. При
постановке физического эксперимента плоская волна и поле скоростей, индуци­
руемое вихревой нитью, могут быть созданы только в ограниченной области.
Наблюдаемое рассеянное поле будет зависеть от конкретного вида падающей
волны и течения и может быть разным в разных реализациях [22]. В численном
эксперименте неоднозначность проявляется при постановке граничных условий.
В [36] предложено ограничить область взаимодействия для того, чтобы сделать
возможной постановку условия излучения: домножить поле скоростей вихря на
exp(−𝑟/𝐿) или поле падающей волны на exp(−𝑦2/𝐿2), где 𝑦 = 𝑟 sin θ — декар­
това координата вдоль волнового фронта, 𝐿 — некоторый линейный масштаб.
В обоих случаях было получено регулярное решение вида (3); вместе с тем в
пределе 𝐿 → ∞, соответствующем случаю плоской волны и вихревой нити, каж­
дое из решений было близко к некорректному выражению (i) вместо (ii). В [34]
предложено ограничить вихревую нить областью покоящегося газа при 𝑟 > 𝐿.

Поле скоростей цилиндрического вихря (1) с Γ = Γ* exp(−𝑟/𝐿) из рабо­
ты [36] близко к полю скоростей вихревой нити с Γ = Γ* в области 𝑟 << 𝐿 и
экспоненциально затухает в области 𝑟 >> 𝐿. Такой вихрь представляет собой
вихревую нить с циркуляцией Γ*, окружённую противоположно завихренным
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слоем с суммарной циркуляцией −Γ*. Исходя из этих соображений, оно подхо­
дит для постановки задачи рассеяния. Недостатком является отсутствие ясного
механизма генерации такого течения. Между тем, цилиндрический вихрь (1) с
Γ = Γ* exp(−𝑟2/𝐿2) обладает аналогичными свойствами и может быть образо­
ван при вращении вокруг своей оси в вязкой несжимаемой жидкости бесконечно
протяжённого бесконечно тонкого кругового цилиндра. Эффективный радиус
вихря при этом увеличивается со временем как 𝐿 = 2

√
ν∞𝑡, где ν∞ — кине­

матический коэффициент вязкости. Решение данной задачи легко получается
из решения задачи о диффузии точечного вихря [10], известного с 1912 г. [96].
Вместе с тем обобщение на случай вязкого сжимаемого газа, необходимое для
решения задачи рассеяния звука в высших приближениях, до сих пор не было
известно. Л. Мэк в 1960 г. построил стационарное решение для вихря, который
мог бы возникнуть в сжимаемом газе при бесконечно долгом вращении круго­
вого цилиндра [97]. Поле скоростей данного вихря затухает пропорционально
𝑟−1 при 𝑟 → ∞ и представляет собой обобщение вихревой нити в несжимаемой
жидкости; задача рассеяния для него также была бы некорректно поставлен­
ной. Решение задачи о порождении вихря вращающимся в сжимаемом газе
круговым цилиндром должно быть близким к решению Мэка в ближней об­
ласти 𝑟 << 𝐿. Приведём ещё несколько работ, посвящённых исследованиям
течения жидкости вблизи цилиндра. В [10; 98] исследовались нестационарное
и предельное стационарное течение, порождаемые вращающимся цилиндром с
заданным расходом жидкости через его поверхность. Задачи, связанные с взаи­
модействием набегающего потока с вращающимся цилиндром, рассмотрены во
многих публикациях, например, [98—100]. В [101; 102] изучалась устойчивость
подвижного цилиндра в циркуляционном потоке. В [103] экспериментально и
численно исследован эффект снижения лобового сопротивления цилиндра при
турбулентном обтекании потоком с большими числами Маха.

Целью данной работы является выявление механизмов и определение
характеристик диффузии и генерации вихрей в вязкой среде в присутствии
твёрдых границ и взаимодействия вихрей с акустическими возмущениями на
примере двух реализуемых на практике конфигураций.

Для достижения поставленной цели решены следующие задачи:
1. Определение сценариев эволюции пары прямолинейных вихревых ни­

тей с равной по модулю и противоположной по знаку циркуляцией в
вязкой несжимаемой жидкости вблизи твёрдой поверхности.
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2. Определение асимптотических характеристик течения, возникающего в
вязком сжимаемом газе при вращении кругового цилиндра, на больших
временах при больших числах Рейнольдса в предположении осесиммет­
ричности.

3. Определение асимптотических характеристик взаимодействия плоской
акустической волны с цилиндрическим вихрем из задачи 2 в невязком
совершенном газе в случае, когда характерные числа Маха малы, а
эффективный радиус вихря велик по сравнению длиной волны.

4. Определение асимптотических характеристик взаимодействия плоской
акустической волны с вихревой парой вблизи твёрдой поверхности из
задачи 1 в невязком совершенном газе в случае, когда характерные
числа Маха малы, а расстояние между вихрями и высота вихрей над
поверхностью велики по сравнению длиной волны.

Научная новизна:
1. Впервые дано описание локальной структуры нестационарного отрыва

пограничного слоя, происходящего при взаимодействии вихрей с твёр­
дой поверхностью.

2. Впервые построено решение задачи о порождении вихря вращающимся
цилиндром с учётом сжимаемости, удовлетворяющее условию зату­
хания возмущений на бесконечности. Обнаружено явление «скачка
циркуляции»: в сжимаемом газе с коэффициентом вязкости, зависящим
от температуры, внутренний предел внешнего решения для циркуля­
ции скорости в общем случае отличается от значения циркуляции на
поверхности цилиндра.

3. Впервые получено решение, включающее в себя в качестве предельных
случаев в различных асимптотических областях оба известных реше­
ния классической задачи взаимодействия плоской акустической волны
с вихревой нитью.

4. Получено решение в дальнем поле задачи взаимодействия течения с
акустическими возмущениями нового типа: рассеянная волна, отличная
от цилиндрической и удовлетворяющая условию излучению Зоммер­
фельда.
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Теоретическая и практическая значимость:
1. Качественное описание отрыва пограничного слоя в задаче об эволю­

ции вихрей над твёрдой поверхностью может послужить опорой для
развития теории нестационарного ламинарного отрыва.

2. Физическая интерпретация обнаруженных эффектов, таких, как «ска­
чок циркуляции» в задаче о порождении вихря, может быть полезной
для понимания физики более сложных течений сжимаемого газа с пе­
ременной вязкостью.

3. Установленные асимптотические решения для задачи о порождении
вихря вращающимся цилиндром и для задачи о взаимодействии зву­
ка с цилиндрическим вихрем могут быть использованы для валидации
численных методов и интерпретации соответствующих экспериментов.

4. Анализ решения задачи взаимодействия плоской акустической волны с
экспоненциально затухающим цилиндрическим вихрем показывает, ка­
кое из двух известных решений для случая вихревой нити реализуется
в физическом и численном эксперименте.

5. Новый масштаб длины, характерный для решения задачи взаимодей­
ствия звука с экспоненциально затухающим цилиндрическим вихрем
и превосходящий как длину акустической волны, так и эффективный
радиус вихря, определяет минимальный размер области, которую необ­
ходимо разрешать в физическом или численном эксперименте.

Методология и методы исследования:
1. Асимптотические методы решения уравнений в частных производных

и вычисления интегралов с малым параметром, в том числе метод сра­
щиваемых асимптотических разложений и метод перевала.

2. Методы программ символьной математики.
3. Конечно-объёмные и конечно-разностные алгоритмы численного реше­

ния уравнений Навье–Стокса.
Основные положения, выносимые на защиту:
1. Сценарий нестационарного ламинарного отрыва пограничного слоя при

взаимодействии вихрей с твёрдой поверхностью.
2. Асимптотическое решение задачи о порождении цилиндрического вих­

ря вращающимся круговым цилиндром в вязком сжимаемом газе на
больших временах.
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3. Асимптотическое решение задачи рассеяния плоской волны цилин­
дрическим вихрем с экспоненциально затухающим полем скорости в
коротковолновом приближении.

4. Асимптотическое решение в дальнем поле задачи рассеяния плоской
волны вихревой парой вблизи твёрдой поверхности.

Достоверность полученных результатов обеспечивается
1. Использованием классических уравнений гидродинамики, уравнений

Навье–Стокса и линеаризованных уравнений Эйлера, с применением
общепринятых методов интегрирования.

2. Согласованием асимптотических и численных решений в соответству­
ющих областях пространства.

3. Согласованием с хорошо апробированными решениями других авторов
в соответствующих пределах и диапазонах параметров.

Апробация работы. Основные результаты работы докладывались соис­
кателем лично на следующих конференциях и семинарах:

1. 58-я, 59-я, 60-я, 61-я, 62-я, 63-я научные конференции МФТИ (г. Жу­
ковский, 2015, 2016, 2017, 2018, 2019, 2020)

2. XXVII, XXVIII, XIX, XXX, XXXI научно-технические конференции по
аэродинамике (п. Володарского, 2016, 2017; д. Богданиха, 2018; п. Во­
лодарского, 2019, парк-отель Яхонты, 2020)

3. XVI Международная школа-семинар «Модели и методы аэродинами­
ки» (г. Евпатория, 2016)

4. Международные конференции по дифференциальным уравнениям и
динамическим системам (г. Суздаль, 2018, 2020)

5. XIX Международная конференция по методам аэрофизических иссле­
дований (ICMAR 2018, г. Новосибирск, 2018)

6. Седьмая всероссийская конференция с международным участием «Теп­
ломассообмен и гидродинамика в закрученных потоках» (г. Рыбинск,
2019)

7. IX Международная конференция «Лаврентьевские чтения по матема­
тике, механике и физике» (г. Новосибирск, 2020)

8. 11-я международная конференция — школа молодых учёных «Волны
и вихри в сложных средах» (г. Москва, 2020)

9. Международная научная конференция по механике «IX Поляховские
чтения» (г. Санкт-Петербург, 2021)
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10. 25th International Congress of Theoretical and Applied Mechanics (г. Ми­
лан, Италия, 2021)

11. Седьмая Открытая Всероссийская (XIX научно-техническая) конфе­
ренция по Аэроакустике (г. Геленджик, 2021)

12. Семинар по механике сплошных сред под руководством А.Г. Куликов­
ского, В.П. Карликова, О.Э. Мельника, А. Н. Осипцова (г. Москва,
НИИ механики МГУ, 12 мая 2021)

13. Видеосеминар по аэромеханике ЦАГИ — ИТПМ СО РАН — СПбГПУ
— НИИМ МГУ (г. Жуковский, ЦАГИ, 7 сентября 2021)

Личный вклад. Результаты глав 1 и 3 получены соискателем самостоя­
тельно под руководством А. М. Гайфуллина. Вклад соискателя в работы [1—5]
составляет 4/5. Результаты главы 2 получены совместно с А. М. Гайфуллиным
и А. В. Зубцовым. Вклад соискателя в работы [6—9] составляет 1/3.

Публикации. Основные результаты по теме диссертации изложены
в 9 печатных изданиях, 3 из которых изданы в журналах, рекомендованных
ВАК, 9 — в периодических научных журналах, индексируемых Web of Science
и Scopus, 6 — в тезисах докладов.

Соответствие паспорту специальности. Содержание диссертации со­
ответствует паспорту специальности 01.02.05 «Механика жидкости, газа и
плазмы» по следующим пунктам:

− п. 4: течения сжимаемых сред и ударные волны;
− п. 11: пограничные слои, слои смешения, течения в следе;
− п. 14: линейные и нелинейные волны в жидкостях и газах;
− п. 15: тепломассоперенос в газах и жидкостях;
− п. 18: аналитические, асимптотические и численные методы исследова­

ния уравнений кинетических и континуальных моделей однородных и
многофазных сред (конечно-разностные, спектральные, методы конеч­
ного объема, методы прямого моделирования и др.).

Объем и структура работы. Диссертация состоит из введения, 3 глав,
заключения и 1 приложения. Полный объём диссертации составляет 120 стра­
ниц, включая 40 рисунков и 2 таблицы. Список литературы содержит 128
наименований.

Содержание работы:
Во введении дана общая характеристика работы и приведён обзор ис­

пользуемых источников литературы.
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В главе 1 на примере задачи о паре точечных вихрей с равными по
модулю и противоположными по знаку циркуляциями вблизи бесконечной плос­
кой твёрдой поверхности исследована диффузия вихрей в вязкой несжимаемой
жидкости в присутствии твёрдых границ. Описана математическая постанов­
ка задачи в рамках нестационарных двумерных уравнений Навье–Стокса.
Приведены начальное условие в момент времени 𝑡 = 0 для поля скорости,
индуцируемого вихревой парой и отражением вихревой пары относительно
твёрдой поверхности, и граничные условия: условие прилипания на твёрдой
поверхности, условие отсутствия особенностей при 𝑡 > 0 и условие затуха­
ния поля скорости на бесконечности. Представлено асимптотическое решение
задачи на малых временах при больших числах Рейнольдса для случая лами­
нарного течения и определены границы его применимости. Сформулирована
численная постановка задачи на больших временах на основе полных уравне­
ний Навье–Стокса. Показано, что пограничный слой терпит отрыв от твердой
поверхности. Приведены поля завихренности и линии тока в различные момен­
ты времени, а также профиль продольной скорости вблизи твёрдой поверхности
в точке отрыва. Показано, что отрыв пограничного слоя является глобальным
и нестационарным. Определена эволюция областей с замкнутыми линиями то­
ка, возникающих за точкой отрыва. Установлено изменение динамики вихрей в
результате взаимодействия вихрей с завихренностью, отходящей от твёрдой по­
верхности. Циркуляция вихрей уменьшается со временем значительно быстрее,
чем в задаче о диффузии пары точечных вихрей в несжимаемой жидкости без
твёрдых границ. Траектории движения центров вихрей на больших временах
качественно отличаются от случая идеального безотрывного течения: вместо
движения параллельно поверхности с постоянной скоростью вихри отдаляются
от поверхности, а скорость их движения со временем уменьшается.

В главе 2 рассмотрена двумерная задача о вихре, возникающем при
вращении круга (бесконечно протяжённого кругового цилиндра) в вязком
теплопроводном сжимаемом совершенном газе с линейной зависимостью ко­
эффициентов динамической вязкости и теплопроводности от температуры.
Сформулирована постановка задачи в рамках осесимметричных уравнений На­
вье–Стокса сжимаемого газа с начальным условием в виде невозмущённого
газа, условиями прилипания и изотермичности на поверхности цилиндра и
условием затухания возмущений на бесконечности. Получено асимптотическое
решение при больших числах Рейнольдса на больших временах, на которых
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характерный размер вязкой области
√
ν∞𝑡, где ν∞ – кинематический коэффи­

циент вязкости невозмущённого газа, намного превосходит радиус цилиндра
𝑟*. Решение во внутренней 𝑟 ∼ 𝑟* и внешней 𝑟 ∼

√
ν∞𝑡 областях представлено

в виде ряда по параметру 𝑟*/
√
ν∞𝑡 → 0. С помощью принципа сращивания

и метода мультипликативного составления построено равномерно пригодное ре­
шение с точностью до членов второго порядка малости. Показано, что в области
𝑟 ∼ 𝑟* решение в главном приближении стационарно. Обнаружена немонотон­
ная зависимость циркуляции окружной скорости от радиальной координаты,
что качественно отличает случай сжимаемого газа с переменной вязкостью от
случая несжимаемой жидкости, в котором циркуляция во внутренней области
постоянна. В области 𝑟 ∼

√
ν∞𝑡 решение в главном приближении автомодель­

но. Показано, что решение для циркуляции совпадает с решением в случае
несжимаемой жидкости с точностью до постоянного множителя, причём цир­
куляция в газе с возрастающей зависимостью коэффициента динамической
вязкости от температуры при температуре поверхности цилиндра выше или
равной температуре невозмущённого газа строго больше циркуляции в несжима­
емой жидкости. При числах Маха 𝑀 << 1 уравнения в главном приближении
линейны и решение получено в аналитическом виде. При 𝑀 = 𝑂(1) уравнения
линейны только во внешней области; во внутренней области решение получе­
но численным интегрированием обыкновенных дифференциальных уравнений.
Представлена валидация асимптотического решения численным интегрирова­
нием полных уравнений Навье–Стокса.

В главе 3 рассмотрены две задачи о взаимодействии стационарных
вихревых течений невязкого сжимаемого совершенного газа с плоской моно­
хроматической звуковой волной малой амплитуды. Использовано приближение
малых чисел Маха, в котором течение удовлетворяет уравнениям Эйлера несжи­
маемой жидкости. Решение представлено в виде суперпозиции поля вихревого
течения и падающего акустического поля, заданных по условию, и искомого
рассеянного поля. В борновском приближении, при котором амплитуда рас­
сеянной волны предполагается малой по сравнению с амплитудой падающей
волны, уравнения Эйлера сжимаемого газа сводятся к волновому уравнению
с источником известного вида. В случае периодического по времени решения
волновое уравнение сводится к уравнению Гельмгольца, решение которого с
граничным условием излучения Зоммерфельда представлено в виде свёртки
источникового члена с функцией Грина. Определено условие существования и
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единственности решения: поле скорости течения должно затухать на бесконеч­
ности быстрее, чем 𝑟−3/2.

В первой задаче рассмотрен случай цилиндрического вихря с распре­
делением циркуляции по радиусу пропорциональным exp(−𝑟2/𝐿2), который
может быть создан продолжительным вращением кругового цилиндра в вяз­
кой несжимаемой жидкости, что соответствует вихрю из главы 2 при 𝑀 = 0.
В области 𝑟 << 𝐿 такой вихрь близок к потенциальному вихрю, для которого
задача рассеяния плоской волны в борновском приближении не может быть
поставлена корректно. С помощью асимптотического вычисления интеграла
свёртки рассчитано рассеянное поле в главном приближении при λ/𝐿 → 0,
где λ – длина акустической волны. Результаты подтверждаются численным
интегрированием. Определена асимптотическая структура решения. В области
𝑟 >> 𝐿2/λ получено решение вида уходящей на бесконечность цилиндриче­
ской волны с максимумом амплитуды на малых углах рассеяния 𝑂(λ/𝐿). В
области 𝑟 = 𝑂(𝐿2/λ) амплитуда волны сохраняет порядок. Таким образом,
обнаружен характерный пространственный масштаб 𝐿2/λ, превосходящий как
эффективный радиус вихря 𝐿, так и длину волны. Произведено сравнение с
двумя качественно отличными друг от друга выражениями, известными из
попыток решения задачи рассеяния плоской волны потенциальным вихрем.
Показано, что каждое из выражений совпадает с главным приближением по­
лученного решения в некоторой асимптотической области.

Во второй задаче рассмотрен случай двух точечных вихрей с противопо­
ложными циркуляциями вблизи бесконечной плоской твёрдой поверхности из
главы 1, причём звуковая волна исходит от источников на поверхности. Вих­
ри считаются неподвижными. Получено асимптотическое решение в дальнем
поле. Показано, что, в отличие от задач рассеяния в пространстве без твёрдых
границ, амплитуда рассеяния является комплекснозначной величиной и линии
волнового фронта отличны от окружностей.

В приложении А описано вычисление интеграла свёртки в области 𝑟 =

𝑂(𝐿2/λ) из первой задачи главы 3 с помощью метода перевала.
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Глава 1. Эволюция вихревой пары вблизи твёрдой поверхности

Результаты главы опубликованы в работах [1—3].

1.1 Постановка задачи

Рассмотрим плоское нестационарное течение вязкой несжимаемой жидко­
сти при условии, что в начальный момент времени 𝑡 = 0 имеется поле скоростей,
которое индуцируют два точечных вихря с интенсивностями ±Γ0 и координа­
тами 𝑦 = ℎ, 𝑥 = ±𝑙 над твердой поверхностью 𝑦 = 0. Будем считать, что
правый вихрь положителен, т. е. жидкость вокруг него вращается против часо­
вой стрелки. Введем обозначения 𝑢, 𝑣 — компоненты скорости вдоль осей 𝑥, 𝑦;
Ω — завихренность; Re = Γ0/ν∞ — число Рейнольдса, ν∞ — кинематический
коэффициент вязкости. Определим безразмерные величины 𝑥 = 𝑥/𝑙, 𝑦 = 𝑦/𝑙,
ℎ = ℎ/𝑙, 𝑡 = Γ0𝑡/𝑙

2, 𝑢 = 𝑢𝑙/Γ0, 𝑣 = 𝑣𝑙/Γ0, Ω = 𝑙2Ω/Γ0. Чёрточки в дальнейшем
будут опущены. Характеристики течения должны удовлетворять уравнениям
для несжимаемой жидкости

𝜕Ω

𝜕𝑡
+ 𝑢

𝜕Ω

𝜕𝑥
+ 𝑣

𝜕Ω

𝜕𝑦
=

1

Re

(︂
𝜕2Ω

𝜕𝑥2
+

𝜕2Ω

𝜕𝑦2

)︂
,

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,

𝜕𝑣

𝜕𝑥
− 𝜕𝑢

𝜕𝑦
= Ω.

(1.1)

Начальное условие для уравнений (1.1) соответствует полю скоростей от
двух вихрей над плоскостью и двух фиктивных отраженных вихрей. Комплекс­
но сопряженная скорость в точке 𝑧 = 𝑥 + 𝑖𝑦 при 𝑡 = 0 будет определяться
соотношением

𝑢− 𝑖𝑣 =
1

2π𝑖

(︂
1

𝑧 − 1− 𝑖ℎ
− 1

𝑧 + 1− 𝑖ℎ
+

1

𝑧 + 1 + 𝑖ℎ
− 1

𝑧 − 1 + 𝑖ℎ

)︂
В силу симметрии можно решать систему уравнений (1.1) только в правой

полуплоскости. Перейдем к постановке граничных условий при 𝑡 > 0. Условие
на оси симметрии:

𝑢 = 0 при 𝑥 = 0.
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Условие прилипания на твердой поверхности:

𝑢 = 𝑣 = 0 при 𝑦 = 0.

Условие затухания скорости на бесконечности:

𝑢2 + 𝑣2 → 0 при 𝑥2 + 𝑦2 → ∞.

Условие отсутствия во всем течении особенностей в скорости:

𝑢2 + 𝑣2 < ∞.

Решение задачи зависит от двух параметров — числа Re и начальной от­
носительной высоты вихрей ℎ. Исследования ограничивались случаем Re >> 1

и ℎ = 𝑂(1).

1.2 Решение на малых временах

Легко анализируется движение двух дискретных вихрей над твердой по­
верхностью в идеальной жидкости. Если 𝑥𝑣 (𝑡), 𝑦𝑣 (𝑡) — координаты правого
вихря, то

𝑑𝑥𝑣
𝑑𝑡

=
1

4π

𝑥2𝑣
𝑦𝑣 (𝑥2𝑣 + 𝑦2𝑣)

,
𝑑𝑦𝑣
𝑑𝑡

= − 1

4π

𝑦2𝑣
𝑥𝑣 (𝑥2𝑣 + 𝑦2𝑣)

. (1.2)

Отсюда определяется связь между координатами вихря

𝑥−2
𝑣 + 𝑦−2

𝑣 = 1 + ℎ−2. (1.3)

Из соотношений (1.2) и (1.3) следует, что с течением времени абсцисса вихря
увеличивается, а ордината уменьшается. Кроме того, при больших 𝑡 вихрь дви­
жется на некоторой постоянной высоте 𝑦𝑣 = ℎ/

√
1 + ℎ2, а расстояние до оси

симметрии растёт пропорционально времени.
Рассмотрим теперь эволюцию вихрей в вязкой жидкости. Основная труд­

ность при численном интегрировании уравнений (1.1) с соответствующими
граничными условиями заключается в том, что поле завихренности при 𝑡 = 0

имеет особенность при приближении к вихрям и к твердой поверхности. Вместе
с тем на малых временах влияние вязкости будет локализовано вблизи центров



28

вихрей и твердой поверхности. Размеры вязких областей будут расти пропор­
ционально

√︀
𝑡/Re, т. е. будут намного меньше размера области, в которой

происходит перемещение вихрей. Поэтому наличие вязких областей будет слабо
сказываться на траектории центров вихрей, она по-прежнему будет близка к ре­
шению уравнения (1.2). В самих вязких областях для описания характеристик
течения можно использовать вместо уравнений (1.1) уравнения пограничного
слоя. Таким образом, на малых временах завихренность вблизи вихря будет
диффундировать так же, как в классической задаче одиночного вихря

Ω =
Re

4π𝑡
𝑒−𝑟2 Re/4𝑡, (1.4)

где 𝑟 =
√︁

(𝑥− 𝑥𝑣)
2 + (𝑦 − 𝑦𝑣)

2. Около твердой поверхности в главном прибли­
жении имеем

𝑡
𝜕𝑢

𝜕𝑡
− 1

2
𝑦1

𝜕𝑢

𝜕𝑦1
+ 𝑡𝑢

𝜕𝑢

𝜕𝑥
+ 𝑡𝑣1

𝜕𝑢

𝜕𝑦1
= 𝑡

𝜕𝑢𝑒
𝜕𝑡

+ 𝑡𝑢𝑒
𝜕𝑢𝑒
𝜕𝑥

+
𝜕2𝑢

𝜕𝑦21
,

𝜕𝑢

𝜕𝑥
+

𝜕𝑣1
𝜕𝑦1

= 0.

(1.5)

Здесь 𝑦1 = 𝑦/δ, 𝑣1 = 𝑣/δ, 𝑢𝑒 (𝑥, 𝑡) — скорость, которую индуцируют вихри
на твердой поверхности, δ =

√︀
𝑡/Re — безразмерная толщина пограничного

слоя. Граничные условия для уравнений (1.5): условие прилипания при 𝑦1 = 0,
условие выхода на внешнее невязкое решение 𝑢 (𝑥, 𝑦1, 𝑡) = 𝑢𝑒 (𝑥, 𝑡) при 𝑦1 → ∞
и условие симметрии 𝑢 = 0 при 𝑥 = 0. Кроме того, при 𝑡 = 0 из (1.5) следует

𝜕2𝑢

𝜕𝑦21
+

1

2
𝑦1

𝜕𝑢

𝜕𝑦1
= 0,

откуда получаем начальное условие

𝑢(𝑥, 𝑦1, 0) =
𝑢𝑒(𝑥, 0)√

π

𝑦1∫︁
0

𝑒−𝑦21/4 𝑑𝑦1.

Поле завихренности, которое возникло вблизи центров вихрей (точек с
максимальной по модулю завихренностью) и твердой поверхности, определяет
скорости перемещения вихрей. Поле скоростей, индуцированное завихренно­
стью около вихрей, будет аналогично полю от точечных вихрей. Пограничный
слой около твердой поверхности будет оказывать вытесняющее действие,
которое эквивалентно распределенным по поверхности источникам с интенсив­
ностью

2
Γ0

𝑙

𝑑

𝑑𝑥
(𝑢𝑒δ

*),
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где

δ* =

√︂
𝑡

Re

∞∫︁
0

(︂
1− 𝑢

𝑢𝑒

)︂
𝑑𝑦1.

Таким образом, изменение координаты правого вихря определяется соотноше­
нием

𝑑𝑧𝑣
𝑑𝑡

=
1

4π𝑖

(︂
− 1

𝑥𝑣
+

1

𝑧𝑣
+

𝑖

𝑦𝑣

)︂
+

1

π

∞∫︁
−∞

𝑑
𝑑ξ (𝑢𝑒 (ξ) δ

* (ξ))

𝑧𝑣 − ξ
𝑑ξ, (1.6)

где 𝑧𝑣 = 𝑥𝑣 + 𝑖𝑦𝑣, 𝑧𝑣 (0) = 1 + 𝑖ℎ.
Результаты численного решения уравнений (1.5) и (1.6) показывают, что

по мере опускания вихрей профиль горизонтальной составляющей скорости в
пограничном слое становится менее наполненным, и в некоторый момент време­
ни 𝑡 = 𝑡𝑠 в точке на твердой поверхности 𝑥 = 𝑥𝑠 производная 𝜕𝑢/𝜕𝑦1 обращается
в нуль (предотрывное течение). При Re = 1000 и высоте ℎ = 1 получается
𝑡𝑠 ≈ 4, а при ℎ = 2 момент обращения в нуль трения наступает значительно
позже — 𝑡𝑠 ≈ 14. Результаты близки к результатам работы [43], где при ℎ = 1

получается 𝑡𝑠 ≈ 3.93.
Решение уравнений (1.5) на временах 𝑡 > 𝑡𝑠 при 𝑥 ≈ 𝑥𝑠 и 𝑥 > 𝑥𝑠 невозмож­

но. Вместе с тем, нет необходимости производить расчет и до 𝑡 = 𝑡𝑠. Разделение
на области было произведено из-за необходимости устранения особенностей в
распределении завихренности. Поэтому расчет уравнений пограничного слоя
производился до времени 𝑡 = 𝑡0 < 𝑡𝑠.

1.3 Решение на больших временах

Начиная с момента 𝑡 = 𝑡0 и до рейнольдсовски больших времен, на кото­
рых циркуляция вихрей сильно уменьшается [41], решение задачи определяется
из совместного решения ее в разных областях.

Введем функцию тока 𝑢 = 𝜕ψ/𝜕𝑦, 𝑣 = −𝜕ψ/𝜕𝑥. В области

0 ⩽ 𝑥 ⩽ 𝑥𝑘,
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0 ⩽ 𝑦 ⩽ 𝑦𝑘 численное интегрирование уравнений (1.1) производится в пере­
менных Ω, ψ

𝜕Ω

𝜕𝑡
+

𝜕ψ

𝜕𝑦

𝜕Ω

𝜕𝑥
− 𝜕ψ

𝜕𝑥

𝜕Ω

𝜕𝑦
=

1

Re

(︂
𝜕2Ω

𝜕𝑥2
+

𝜕2Ω

𝜕𝑦2

)︂
,

𝜕2ψ

𝜕𝑥2
+

𝜕2ψ

𝜕𝑦2
= −Ω.

(1.7)

При 𝑥 > 𝑥𝑘 вблизи твердой поверхности в главном приближении справедливы
уравнения пограничного слоя (1.5). На практически всем участке пограничного
слоя безразмерная толщина его по-прежнему растет пропорционально

√︀
𝑡/Re ,

и, следовательно, при 𝑡/Re = 𝑂(1) толщина δ = 𝑂(1), т. е. толщина погра­
ничного слоя становится порядка размера расчетной области 𝑦𝑘 для уравнений
(1.7). Влияние пограничного слоя при 𝑥 > 𝑥𝑘 на характеристики течения в об­
ласти 0 ⩽ 𝑥 ⩽ 𝑥𝑘 может оказаться существенным, и поэтому его следует учесть
при решении уравнений (1.7).

Определим граничные условия для уравнений (1.7) и (1.5). Для первого
уравнения из системы (1.7) на линии симметрии 𝑥 = 0 ставится условие Ω = 0.
Размер расчетной области 𝑦𝑘 должен быть достаточно большим, поэтому при
𝑦 = 𝑦𝑘 считается, что течение в главном приближении незавихренно — Ω = 0.
На линии 𝑥 = 𝑥𝑘 ставится мягкое граничное условие 𝜕Ω/𝜕𝑥 = 0 и, наконец, на
твердой границе 𝑦 = 0 ставится условие прилипания. В численной реализации
условие прилипания аппроксимируется условием Тома [104]. Начальное распре­
деление Ω соответствует взятому в момент 𝑡 = 𝑡0 решению задачи на малых
временах, т. е. суперпозиции решения уравнений (1.5) для пограничного слоя
и решения (1.4) для вихрей.

Для второго уравнения (1.7) линии 𝑥 = 0 и 𝑦 = 0 будем считать соответ­
ствующими нулевой линии тока ψ = 0. На двух линиях 𝑥 = 𝑥𝑘 и 𝑦 = 𝑦𝑘

ψ (𝑥, 𝑦, 𝑡) = − 1

4π

∞∫︁
−∞

∞∫︁
−∞

Ω (ξ,η, 𝑡) ln
[︁
(𝑥− ξ)2 + (𝑦 − η)2

]︁
𝑑ξ 𝑑η,

где интегрирование ведется по всей плоскости −∞ < 𝑥 < ∞, −∞ < 𝑦 <

∞, причем считается, что в полуплоскости 𝑦 < 0 завихренность распределена
следующим образом:

Ω (𝑥, 𝑦, 𝑡) = −Ω (𝑥,−𝑦, 𝑡) .
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Для уравнений (1.5) ставятся условия 𝑢 (𝑥, 0, 𝑡) = 0, 𝑢 (𝑥,∞, 𝑡) = 𝑢𝑒 (𝑥, 𝑡);
𝑢 (𝑥𝑘, 𝑦1, 𝑡) соответствует профилю скорости, получаемому из решения систе­
мы уравнений (1.7) при 𝑥 = 𝑥𝑘. Здесь 𝑢𝑒 (𝑥, 𝑡) — скорость, которую индуцирует
завихренность, распределенная в области решения уравнений Навье-Стокса

0 ⩽ 𝑥 ⩽ 𝑥𝑘,

0 ⩽ 𝑦 ⩽ 𝑦𝑘, на твердой поверхности 𝑦 = 0 при 𝑥 > 𝑥𝑘. Начальное условие
𝑢 (𝑥,𝑦1,𝑡0) определяется из решения на малых временах при 𝑡 = 𝑡0.

Распределение завихренности в ограниченной области −𝑥𝑘 ⩽ 𝑥 ⩽ 𝑥𝑘 в
основном сосредоточено в окрестности центров вихрей (точек с максимальным
абсолютным значением завихренности в области диффундирующего вихря) 𝑥 =

±𝑥𝑣, 𝑦 = 𝑦𝑣, в пограничном слое и в слое смешения, являющемся продолжением
пограничного слоя, что определяет асимптотическое распределение скорости
𝑢𝑒 (𝑥, 𝑡) на больших расстояниях от центров вихрей:

𝑢𝑒 (𝑥, 𝑡) =
𝑈𝑒 (𝑡)

𝑥3
+𝑂

(︂
1

𝑥5

)︂
при 𝑥 >> 𝑥𝑣. (1.8)

При этом 𝑈𝑒(𝑡) > 0 и профиль скорости в пограничном слое можно предста­
вить в виде

𝑢 (𝑥, 𝑦1, 𝑡) =
𝑈 (𝑦1, 𝑡)

𝑥3
+𝑂

(︂
1

𝑥5

)︂
,

где 𝑈 (𝑦1, 𝑡) подчиняется уравнению

𝑡
𝜕𝑈

𝜕𝑡
− 1

2
𝑦1
𝜕𝑈

𝜕𝑦1
= 𝑡

𝑑𝑈𝑒

𝑑𝑡
+

𝜕2𝑈

𝜕𝑦21
(1.9)

и граничным условиям 𝑈 (0, 𝑡) = 0, 𝑈 (∞, 𝑡) = 𝑈𝑒.
Таким образом, расчет пограничного слоя производится с помощью урав­

нений (1.5) при сравнительно небольших 𝑥 ⩾ 𝑥𝑘, а при 𝑥 >> 𝑥𝑣 с помощью
уравнения (1.9).

1.4 Нестационарный отрыв пограничного слоя

На малых временах вся завихренность сосредоточена в окрестностях цен­
тров вихрей и в пограничном слое вблизи поверхности. Характерные размеры
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завихренных областей порядка
√︀

𝑡/Re. По мере опускания вихрей неблагопри­
ятный градиент давления вдоль твёрдой поверхности, возникающий в связи с
неоднородностью потенциального поля скоростей типа индуцированного вихря­
ми, растёт, что в определённый момент 𝑡 = 𝑡𝑠 приводит к отрыву пограничного
слоя [66; 2]. Численные результаты, приведенные в данном разделе, относятся
к случаю Re = 8000, ℎ = 8. При данных значениях параметров 𝑡𝑠 = 94.

Неблагоприятный градиент давления при 𝑥 > 0 в основном индуциро­
ван правым вихрем, который из-за экранного эффекта будет удаляться от оси
симметрии; в том же направлении будет перемещаться и точка отрыва. Таким
образом, отрыв будет нестационарным. Обозначим за 𝑢′ продольную скорость
в системе координат, связанной с точкой отрыва. Тогда, согласно критерию Му­
ра – Ротта – Сирса, отрыв произойдёт в точке, в которой 𝑢′ = 0, 𝜕𝑢′/𝜕𝑦 = 0.
Координаты точки отрыва в неподвижной системе отсчёта обозначим 𝑥 = 𝑥𝑠,
𝑦 = 𝑦𝑠. Подвижная система координат будет удаляться от оси симметрии со
скоростью 𝑑𝑥𝑠/𝑑𝑡. В момент 𝑡 = 120 отрыв происходит в точке 𝑥𝑠 = 2.85,
𝑦𝑠 = 0.07 (рисунок 11).

Рисунок 11 — Поле завихренности и линии тока в момент времени 𝑡 = 120,
Re = 8000, ℎ = 8 в неподвижной системе координат. Интервал между линиями
тока ∆ψ = 0.02. Белые линии тока соответствуют значениям ψ = 0.005, ψ =

0.0005 (линия тока на поверхности соответствует ψ = 0). Маркером отмечена
точка отрыва 𝑥𝑠 = 2.85, 𝑦𝑠 = 0.07

Результаты расчёта показывают, что при приближении слева к 𝑥𝑠 трение
в точке, в которой 𝑢′ = 0, будет стремиться к нулю (рисунок 12, ср. с рисунком
6) согласно механизму, описанному Ф. Муром [54; 59].

В окрестности точки 𝑥 = 𝑥𝑠 верхняя часть пограничного слоя 𝑦 > 𝑦𝑠

оторвётся от твёрдой поверхности, переходя в завихренный слой смешения (ри­
сунок 11). Нижняя часть 𝑦 < 𝑦𝑠 будет по-прежнему прилегать к поверхности,
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а) б)
Рисунок 12 — Профиля продольной скорости 𝑢(𝑦) в пограничном слое при 𝑡 =

120, Re = 8000, ℎ = 8 в системе координат, связанной с точкой отрыва: а – в
точке 𝑥 = 2.8, б – в точке 𝑥 = 𝑥𝑠 = 2.85

поскольку трение при 𝑦 = 0 будет оставаться положительным вплоть до неко­
торой точки 𝑥 = 𝑥′𝑠, в которой 𝜕𝑢/𝜕𝑦 = 0. Таким образом, в неподвижной
системе координат приповерхностная линия тока ψ = 0 отделяется от твёр­
дой поверхности в точке нулевого трения 𝑥 = 𝑥′𝑠, отличной от точки отрыва
𝑥 = 𝑥𝑠 (рисунки 11, 13а). За точкой 𝑥′𝑠 образуется область с замкнутыми ли­
ниями тока, которая заканчивается точкой присоединения 𝑥′𝑟, где 𝜕𝑢/𝜕𝑦 также
обращается в нуль. Размеры рециркуляционной области в обоих направлениях
порядка единицы. Эта область перемещается вниз по потоку быстрее, чем точ­
ка отрыва 𝑥𝑠. Решение качественно совпадает с решением из [40; 48] для случая
одиночного вихря над плоскостью.

Слой смешения, выходящий из точки отрыва 𝑥𝑠, представляет собой
диффундирующую вихревую пелену, спиральное ядро которой образует кон­
центрированный вихрь (рисунки 13, 16). Этот концентрированный вихрь с
отрицательной циркуляцией будет поддерживать существование рециркуляци­
онной области в течение длительного времени. Распределение завихренности
внутри рециркуляционной области будет неоднородным; нарушение теоремы
Прандтля – Бэтчелора [10] объясняется нестационарностью течения. Тонкая
область на дне рециркуляционной зоны, примыкающая к твёрдой поверхности,
подчиняется уравнениям пограничного слоя. Приближение потока к крити­
ческой точке 𝑥′𝑠 будет, как и с противоположной стороны, происходить под
действием неблагоприятного градиента давления (рисунок 14), что приведёт
к отрыву пограничного слоя и сходу во внешний поток завихренности поло­
жительного знака.
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а) б)
Рисунок 13 — Поле завихренности и линии тока в момент времени 𝑡 = 120,
Re = 8000, ℎ = 8: а – в неподвижной системе координат, б – в системе координат,
в которой горизонтальная скорость центра вихря равна нулю. Интервал между
линиями тока ∆ψ = 0.02, в рециркуляционной области на рисунок 13а ∆ψ =

0.005. Белые линии тока соответствуют значениям ψ = 0.0025, ψ = 0.005 на
рисунок 13а и ψ = −0.0025, ψ = −0.005 на рисунок 13б. Левая жирная черта

на рисунок 13а обозначает координату 𝑥 = 𝑥𝑠, правая — 𝑥 = 𝑥′𝑠

Рисунок 14 — Распределение давления вдоль твёрдой поверхности 𝑝(𝑥) при
𝑡 = 120, Re = 8000, ℎ = 8

Оторвавшийся положительно завихренный слой примкнёт к слою из от­
рицательной завихренности, в пределе при Re → ∞ образуя λ-отрыв, что
подтверждается картиной линий тока (рисунок 13б). За точкой отрыва 𝑥𝑠 мо­
жет образоваться многовихревое разнонаправленное течение (рисунок 16в).

Со временем поперечный размер рециркуляционной области увеличивает­
ся (рисунок 16а), что в итоге приводит к её «расколу» на две части (рисунок
16б), одна из которых – прилегающая к поверхности – вскоре исчезает, а дру­
гая, «подпитываемая» концентрированным вихрем слоя смешения, выходит во
внешний поток и начинает вращаться вокруг самолётного вихря. Вследствие
этого вдали от поверхности появляется точка, при приближении к которой ско­
рость течения стремится к нулю. В определённый момент вблизи оси симметрии
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возникает капсула (рисунок 16г), ограниченная линией тока ψ = 0; таким обра­
зом, на оси симметрии появляются две критические точки. Капсула опускается
вниз и спустя некоторое время присоединяется к твёрдой поверхности (рисунок
16д), после чего перемещается вдоль неё.

В то время как область с замкнутыми линиями тока (часть области
𝑥′𝑠 < 𝑥 < 𝑥′𝑟) отойдёт достаточно далеко от точки отрыва 𝑥𝑠, в окрестности
точки 𝑥𝑠 на твёрдой поверхности вновь появится точка с нулевым трением, сра­
зу за которой образуется ещё одна рециркуляционная область (рисунок 16б) с
концентрированным вихрем (рисунок 16г). В этот момент времени 𝑥𝑠 ≈ 𝑥′𝑠, т. е.
отрыв близок к стационарному. Дальнейшая эволюция новой рециркуляцион­
ной области будет происходить аналогично старой. При 𝑡 = 200 к поверхности
будут прилегать две рециркуляционных зоны, одна из которых образовалась
в момент начала отрыва 𝑡 = 𝑡𝑠 и сделала почти полный оборот вокруг вихря
(рисунок 16д), а другая — в момент 𝑡 = 𝑡𝑠1 = 132. К моменту 𝑡 = 230 вторая
область расколется, а первая сольётся с третьей, возникшей при 𝑡 = 𝑡𝑠2 = 209,
в единую рециркуляционную зону (рисунок 16е), которая будет вести себя ана­
логично предыдущим. Вихревая структура из завихренности отрицательного
знака представляет собой концентрированные вихри, образовавшиеся из спи­
ральных вихревых пелен и соединённых между собой тонким непрерывным
слоем со сравнительно малой завихренностью (рисунок 15).

Рисунок 15 — Поле завихренности и линии тока при 𝑡 = 200, Re = 8000, ℎ = 8

в неподвижной системе координат. Интервал между линиями тока ∆ψ = 0.02,
в рециркуляционной области ∆ψ = 0.002
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1.5 Диссипация завихренности

Со временем циркуляция вихрей уменьшается. Известна зависимость цир­
куляции от времени при ℎ = ∞ [41]. При этом под термином циркуляция
понимается циркуляция скорости по контуру, охватывающему правую (или
левую) половину овального контура, опускающегося вместе с вихрями. Если
ℎ = 𝑂(1), то, как видно из рисунка 16, такую процедуру вычисления цир­
куляции провести нельзя, так как нет замкнутого контура, перемещающегося
вместе с вихрями. Для определения характеристик вихря вычислим циркуля­
цию по окружности с центром, совпадающим с центром вихря, через поток
завихренности

Γ(𝑟, 𝑡) =

∫︁
(𝑥−𝑥𝑣)2+(𝑦−𝑦𝑣)2⩽𝑟2

Ω(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦.

Выделим два значения циркуляции Γ1 (𝑡) = max
𝑟

Γ (𝑟,𝑡) и Γ2 (𝑡) =

Γ (𝑟,𝑡)|𝑟=min(𝑥𝑣,𝑦𝑣)
. Функции Γ1 (𝑡) соответствует окружность, на которой значе­

ние циркуляции максимально, Γ2 (𝑡) — окружность максимального радиуса,
которая не заходит за границы первого квадранта. Изменение этих величин со
временем для двух значений ℎ представлено на рисунке 17. Наличие твёрдой
поверхности значительно ускоряет убывание циркуляции вихрей. Причиной
этого является качественное различие механизмов потери циркуляции. В от­
сутствие поверхности вихри диссипируют только из-за взаимодействия между
собой. При наличии поверхности вихри диссипируют из-за взаимодействия с
противоположно завихренным слоем, отходящим от твердой поверхности.

1.6 Траектории движения вихрей

Траектория движения центра правого вихря сильно отличается от тра­
ектории вихрей (1.3) в идеальной жидкости (рисунок 18). Слой смешения
индуцирует на вихре положительную вертикальную и отрицательную горизон­
тальную скорость, тормозя, а в некоторые моменты, возможно, даже обращая
движение вихря, и заставляя его подниматься вверх — явление, известное как
«подскок» вихря [46]. Существует критическое число Рейнольдса Re* (ℎ), при
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котором вид траектории меняется. При Re ⩽ Re* в некоторый момент времени
высота вихря достигает минимума, после чего координаты вихрей монотонно
увеличиваются (рисунок 18а). При Re > Re* после достижения наименьшей
высоты координаты вихря меняются немонотонно (рисунок 18б). На больших
временах направление перемещения вихря не меняется, скорость перемещения
со временем падает. При ℎ = 2 численное исследование показало, что течение
при Re = 1000 является докритическим, а при Re = 2000 — сверхкритическим.

1.7 Выводы по главе 1

Исследована эволюция пары вихрей с противоположными циркуляциями
вблизи бесконечной плоской твердой поверхности в вязкой несжимаемой жид­
кости.

Показано, что взаимодействие с поверхностью играет существенную роль
в процессе уменьшения циркуляции вихрей со временем. Основным механизмом
диссипации завихренности является взаимодействие вихрей с отрывающимся от
твердой поверхности пограничным слоем, в то время как при эволюции пары
вихрей в пространстве без твёрдых границ – взаимодействие вихрей между
собой [41].

Нестационарный отрыв пограничного слоя от поверхности происходит по
механизму, описанному Ф. Муром [59]. Нижняя часть пограничного слоя остаёт­
ся присоединённой; верхняя отрывается и образует концентрированный вихрь,
порождающий рециркуляционную область. Движение оторвавшейся части по­
граничного слоя вызывает «раскол» рециркуляционной области на части; одна
из частей отходит от поверхности и движется вместе с вихрем, что приводит к
появлению в области течения критических точек, а другая исчезает. Рецирку­
ляционные области, возникающие в окрестности точки отрыва в дальнейшем,
будут эволюционировать аналогично.
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а) б)

в) г)

д) е)
Рисунок 16 — Поле завихренности и линии тока при Re = 8000, ℎ = 8 в моменты
времени: а – 𝑡 = 130, б – 𝑡 = 140, в – 𝑡 = 145, г – 𝑡 = 184, д – 𝑡 = 200, е – 𝑡 = 230
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Рисунок 17 — Уменьшение со временем циркуляции правого вихря при Re =

1000: 1 — Γ при ℎ = ∞ из [41], 2 — Γ1 при ℎ = 3, 3 — Γ1 при ℎ = 2, 4 — Γ2 при
ℎ = 3, 5 — Γ2 при ℎ = 2

а) б)
Рисунок 18 — Траектории движения центра правого вихря 𝑥𝑣 (𝑡), 𝑦𝑣 (𝑡) при
ℎ = 2: 1 — при конечном Re (числами отмечены моменты времени 𝑡, соответ­
ствующие положениям вихря), 2 — в идеальной жидкости; а — Re = 1000, б —

Re = 2000
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Глава 2. Порождение вихря вращением кругового цилиндра в
вязком сжимаемом газе

Результаты главы опубликованы в работах [6—9].

2.1 Постановка задачи

Пусть бесконечный по протяженности круговой цилиндр радиуса 𝑟* поме­
щен в покоящийся вязкий совершенный газ с температурой 𝑇 = 𝑇∞, плотностью
ρ = ρ∞ и коэффициентами динамической вязкости µ = µ∞ и теплопроводности
λ = λ∞. В момент времени 𝑡 = 0 цилиндр начинает вращаться вокруг своей оси
с угловой скоростью 𝑤*/𝑟*, которая поддерживается постоянной. Исследуется
возмущенное состояние газа при 𝑡 > 0 при условии, что температура газа на
поверхности цилиндра также сохраняется постоянной 𝑇 = 𝑇*.

Предполагается, что в цилиндрической системе координат (𝑧, 𝑟, θ) нестаци­
онарное течение зависит только от координаты 𝑟 и имеет ламинарный характер.
Таким образом, пренебрегается возможной неустойчивостью течения. Уравне­
ния и краевые условия, определяющие состояние газа, имеют вид [105]

ρ

(︂
𝜕Γ

𝜕𝑡
+ 𝑣Γ′

)︂
= µ

(︂
Γ′′ − Γ′

𝑟

)︂
+ µ′

(︂
Γ′ − 2Γ

𝑟

)︂
,

ρ𝑐𝑝

(︂
𝜕𝑇

𝜕𝑡
+ 𝑣𝑇 ′

)︂
=

𝜕𝑝

𝜕𝑡
+ 𝑣𝑝′ +

𝑐𝑝
Pr

[︂
µ

(︂
𝑇 ′′ +

𝑇 ′

𝑟

)︂
+ µ′𝑇 ′

]︂
+

+ µ

[︃
1

𝑟2

(︂
Γ′ − 2Γ

𝑟

)︂2

+
4

3

(︂
𝑣′

2 − 𝑣𝑣′

𝑟
+

𝑣2

𝑟2

)︂]︃
,

ρ

(︂
𝜕𝑣

𝜕𝑡
+ 𝑣𝑣′ − Γ2

𝑟3

)︂
= −𝑝′ +

4

3
µ

(︂
𝑣′′ +

𝑣′

𝑟
− 𝑣

𝑟2

)︂
+

2

3
µ′
(︁
2𝑣′ − 𝑣

𝑟

)︁
,

𝜕ρ

𝜕𝑡
+

(𝑟ρ𝑣)′

𝑟
= 0,

𝑝 = 𝑅ρ𝑇.

(2.1)
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Γ = 0, 𝑇 = 𝑇∞, ρ = ρ∞, 𝑣 = 0 при 𝑡 = 0, 𝑟 > 𝑟*,

Γ = Γ* = 𝑤*𝑟*, 𝑇 = 𝑇*, 𝑣 = 0 при 𝑡 > 0, 𝑟 = 𝑟*,

Γ → 0, 𝑇 → 𝑇∞, ρ→ ρ∞, 𝑣 → 0, µ→ µ∞ при 𝑡 > 0, 𝑟 → ∞,
(2.2)

где 2πΓ = 𝑟𝑤 – циркуляция азимутальной составляющей скорости (в дан­
ной главе определение Γ отличается на коэффициент 2π от определений из
других глав), 𝑣 – радиальная составляющая скорости, 𝑝 – давление газа,
Pr = µ𝑐𝑝/λ = 𝑂 (1) – число Прандтля, 𝑐𝑝 – удельная теплоёмкость при постоян­
ном давлении, 𝑅 – удельная газовая постоянная, ()′ ≡ 𝜕/𝜕𝑟 . Число Прандтля
Pr и 𝑐𝑝 полагаются постоянными.

Согласно (2.1) радиальный масштаб области, в которой возникают вяз­
кие возмущения, пропорционален

√
ν∞𝑡, где ν∞ = µ∞/ρ∞. Безразмерный

параметр
√
ν∞𝑡/𝑟*, являющийся отношением независимых линейных размеров,

присущих рассматриваемой задаче, может меняться при 𝑡 > 0 в широких пре­
делах. В настоящей работе ставится задача о построении асимптотического
решения уравнений (2.1) и (2.2) при относительно больших временах, когда
√
ν∞𝑡/𝑟* = ε0

−1 >> 1. Для определенности рассматривается случай линейной
зависимости коэффициента вязкости от температуры газа µ (𝑇 )/µ∞ = 𝑇/𝑇∞.

Для решения задачи область течения разбивается на три асимптотиче­
ские подобласти. Линейные размеры 𝑟* и

√
ν∞𝑡 соответствуют внутренней и

внешней областям вязких возмущений (соответственно области 𝐺1 и 𝐺2). Как
будет показано ниже, внешнему пределу решения в области 𝐺2 соответствуют
нулевая азимутальная скорость и конечный (но малый при больших числах
Рейнольдса) расход, вызванный переменной по времени радиальной скоростью.
Поскольку при ограниченной скорости распространения возмущений в газе рас­
ход должен обращаться в нуль на больших расстояниях от цилиндра, возникает
третья асимптотическая область 𝐺3, за размер которой отвечают акустические
возмущения. Линейный размер области 𝐺3 равен 𝑐∞𝑡, где 𝑐∞ – скорость звука
в невозмущенном газе, и является наибольшим из трёх масштабов: его отно­
шение к размеру области 𝐺2 составляет 𝑐∞𝑡/

√
ν∞𝑡 = Re/(𝑀*ε0) >> 1, где

Re = 𝑤*𝑟*/ν∞ >> 1, 𝑀* = 𝑤*/𝑐∞, 𝑐∞ =
√︀

(κ− 1) 𝑐𝑝𝑇∞, κ — показатель
адиабаты.

Цель данной главы – определить характеристики течения в областях 𝐺1

и 𝐺2. В каждой из этих областей вместо независимых переменных 𝑟, 𝑡 введем
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новые независимые переменные: η = 𝑟/𝑟*, ε0 в области 𝐺1 и τ = 𝑟/
√
ν∞𝑡,

ε0 в области 𝐺2.
Зависимые переменные в уравнениях (2.1) и (2.2) представим в безраз­

мерном виде

𝐹 =
𝑇 2

𝑇 2
∞
, γ =

Γ

Γ*
, ρ =

ρ

ρ∞
, 𝑝 =

𝑝

𝑝∞
, 𝑣 =

𝑡

𝑟
𝑣, µ =

µ

µ∞
.

Далее черточки над безразмерными переменными будут опущены. Уравнения
(2.1) и (2.2) можно переписать в безразмерном виде. В области 𝐺1 (1 ⩽ η < ∞)

γ′′ − γ′

η
+

𝐹 ′

2𝐹

(︂
γ′ − 2γ

η

)︂
= ε0

2 ρ√
𝐹

(︂
−ε0

2

𝜕γ

𝜕ε0
+ η𝑣γ′

)︂
,

𝐹 ′′ +
𝐹 ′

η
+ 2

(κ− 1) Pr𝑀 2
*

η2

√
𝐹

(︂
γ′ − 2γ

η

)︂2

= ε0
2 Pr

[︂
ρ√
𝐹

(︂
−ε0

2

𝜕𝐹

𝜕ε0
+ η𝑣𝐹 ′

)︂
−

−2
(κ− 1)

κ

(︂
−ε0

2

𝜕𝑝

𝜕ε0
+ η𝑣𝑝′

)︂
− 8

3

κ (κ− 1)

Re2
𝑀 2

*ε0
2
√
𝐹
(︀
η𝑣′ (𝑣 + η𝑣′) + 𝑣2

)︀]︂
,

1

ρ
𝑝′ − κ𝑀 2

*
η3

γ2 =
κ

Re2
𝑀 2

*ε0
2

{︃√
𝐹

ρ

[︂
4

3
(η𝑣′′ + 3𝑣′) +

𝐹 ′

3𝐹
(2η𝑣′ + 𝑣)

]︂
+

+ε0
2η

[︂
ε0

2

𝜕𝑣

𝜕ε0
+ 𝑣 − 𝑣 (𝑣 + η𝑣′)

]︂}︂
,(︀

ρη2𝑣
)︀′
=
ε0

2
η
𝜕ρ

𝜕ε0
, 𝑝 = ρ

√
𝐹 ,

(2.3)

γ = 1, 𝐹 = 𝐹* =
𝑇 2
*

𝑇 2
∞
, 𝑣 = 0 при η = 1. (2.4)
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В области 𝐺2 (0 < τ < ∞)

γ′′ − γ′

τ
+

𝐹 ′

2𝐹

(︂
γ′ − 2γ

τ

)︂
+

ρ√
𝐹

(︂
1

2
− 𝑣

)︂
τγ′ = − ρ√

𝐹

ε0

2

𝜕γ

𝜕ε0
,

𝐹 ′′ +
𝐹 ′

τ
+
ρPr√
𝐹

(︂
1

2
− 𝑣

)︂
τ𝐹 ′ = −Pr

{︂
ρ√
𝐹

ε0

2

𝜕𝐹

𝜕ε0
−

−2
(κ− 1)

κ

(︂
ε0

2

𝜕𝑝

𝜕ε0
+

(︂
1

2
− 𝑣

)︂
τ𝑝′
)︂
+ 2

(κ− 1) ε0
2𝑀 2

*
τ2

√
𝐹

(︂
γ′ − 2γ

τ

)︂2

+

+
8

3

(κ− 1)

Re2
𝑀 2

*ε0
2
√
𝐹
(︀
τ𝑣′ (𝑣 + τ𝑣′) + 𝑣2

)︀}︂
,

1

ρ
𝑝′ = κ𝑀 2

*ε0
2

{︂
γ2

τ3
+

1

Re2

[︂
τ

(︂
ε0

2

𝜕𝑣

𝜕ε0
+ τ𝑣′

(︂
1

2
− 𝑣

)︂
+ 𝑣 − 𝑣2

)︂
+

+

√
𝐹

ρ

(︂
4

3
(τ𝑣′′ + 3𝑣′) +

𝐹 ′

3𝐹
(2τ𝑣′ + 𝑣)

)︂]︃}︃
,

(︀
ρτ2𝑣

)︀′
=
ε0

2
τ
𝜕ρ

𝜕ε0
+
τ2

2
ρ′, 𝑝 = ρ

√
𝐹 ,

(2.5)

γ→ 0, 𝐹 → 1, 𝑝 → 1, 𝑣 → 0 при τ→ ∞. (2.6)

Здесь

()′ =

{︃
𝜕/𝜕η в 𝐺1,

𝜕/𝜕τ в 𝐺2.

Из уравнений (2.3) — (2.6) следует, что при ε0 → 0 и 𝑀* ∼ 𝐹* = 𝑂(1) искомые
функции в областях 𝐺1 и 𝐺2 являются величинами порядка 𝑂(1) или меньше.
Очевидно, что граничных условий (2.4) и (2.6) недостаточно для однозначного
определения этих функций в каждой из областей 𝐺1, 𝐺2. Необходимо потребо­
вать, чтобы выполнялось сращивание асимптотического решения в области 𝐺1

при η → ∞ с асимптотическим решением в области 𝐺2 при τ → 0.

2.2 Асимптотическое решение во внешней области

Из третьего уравнения (2.5) следует, что с точностью до членов порядка
𝑂
(︀
ε0

2
)︀

статическое давление в области 𝐺2 является при τ = 𝑂 (1) постоянной
величиной 𝑝 = 1 и имеет координатную особенность 𝑝 ∼ ε0

2/τ2 при τ → 0. Из
уравнений (2.5) можно получить, что с точностью до членов порядка 𝑂

(︀
ε0

2
)︀
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плотность газа и радиальная составляющая скорости выражаются через функ­
цию 𝐹 :

ρ =
1√
𝐹
, 𝑣 =

𝑐 (ε0)

τ2
+

𝐹 ′

2τPr
. (2.7)

Зависимость 𝑐 (ε0) пока оставим неизвестной. Эта величина должна опреде­
ляться из условия 𝑣(τ, ε0) ⩽ 𝑂 (1) при τ ⩽ 𝑂 (1), вытекающего из условий
сращивания с решением в области 𝐺1.

В главном приближении функция 𝐹 (τ, ε0) удовлетворяет уравнению

𝐹 ′′ +
1

τ
𝐹 ′

⎛⎜⎜⎝1 +

τ2
(︂
1

2
− 𝑣

)︂
Pr

𝐹

⎞⎟⎟⎠+
ε0 Pr

2𝐹

𝜕𝐹

𝜕ε0
= 0. (2.8)

Асимптотическое поведение решения уравнения (2.8) при τ→ 0 имеет вид

𝐹 ∼ α0 + α ln τ. (2.9)

Из условия, что при τ→ 0 функция 𝐹 (τ, ε0) должна сращиваться с реше­
нием в области 𝐺1, а ее величина сохранять порядок 𝑂 (1) при τ = 𝑂 (ε0),
следует

α0 (𝑀*, 𝐹*,Pr) = 𝑂(1), α =
α1 (𝑀*, 𝐹*,Pr)

ln ε0
, α1 = 𝑂(1). (2.10)

С учетом соотношений (2.9) и (2.10) функции 𝐹 (τ, ε0), γ (τ, ε0) предста­
вим в виде степенного ряда по малому параметру 1/ln ε0:

𝐹 (τ, ε0) = 𝐹0 (τ) +
α1

ln ε0
𝐹1 (τ) +

1

ln2ε0
𝐹2 (τ) +𝑂

(︂
1

ln3ε0

)︂
,

γ (τ, ε0) = γ0 (τ) +
1

ln ε0
γ1 (τ) +𝑂

(︂
1

ln2ε0

)︂
.

(2.11)

Таким образом, в главном приближении решение для температуры и
циркуляции зависит только от автомодельной переменной τ. Функция 𝐹0 удо­
влетворяет нелинейному уравнению

𝐹 ′′
0 +

1

τ
𝐹 ′
0

(︃
1 +

τ2
(︀
1
2 − 𝑣

)︀
Pr

𝐹0

)︃
= 0 (2.12)

и краевым условиям

𝐹0 (0) = α0, 𝐹 ′
0 (0) = 0, 𝐹0 (∞) = 1. (2.13)
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Единственным решением для 𝐹0 (τ), удовлетворяющим (2.12) и (2.13), яв­
ляется

𝐹0 (τ) = α0 = 1. (2.14)

Согласно выражениям (2.7),

ρ (τ, ε0) = 1− α1

2 ln ε0
𝐹1 (τ) +𝑂

(︂
1

ln2ε0

)︂
, 𝑣 (τ, ε0) =

1

ln ε0
𝑣1 (τ) +𝑂

(︂
1

ln2ε0

)︂
.

Функции 𝐹1, γ0 удовлетворяют линейным дифференциальным уравнени­
ям

𝐹1
′′ +

𝐹1
′

τ

(︂
1 +

Pr

2
τ2
)︂

= 0,

γ0
′′ − γ0

′

τ

(︂
1− τ2

2

)︂
= 0

(2.15)

и граничным условиям

𝐹1 (∞) = 0, γ0 (∞) = 0. (2.16)

Решение уравнений (2.15), удовлетворяющих условиям (2.9) — (2.11) и
(2.16):

𝐹1 =

ξ∫︁
∞

𝑒−ξ
2/4

ξ
𝑑ξ, γ0 = 𝑎0𝑒

−τ2/4. (2.17)

где ξ = τ
√
Pr. В главном приближении распределение циркуляции отличает­

ся от случая несжимаемой жидкости на постоянный множитель 𝑎0 (𝑀*, 𝐹*,Pr)

– неизвестную константу, которая определяется из условия асимптотического
сращивания решения (2.17) с решением в области 𝐺1.

Из представлений (2.17) и условия 𝑣 ⩽ 𝑂 (1) при τ = 𝑂 (ε0) (область
перекрытия с решением в 𝐺1)

𝑣1 (τ) = − α1

2Pr τ2
(1− τ𝐹1

′) .

Для следующего приближения функций, определяющих температуру и
циркуляцию, имеем

𝐹2
′′ +

𝐹2
′

τ

(︂
1 +

Pr

2
τ2
)︂

=
α1 Pr

2
[𝐹1 + τ𝐹1

′ (α1𝐹1 + 2𝑣1)] ,

γ1
′′ − γ1

′

τ

(︂
1− τ2

2

)︂
= −α1𝐹1

′

2

(︂
γ0

′ − 2γ0
τ

)︂
+
τγ0

′

2
(α1𝐹1 + 2𝑣1) .

(2.18)
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Граничные условия для уравнений (2.18)

𝐹2 (∞) = 0, γ1 (∞) = 0. (2.19)

В решение уравнений (2.18) с граничными условиями (2.19) войдут еще
две пока неизвестные константы 𝐶1 и 𝐶2.

𝐹2 = α1

⎡⎣𝐹1 ln ξ− 2

ξ∫︁
∞

𝑒−ξ
2/4

ξ
ln ξ 𝑑ξ+

α1

4

⎛⎝4

ξ∫︁
∞

𝑒−ξ
2/2

ξ
𝑑ξ−

−1

2

ξ∫︁
∞

ξ𝑒−ξ
2/4 ln2ξ 𝑑ξ− 𝑒−ξ

2/4 ln2ξ− 2𝐹1𝑒
−ξ2/4 + 𝐹 2

1

⎞⎠⎤⎦+ 𝐶2𝐹1,

γ1 =
α1𝑎0
2

⎧⎨⎩
(︂
1 + Pr+

1

Pr
+
τ2

2

)︂
𝑒−τ

2/4

τ∫︁
∞

𝑒−τ
2 Pr/4

τ
𝑑τ−

−
(︂
2 + Pr+

1

Pr

)︂ τ∫︁
∞

𝑒−τ
2(1+Pr)/4

τ
𝑑τ+

+
1

Pr

⎡⎣ τ∫︁
∞

𝑒−τ
2/4

τ
𝑑τ+ 𝑒−τ

2/4
(︁
𝑒−τ

2 Pr/4 − ln τ
)︁⎤⎦⎫⎬⎭+ 𝐶1γ0.

(2.20)

В двух первых приближениях при τ → ∞ функции 𝐹, γ, ρ отличают­
ся от своих предельных значений (2.6) на экспоненциально малые величины.
Безразмерная радиальная составляющая скорости 𝑣 → 0 по степенному зако­
ну 𝑣 ∼ α1/

(︀
τ2 ln ε0

)︀
. Такое поведение 𝑣 (τ) соответствует тому, что расширение

области 𝐺2 с течением времени индуцирует при τ→ ∞ поле радиальных скоро­
стей, эквивалентных источнику (или стоку) с интенсивностью, рейнольдсовски
малой по сравнению с характерной циркуляцией вихря Γ* и зависящей от вре­
мени

lim
τ→∞

2π𝑟
𝑟

𝑡
𝑣 = − πα1ν∞

Pr ln ε0
. (2.21)

В области 𝐺3 возникает задача о распространении возмущений от источ­
ника, который «включается» в момент времени 𝑡 = 0 и на больших временах
имеет вид (2.21). Так как со временем ε0 (𝑡) уменьшается, то интенсивность
источника убывает. Из асимптотики (2.21) и уравнений (2.1) следует, что ради­
альная скорость 𝑣 и возмущения температуры 𝑇 = 𝑇 − 1, плотности ρ̃ = ρ− 1
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и давления 𝑝 = 𝑝 − 1 имеют порядок 𝑂
(︀
𝑀 2

*ε0
2/Re2 ln ε0

)︀
и удовлетворяют ли­

нейным уравнениям Эйлера, которые преобразуются к виду

𝜕

𝜕𝑟

(︂
1

𝑟

𝜕 (𝑟𝑣)

𝜕𝑟

)︂
− 1

𝑐2∞

𝜕2𝑣

𝜕𝑡2
= 0,

1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑝

𝜕𝑟

)︂
− 1

𝑐2∞

𝜕2𝑝

𝜕𝑡2
= 0,

ρ̃ =
1

κ
𝑝, 𝑇 =

κ− 1

κ
𝑝.

При 𝑟 ⩾ 𝑐∞𝑡 характеристики течения соответствуют невозмущённому со­
стоянию газа. В отличие от главного приближения уравнений в областях 𝐺1

(2.11) и 𝐺2 (2.35), уравнения в области 𝐺3 не сводятся к обыкновенным диффе­
ренциальным уравнениям и решение не является автомодельным.

Из представлений (2.11), (2.14) и (2.17) следует, что на масштабе τ =

𝑂 (ε0), т. е. в области 𝐺1, первые два приближения становятся членами одного
порядка малости. Для проведения процедуры сращивания решения в области
𝐺2 с решением в области 𝐺1 выпишем поведение функций 𝐹, γ при τ → 0

(внутренний предел внешнего разложения):

𝐹 = 1 +
α1

ln ε0

(︂
ln τ+ 𝐶𝐹 +

1

2
ln Pr

)︂
+

+
α1

ln2ε0

{︂[︂
𝐶2

α1
+ 𝐶𝐹 +

α1

2
(1 + 𝐶𝐹 )

]︂
ln τ+𝑂 (1)

}︂
+𝑂

(︂
1

ln3ε0

)︂
,

γ = 𝑎0

{︂
1 +

α1

2 ln ε0

[︂
− ln τ+

2𝐶1

α1
+

1− Pr

Pr
𝐶𝐹 +

1

2

(︂
1 + Pr+

1

Pr

)︂
ln

Pr

1 + Pr
−

−1

2
ln (1 + Pr) +

1

Pr

]︂}︂
+𝑂

(︂
1

ln2ε0

)︂
,

(2.22)
где 𝐶𝐹 = − ln 2 + 𝐶/2 , 𝐶 = 0.5772 – постоянная Эйлера.

Первое из соотношений (2.22), переписанное в переменных η с помощью
подстановки τ = ε0η, определяет граничные условия для функции 𝐹 в области
𝐺1 при η → ∞ (внешний предел внутреннего разложения). С точностью до
членов порядка 𝑂(1/ ln ε0)

𝐹 = 1 + α1 +
α1

ln ε0

(︂
lnη+ 2𝐶𝐹 +

1

2
lnPr+

α1

2
(1 + 𝐶𝐹 ) +

𝐶2

α1

)︂
+𝑂

(︂
1

ln2ε0

)︂
.

(2.23)
Из-за логарифмического характера особенности в решении задачи при

τ → 0 (2.22) возникает ситуация, когда для сращивания решений в перемен­
ных области 𝐺1 (2.23) с точностью до членов 𝑂 (1/ln𝑛ε0 ) необходимо в области
𝐺2 построить решение (2.11), (2.14), (2.17) и (2.20) с точностью до 𝑂

(︀
1/ln𝑛+1ε0

)︀
.
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2.3 Асимптотическое решение во внутренней области

Решение уравнений (2.3) будем искать, пренебрегая в них членами поряд­
ка 𝑂

(︀
ε0

2
)︀
. Тогда для функций 𝐹 и γ имеем

𝐹 ′′ +
𝐹 ′

η
+ 2

(κ− 1) Pr𝑀 2
*

η2

√
𝐹

(︂
γ′ − 2γ

η

)︂2

= 0,

γ′′ − γ′

η
+

𝐹 ′

2𝐹

(︂
γ′ − 2γ

η

)︂
= 0,

γ = 1, 𝐹 = 𝐹* при η = 1.

(2.24)

Легко проверить, что циркуляция γ (η), не имеющая особенность при η→
∞ и удовлетворяющая условию γ (1) = 1, выражается через функцию 𝐹 (η):

γ (η) = 𝑏η2
∞∫︁
η

𝑑η

η3
√
𝐹
, 𝑏 =

⎛⎝ ∞∫︁
1

𝑑η

η3
√
𝐹

⎞⎠−1

. (2.25)

Подстановка (2.25) во второе уравнение (2.24) приводит к тождеству. С
учетом (2.24) из уравнений (2.3) следует, что 𝑝 (η) и ρ (η) также выражаются
через интегралы функции 𝐹 (η). Сосредоточимся на решении первого уравне­
ния (2.24), так как при наличии решения для 𝐹 имеется решение для остальных
гидродинамических функций. Подставляя (2.25) в первое уравнение (2.24) и
учитывая граничное условие и условие сращивания решений, имеем

𝐹 ′′ +
𝐹 ′

η
+ 2

(κ− 1) 𝑏2 Pr𝑀 2
*

η4
√
𝐹

= 0, (2.26)

𝐹 (1) = 𝐹*, lim
η→∞

𝐹 (η) = 1 + α1+

+
α1

ln ε0

(︂
lnη+ 2𝐶𝐹 +

1

2
lnPr+

α1

2
(1 + 𝐶𝐹 ) +

𝐶2

α1

)︂
+𝑂

(︂
1

ln2ε0

)︂
.

(2.27)

Введем преобразование функции 𝐹 (η)

𝐹 (η) =
[︀
2 (κ− 1) 𝑏2 Pr𝑀 2

*
]︀2/3

Φ (η) = 𝐹*
Φ (η)

Φ (1)
. (2.28)

Выпишем уравнения и краевые условия, которым с точностью до
𝑂
(︀
1/ln2ε0

)︀
удовлетворяет функция Φ (η). Из (2.26) и (2.28)

Φ′′ +
Φ′

η
+

1

η4
√
Φ

= 0. (2.29)
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Используя определение величины 𝑏 и (2.28), получаем

Φ (1) = λ0

⎛⎝ ∞∫︁
1

𝑑η

η3
√
Φ

⎞⎠4

, (2.30)

где λ0 = 𝐹*/
[︀
2 (κ− 1) Pr𝑀 2

*
]︀2

= 1/
[︁
2 (κ− 1) Pr ̃︁𝑀*

2
]︁2

, ̃︁𝑀* = 𝑤*/𝑎*, 𝑎* – ско­
рость звука в газе у поверхности цилиндра. Из (2.27)

lim
η→∞

Φ (η) =
Φ(1)

𝐹*

[︂
1 + α1 +

α1

ln ε0

(︂
lnη+ 2𝐶𝐹 +

1

2
lnPr+

α1

2
(1 + 𝐶𝐹 ) +

𝐶2

α1

)︂]︂
.

(2.31)
Уравнение (2.29) можно переписать в виде

(Φ′η)
′
+

1

η3
√
Φ

= 0. (2.32)

Откуда
∞∫︁
1

𝑑η

η3
√
Φ

= Φ′ (1)− lim
η→∞

ηΦ′ (η) .

Следовательно, для задачи (2.29) — (2.31) вместо соотношения (2.30) можно
использовать граничное условие

Φ (1) = λ0

(︂
Φ′ (1)− lim

η→∞
ηΦ′ (η)

)︂4

. (2.33)

Асимптотическое поведение решения уравнения (2.29) при η→ ∞ имеет вид

Φ (η) ∼ 𝐵0 +𝐵1 lnη. (2.34)

Решение уравнений (2.29), (2.31) и (2.33) будем искать в виде асимптотическо­
го ряда

Φ (η) = Φ0 (η) +
1

ln ε0
Φ1 (η) +𝑂

(︂
1

ln2ε0

)︂
. (2.35)

Из (2.31), (2.34) и (2.35) следует, что Φ0 (η) не содержит логарифмического чле­
на при η→ ∞. Уравнение и граничные условия для функции Φ0 (η) имеют вид

Φ′′
0 +

Φ′
0

η
+

1

η4
√
Φ0

= 0, (2.36)

Φ0 (1) = λ0(Φ
′
0 (1))

4
, (2.37)
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lim
η→∞

ηΦ′
0 = 0. (2.38)

При заданных параметрах течения около цилиндра параметр λ0 фиксирован.
Тогда если в дополнение к (2.37) и (2.38) задавать произвольное значение
Φ′

0 (1), то система (2.36) — (2.38) будет переопределенной. Варьируя Φ′
0 (1) и

решая задачу Коши, можно найти такое его значение, при котором система
(2.36) — (2.38) является разрешимой. В качестве примеров на рисунке 19 при­
ведены решения (снизу вверх) при λ0 = 0.01 и Φ′

0 (1) = 1.1731, λ0 = 0.1 и
Φ′

0 (1) = 0.9754, λ0 = 1 и Φ′
0 (1) = 0.7396, λ0 = 10 и Φ′

0 (1) = 0.5275. Из
(2.27) и (2.28) следует, что параметр α1 определяется главным приближением
решения в области 𝐺1

1 + α1 (𝐹*, λ0) = 𝐹*
Φ0 (∞)

Φ0 (1)
. (2.39)

При 𝐹* = 𝑂(1) и λ0 = 𝑂(1) параметр α1 есть также величина порядка
𝑂(1) и может принимать положительные и отрицательные значения. Взаимо­
действие температурного и вихревого полей в области 𝐺1 приводит к переходу
энергии вращательного движения газа в энергию тепловую. Относительная тем­
пература газа 𝑇 (η)/𝑇* вблизи поверхности цилиндра возрастает. Зависимость
𝐹* = 𝐹* (λ0), представленная на рисунке 20, соответствует α1 (𝐹*,λ0) = 0. Если
𝐹* > 𝐹* (λ0), то поток тепла поступает из области 𝐺1 в область 𝐺2; в про­
тивном случае поток тепла меняет свое направление. Согласно граничному
условию (2.31) функция Φ1 (η) должна иметь логарифмическую особенность
при η → ∞. Из-за этой особенности оба слагаемых в (2.35) становятся одно­
порядковыми при переходе из области 𝐺1 в область 𝐺2. Сращивание решений
становится возможным, если в (2.35) учитываются оба члена асимптотического
разложения. Уравнения и краевые условия для функции Φ1 (η):

Φ′′
1 +

Φ′
1

η
− Φ1

2η4Φ
3/2
0

= 0, (2.40)

Φ1 (1) = 4
Φ0 (1)

Φ′
0 (1)

(︂
Φ′

1 (1)−
α1Φ0 (1)

𝐹*

)︂
, (2.41)

lim
η→∞

ηΦ′
1 =

α1Φ0 (1)

𝐹*
. (2.42)

При произвольном значении Φ′
1 (1) система (2.40) — (2.42) также является

переопределенной. Варьируя Φ′
1 (1), можно найти его значение, при котором

выполняется условие (2.42).
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Рисунок 19 — Решение задачи (2.36) — (2.38) при (снизу вверх) λ0 = 0.01 и
Φ′

0(1) = 1.1731, λ0 = 0.1 и Φ′
0(1) = 0.9754, λ0 = 1 и Φ′

0(1) = 0.7396, λ0 = 10 и
Φ′

0(1) = 0.5275

С точностью до членов порядка 𝑂
(︀
1/ln2ε0

)︀
решение для 𝐹 (η, λ0) в обла­

сти 𝐺1 можно считать известным. При η → ∞ это решение имеет вид

𝐹 (η) = 1 + α1 (𝐹*, λ0) +
1

ln ε0
(α1 (𝐹*, λ0) lnη+ ℎ (𝐹*, λ0)) , (2.43)

где

ℎ = (1 + α1)

⎡⎢⎢⎣ lim
η→∞

(︂
Φ1 (η)−

α1Φ0 (1)

𝐹*
lnη

)︂
Φ0 (∞)

− Φ1 (1)

Φ0 (1)

⎤⎥⎥⎦ . (2.44)

Из (2.27), (2.43) и (2.44) находится неизвестный коэффициент 𝐶2 в асимптоти­
ческом представлении для функции 𝐹 в области 𝐺2. Через известные функции
Φ0 (η) и Φ1 (η) можно из (2.25) и (2.32) выразить с точностью до членов
𝑂
(︀
1/ln2ε0

)︀
решение для циркуляции

γ (η) =

η2
(︂
ηΦ′ (η)− 1

ln ε0

α1Φ0 (1)

𝐹*

)︂
Φ′ (1)− 1

ln ε0

α1Φ0 (1)

𝐹*

. (2.45)
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Рисунок 20 — Зависимость 𝐹*(λ0), соответствующая условию α1(𝐹*, λ0) = 0

отсутствия потока тепла из области 𝐺1 в область 𝐺2

Интегрируя два раза выражение (2.25) по частям, с учетом (2.43) получаем
при η → ∞

γ (η) =
𝑏

2

{︂
1√
𝐹

− 1

ln ε0

α1

4𝐹 3/2
+𝑂

(︂
1

ln2ε0

)︂}︂
. (2.46)

Откуда внешний предел внутреннего разложения представляется формулой

γ (η) =
(κ− 1) Pr𝑀 2

*

(Φ′
0(1))

3 lim
η→∞

[︂
𝑘−1/2
η − 1

ln ε0

(︂
α1

4
𝑘−3/2
η +

3

4

Φ1(1)

Φ0(1)
𝑘−1/2
η

)︂]︂
, (2.47)

где 𝑘η = 1 + α1 + (α1 lnη+ ℎ) / ln ε0. Соотношение (2.47), переписанное в пе­
ременных τ, определяет вид внутреннего предела внешнего разложения для
функции γ в области 𝐺2

γ (η) =
(κ− 1) Pr𝑀 2

*

(Φ′
0(1))

3 lim
τ→0

[︂
𝑘−1/2
τ − 1

ln ε0

(︂
α1

4
𝑘−3/2
τ +

3

4

Φ1(1)

Φ0(1)
𝑘−1/2
τ

)︂]︂
, (2.48)

где 𝑘τ = 1 + (α1 ln τ+ ℎ) / ln ε0. Раскладывая (3.25) в ряд по степеням 1/ln ε0,
получим

γ (η) =
(κ− 1) Pr𝑀 2

*

(Φ′
0(1))

3

[︂
1− 1

ln ε0

(︂
α1

2
ln τ+

2ℎ+ α1

4
+

3

4

Φ1(1)

Φ0(1)

)︂
+𝑂

(︂
1

ln2ε0

)︂]︂
.

(2.49)
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Сравнение (2.49) с (2.22) позволяет определить неизвестные константы 𝑎0 и 𝐶1,
входящие в представление величин в области 𝐺2. Для константы 𝑎0 получа­
ем соотношение

𝑎0 =
(κ− 1) Pr𝑀 2

*

(Φ′
0(1))

3 . (2.50)

Выражение (2.50) можно переписать в виде

𝑎0 =

⎛⎝2

√︃
Φ0 (1)

𝐹*

∞∫︁
1

𝑑η

η3
√︀
Φ0 (η)

⎞⎠−1

. (2.51)

Из (2.36) — (2.38) следует, что Φ′
0(η) > 0. Заменяя в подынтегральном выраже­

нии (2.51) Φ0(η) на меньшую величину Φ0(1), приходим к неравенству

𝑎0 >

⎛⎝ 2√
𝐹*

∞∫︁
1

𝑑η

η3

⎞⎠−1

. (2.52)

В случае 𝐹* ⩾ 1 температура газа во всём пространстве будет превосходить
температуру невозмущённого газа (𝐹 ⩾ 1), поскольку нет причин, противодей­
ствующих нагреву газа вследствие перехода энергии вращательного движения
в тепло. В этом случае из (2.52) следует, что 𝑎0 > 1. Можно показать, что тот
же результат будет иметь место при произвольной монотонно возрастающей
зависимости µ (𝑇 ). Это позволяет сформулировать теорему о скачке циркуля­
ции: если 𝐹* ⩾ 1 и 𝑑µ/𝑑𝑇 > 0, то циркуляция в сжимаемом газе в области
𝑟 ∼

√
ν∞𝑡 будет превышать циркуляцию в несжимаемой жидкости при тех же

𝑟 и 𝑡 (сравнение приведено на рисунке 23). Название теоремы связано с тем,
что внутренний предел внешнего решения (при τ → 0) для циркуляции γ0 (τ)
не совпадает со значением циркуляции на поверхности цилиндра.

Пользуясь промежуточными асимптотиками температуры (2.23) и цирку­
ляции (2.46), можно в главном приближении вычислить кинетическую энергию
течения

𝐸 = π

∞∫︁
0

ρΓ2

𝑟
𝑑𝑟 ≈ πρ∞Γ2

*𝑎0
2

ε0
−1∫︁

1

𝑑 lnη(︂
1 + α1 + α1

lnη

ln ε0

)︂3/2
=

2𝑎0
2

α1

(︂
1− 1√

1 + α1

)︂
𝐸0,

(2.53)
где 𝐸0 = πρ∞Γ2

* |ln ε0| – кинетическая энергия для случая несжимаемой жид­
кости в тот же момент времени. Почти вся энергия приходится на течение в
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промежуточной области 𝑟* << 𝑟 <<
√
ν∞𝑡 и со временем неограниченно рас­

тёт вместе с размером этой области. В случае 𝑀* = 𝐹* = Pr = 1, численное
решение даёт значения констант 𝑎0 ≈ 1.19, α1 ≈ 0.88. Кинетическая энергия
течения сжимаемого газа оказывается меньше, чем у несжимаемой жидкости:
в пределе ε0 → 0 из (2.53) получается 𝐸/𝐸0 ≈ 0.87.

2.4 Составное решение

С точностью до членов 𝑂
(︀
1/ln2ε0

)︀
равномерно пригодное решение для

функций 𝐹 и γ в области 𝐺1 ∩ 𝐺2 представляется в виде [106]

𝐹 (τ) =
𝐹 (1) (τ) 𝐹 (2) (τ)

𝐹 (𝑐) (τ)
, γ̂ (τ) =

γ(1) (τ) γ(2) (τ)

γ(𝑐) (τ)
,

где 𝐹 (1) (τ) и γ(1) (τ) – решения (2.28), (2.35) и (2.45) в области 𝐺1, переписанные
в переменных τ, 𝐹 (2) (τ) и γ(2) (τ) – решения (2.11) в области 𝐺2, 𝐹 (𝑐) (τ) и γ(𝑐) (τ)
– внутренний предел внешнего разложения (2.22).

На рисунках 21, 22 представлено поведение 𝑇 (τ) =

√︁
𝐹 (τ) и γ̂ (τ), соот­

ветствующих случаю 𝑀* = Pr = 1, 1/ln ε0 = −0.189 и трём разным значениям
𝐹*: 1) 𝐹* = 1, α1 > 0 (чёрные сплошные кривые); 2) 𝐹* = 0.407, α1 = 0

(серые кривые); 3) 𝐹* = 0.2, α1 < 0 (светло-серые); пунктирами изображено
численное решение уравнений Навье–Стокса при 𝐹* = 1 (см. раздел 2.6). В
случае α1 > 0 температура имеет максимум в области 𝐺1; при α1 ⩽ 0 – мо­
нотонно возрастает при удалении от поверхности цилиндра. Переход энергии
вращательного движения в тепловую вызывает рост температуры газа в обла­
сти 𝐺1, в области 𝐺2 – влияние на изменение температуры газа в основном
оказывает диффузия тепла. Рост температуры газа вызывает увеличение ко­
эффициента динамической вязкости (µ ∝ 𝑇 ) и появление градиента вязкости
(𝜕µ/𝜕𝑟 ∝ 𝜕𝑇/𝜕𝑟), что в случае α1 > 0 приводит к немонотонному изменению
циркуляции вращательного движения вдоль координаты 𝑟. По мере удаления
от поверхности цилиндра завихренность

Ω =
1

η

𝜕γ

𝜕η

дважды меняет свой знак. Имеется участок, на котором генерируется положи­
тельная завихренность. В случае, соответствующем рисунку 21 при 𝐹* = 1,
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он включает 2.3ε0 < τ < 0.36. Из второго уравнения системы (3.1) можно
получить соотношение

𝜕Ω

𝜕η
=

𝑏

2η2𝐹 3/2

𝜕𝐹

𝜕η
,

из которого следует, что экстремум завихренности в области 𝐺1 достигается в
той же точке (τ ≈ 3.4ε0, рисунок 21), что экстремум температуры. Циркуляция
окружной скорости на участке 0.084 ÷ 0.099 < τ < 0.72 ÷ 0.77 превосхо­
дит циркуляцию около поверхности цилиндра. Этот эффект не наблюдается
в несжимаемой жидкости, в которой изменение циркуляции вдоль координаты
𝑟 – монотонное, а в пределах области 𝐺1 циркуляция постоянна. На рисунке
23 приведено сравнение γ̂ (τ) для сжимаемого газа при 𝑀* = 𝐹* = Pr = 1,
1/ln ε0 = −0.189 (сплошная кривая) и γ (τ) = 𝑒−τ

2/4 для несжимаемой жид­
кости (пунктир).

Рисунок 21 — Составное решение для температуры 𝑇 (τ) при 𝑀* = Pr = 1,
1/ ln ε0 = −0.189 и трёх значениях 𝐹*: 1) 𝐹* = 1, α1 > 0 (чёрная сплошная
кривая); 2) 𝐹* = 0.407, α1 = 0 (серая); 3) 𝐹* = 0.2, α1 < 0 (светло-серая);
численное решение уравнений Навье–Стокса при 𝑀* = Pr = 𝐹* = 1, 1/ ln ε0 =

−0.189 (пунктир)
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Рисунок 22 — Составное решение для циркуляции γ(τ) при 𝑀* = Pr = 1,
1/ ln ε0 = −0.189 и трёх значениях 𝐹*: 1) 𝐹* = 1, α1 > 0 (чёрная сплошная
кривая); 2) 𝐹* = 0.407, α1 = 0 (серая); 3) 𝐹* = 0.2, α1 < 0 (светло-серая);
численное решение уравнений Навье–Стокса при 𝑀* = Pr = 𝐹* = 1, 1/ ln ε0 =

−0.189 (пунктир)

2.5 Асимптотическое решение при малых числах Маха

При λ0 → ∞, что соответствует малым числам 𝑀*, можно получить реше­
ние для 𝐹 в аналитическом виде. Из соотношения (2.26) и граничного условия
на поверхности цилиндра следует, что с точностью до 𝑂

(︀
λ0

−1
)︀

в области 𝐺1

𝐹 = 𝐹*

[︂
1 +

1√
λ0

(︂
1− 1

η2

)︂
+ 𝑑 lnη

]︂
. (2.54)

В области 𝐺2 по-прежнему

𝐹 = 1 +
α1

ln ε0
ln τ. (2.55)

Асимптотическое сращивание решений (2.54) и (2.55) определяет неизвестные
константы α1 и 𝑑

α1 =

(︂
1 +

1√
λ0

)︂
𝐹* − 1, 𝑑 =

α1

𝐹* ln ε0
.

Аналогичным путем определяется распределение циркуляции. Из (2.50) следу­
ет, что в главном приближении 𝑎0 =

√
𝐹*.
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Рисунок 23 — Решение для циркуляции γ(τ) в случае сжимаемого газа при
𝑀* = Pr = 𝐹* = 1, 1/ ln ε0 = −0.189 (сплошная кривая) и несжимаемой жидко­

сти (пунктир)

2.6 Асимптотическое решение при больших числах Маха

В предыдущих пунктах асимптотическое решение задачи при числах
𝑀* = 𝑂(1) получено при условии, что ε0 → 0. В этом случае и величина
1/ln ε0 → 0. Вместе с тем, при реально достижимых больших временах (малых
ε0) величина 1/ln ε0 может оказаться не столь уж малой. Так при ε0 = 10−4

получается 1/ln ε0 ≈ −0.1.
Анализ результатов при 𝑀* = 𝑂(1) указывает на то, что с ростом 𝑀* вели­

чина коэффициента α1 также растет. Поэтому при больших числах 𝑀* может
наступить ситуация, когда коэффициент α1/ ln ε0 может перестать быть малой
величиной. Определим условия, при котором α1/ ln ε0 становится величиной
порядка 𝑂(1). Для этого рассмотрим решение при λ0 << 1.

Функции Φ0 (1) и Φ′
0 (1) связаны соотношением (2.37) и поэтому имеют

разный порядок малости по параметру λ0. Для определения порядков этих
функций проведем численное решение задачи (2.36) — (2.38) при малых λ0.
На рисунке 24 показано решение этих уравнений при λ0 = 10−6 (сплошная кри­
вая) и λ0 = 10−3 (пунктир). Видно, что зависимости Φ0 (η, λ0) в этих случаях
близки друг к другу. В пределе при λ0 → 0 обозначим значение Φ0 (η) через
Φ0 0 (η). Из численного решения получаются величины, которые имеют порядок
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𝑂(1): Φ′
0 0 (1) = 𝑑1 ≈ 1.3641, Φ0 0 (∞) = 𝑑2 ≈ 0.4450. Подставляя эти значения

в формулу (2.39), получаем

α1

ln ε0
∼ 𝐹*

ln ε0

Φ0 0 (∞)

Φ0 0 (1)
=

𝐹*𝑑2
𝑑41

1

λ0 ln ε0
=

𝑑2
𝑑41

[︀
2 (κ− 1) Pr𝑀 2

*
]︀2

ln ε0
= 𝑂

(︂
𝑀 4

*
ln ε0

)︂
.

Рисунок 24 — Решение задачи (2.36) — (2.38) при λ0 = 10−6 (сплошная кривая)
и λ0 = 10−3 (пунктир), Φ′

0(1) ≈ 1.3641

Таким образом, соотношения, полученные в разделах 2.1 и 2.3, справедли­
вы при 𝑀 4

*/ln ε0 << 1. Построим решение при 𝑀 4
*/ln ε0 = 𝑂 (1).

Так же, как и в случае малых возмущений, в области 𝐺2 с точностью до
членов порядка 𝑂

(︀
𝑀 2

*ε0
2
)︀

статическое давление 𝑝 = 1 при τ = 𝑂 (1) и имеет
координатную особенность 𝑝 ∼ 𝑀 2

*ε0
2/τ2 при τ → 0. Плотность, радиальная

компонента скорости и функция 𝐹 подчиняются соотношениям (2.7) и (2.8).
Асимптотическое поведение решения уравнения (2.8) при τ→ 0 имеет вид

𝐹 ∼ α0 +
𝑀 4

*
ln ε0

α̃1 ln τ. (2.56)

Здесь α0 ⩾ 𝑂 (1), α̃1 = 𝑂(1). Так как функции 𝐹 и 𝑣 согласно (2.56) зависят
от τ и 1/ ln ε0, уравнения для их определения в области 𝐺2 в главном прибли­
жении будут иметь вид

𝐹 ′′ +
1

τ
𝐹 ′

(︃
1 +

τ2
(︀
1
2 − 𝑣

)︀
Pr

𝐹

)︃
= 0, 𝑣 = − 1

2Pr τ2

(︂
𝑀 4

* α̃1

ln ε0
− τ𝐹 ′

)︂
. (2.57)
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Неизвестные коэффициенты α0 и α̃1 определяют решение краевой задачи для
уравнений (2.57) и должны выбираться из условия 𝐹 = 1 при τ → ∞ и из
сращивания с решением в области 𝐺1.

Внешний предел внутреннего разложения для функции Φ в области 𝐺1

определяется из соотношения (2.56). При η → ∞

Φ(η) ∼ Φ(1)

𝐹*

(︂
α0 +𝑀 4

* α̃1 +
𝑀 4

*
ln ε0

α̃1 lnη

)︂
. (2.58)

Формула (2.58) указывает на то, что функцию Φ (η) можно представить в виде
асимптотического ряда

Φ(η) = Φ0(η) +
𝑀 4

*
ln ε0

Φ1(η).

Для определения Φ0(η) можно выписать задачу, совпадающую с (2.36) — (2.38)
(рисунок 19). Условие сращивания записывается в виде

α0 +𝑀 4
* α̃1 =

𝐹*Φ0 0 (∞)

[Φ′
0 0(1)]

4 λ0
−1 =

𝐹*𝑑2
𝑑41
λ0

−1. (2.59)

Краевую задачу (2.57) можно решать, варьируя начальные условия задачи Ко­
ши для уравнений (2.57). В качестве начального условия выступает значение
𝐹 , задаваемое функцией (2.56). При этом коэффициенты α0 и α̃1 связаны со­
отношением (2.59). Таким образом, варьируя только значение α0 и определяя
α̃1 с помощью (2.59), необходимо найти то значение α0, при котором 𝐹 = 1

при τ → ∞.
После того, как коэффициенты α0 и α̃1 найдены, решается задача об опре­

делении функции Φ1(η) в области 𝐺1. Алгоритм ее нахождения изложен в
разделе 2.3.

Определение поля температур позволяет решить задачу о нахождении
распределения циркуляции в области 𝐺2. В главном приближении функция
γ должна подчиняться уравнению

γ′′ − γ′

τ
+

𝐹 ′

2𝐹

(︂
γ′ − 2γ

τ

)︂
+

1

𝐹

(︂
1

2
− 𝑣

)︂
τγ′ = 0

с граничными условиями γ = 𝑎0 при τ→ 0 и γ = 0 при τ→ ∞. В области 𝐺1

для определения γ по-прежнему верна формула (2.25). Величина 𝑎0 выбирается
из условия сращивания

𝑎0 =
(κ− 1) Pr𝑀 2

*
𝑑31
√
α0

.
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На рисунках 25, 26 представлено поведение 𝑇 (τ) =

√︁
𝐹 (τ) и γ̂ (τ) (см.

раздел 2.3), соответствующих случаю 𝑀* = 7, 𝐹* = Pr = 1 и 1/ln ε0 = −0.217

(сплошные кривые), и численного решения уравнений Навье–Стокса при тех
же значениях параметров (пунктир).

2.7 Численное решение

Асимптотическое решение задачи сравнивается с численным решением
уравнений Навье–Стокса (2.1), которое производится методом конечного объ­
ёма 2-го порядка точности по пространству с разностями против потока и 1-го
порядка по времени в круговой области 𝑟* ⩽ 𝑟 ⩽ 103 𝑟* на радиально-симмет­
ричной сетке с 24000 ячейками. Число ячеек составляет 120 вдоль окружности
𝑟 = const и 200 вдоль радиуса; размер ячеек в радиальном направлении равен
10−3 у поверхности цилиндра 𝑟 = 𝑟* и 20 на внешней границе расчётной обла­
сти 𝑟 = 103 𝑟*. На внешней границе ставится граничное условие невозмущённого
потока; ошибка ввиду наличия радиального течения с ненулевым значением 𝑣

оказывается приемлемой.
Все расчеты проведены при значениях безразмерных параметров 𝐹* = 1,

Pr = 1, Re = 100. Наибольший период времени, до которого был проведен
расчет, соответствует значениям ε0 = 0.005, 1/|ln ε0| ≈ 0.189 при 𝑀* = 1;
ε0 = 0.01, 1/|ln ε0| ≈ 0.217 при 𝑀* = 7. Дальнейший расчет в течение
обозримого времени не позволяет существенно уменьшить значение малого па­
раметра 1/ln ε0 в разложениях (2.11) и (2.35). Шаг по времени ∆𝑡 таков, что
𝑟*/

√
ν∞∆𝑡 ≈ 61.3 при 𝑀* = 1; 𝑟*/

√
ν∞∆𝑡 ≈ 12.5 при 𝑀* = 7.

Распределения циркуляции и температуры, полученные из численного ре­
шения уравнений Навье–Стокса, подтверждают асимптотическое решение и
приведены на рисунках 21, 22, 25, 26.
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Рисунок 25 — Составное решение (сплошная кривая) и численное решение урав­
нений Навье–Стокса (пунктир) для температуры 𝑇 (τ) при 𝑀* = 7, Pr = 𝐹* = 1

и 1/ ln ε0 = −0.217

Рисунок 26 — Составное решение (сплошная кривая) и численное решение урав­
нений Навье–Стокса (пунктир) для циркуляции γ(τ) при 𝑀* = 7, Pr = 𝐹* = 1

и 1/ ln ε0 = −0.217

2.8 Выводы по главе 2

В нестационарной постановке получено асимптотическое решение на
больших временах задачи о порождении осесимметричного вихря вращением
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бесконечно протяжённого кругового цилиндра в сжимаемом газе с вязкостью,
зависящей от температуры.

Продемонстрировано принципиальное влияние на решение градиента ко­
эффициента динамической вязкости. Как в случае несжимаемой жидкости,
линейный размер вязкой области растёт со временем пропорционально

√
ν0𝑡.

Распределение циркуляции на масштабе 𝑟 ∼
√
ν0𝑡 отличается от случая несжи­

маемой жидкости или сжимаемого газа с постоянной вязкостью на постоянный
множитель, причём при одинаковых ν0 и 𝑡 и при температуре цилиндра не
ниже температуры невозмущенного газа скорость течения в сжимаемом газе
с монотонно возрастающей (убывающей) зависимостью вязкости от температу­
ры будет выше (ниже).

Распределение циркуляции на масштабе порядка радиуса цилиндра в глав­
ном приближении стационарно и при этом отличается от случая несжимаемой
жидкости, в котором течение близко к потенциальному вихрю, качественно.
Существуют режимы, на которых распределение циркуляции немонотонно.
Данный результат является более полным по сравнению с решением задачи
в стационарной постановке [97].



63

Глава 3. Взаимодействие локализованных вихрей с акустическими
возмущениями

Результаты главы опубликованы в работах [4; 5].

3.1 Постановка и представление решения задачи

Рассмотрим общую задачу рассеяния, когда монохроматическая акусти­
ческая волна малой амплитуды

𝑈 𝑖𝑛𝑐 = ̃︀𝑈 𝑖𝑛𝑐(𝑟)e
−iω𝑡 (3.1)

распространяется в стационарном потоке

𝑈 𝑣𝑜𝑟𝑡 = 𝑈 𝑣𝑜𝑟𝑡(𝑟) (3.2)

идеального совершенного газа. Перейдём к безразмерным переменным

ρ = ρ/ρ∞, 𝑝 = 𝑝/𝑝∞, 𝑣 = 𝑣/𝑐∞, 𝑡 = ω𝑡, 𝑟 = 𝑘𝑟, (3.3)

где ρ∞, 𝑝∞, 𝑐∞ =
√︀
κ𝑝∞/ρ∞ — плотность, давление и скорость звука в невоз­

мущённом газе, ω — угловая частота и 𝑘 = ω/𝑐∞ — волновое число падающей
волны, κ — показатель адиабаты; далее чёрточки опускаются. Уравнения Эй­
лера имеют вид

‘
𝜕ρ

𝜕𝑡
+∇ · (ρ𝑣) = 0, (3.4)

𝜕𝑣

𝜕𝑡
+ 𝑣 · ∇𝑣 +

1

κ

∇𝑝

ρ
= 0, (3.5)

𝜕

𝜕𝑡

𝑝

ρκ
+ 𝑣 · ∇ 𝑝

ρκ
= 0. (3.6)

Амплитуда падающей волны и, для применимости борновского приближения

|𝑈 𝑠𝑐𝑎𝑡| << |𝑈 𝑖𝑛𝑐|, (3.7)

числа Маха течения, предполагаются малыми:

𝑀* = max |𝑣𝑣𝑜𝑟𝑡| << 1, (3.8)

𝑎 = max |𝑣𝑖𝑛𝑐| << 1. (3.9)
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Постановка (3.1)–(3.9) предполагает, что решение уравнений (3.4)–(3.6)
зависит от параметра 𝑎 и времени 𝑡 только как от комбинации 𝑎e−i𝑡 и может
быть представлено в виде двухпараметрического ряда по 𝑀*, 𝑎:

𝑈 =
∞∑︁
𝑖=0

1∑︁
𝑗=0

𝑀 𝑖
*(𝑎e

−i𝑡)𝑗𝑈 𝑖𝑗(𝑟) + ... (3.10)

Учёт только линейной части по 𝑎, как в (3.1), позволяет отбросить комплексно
сопряжённую часть. Здесь и далее многоточием обозначены члены, отличные
от степенных (например, логарифмические, см. ниже), которые могут присут­
ствовать в высших приближениях.

Часть (3.10), не зависящая от времени, описывает стационарное течение

𝑈 𝑣𝑜𝑟𝑡 =
∞∑︁
𝑖=0

𝑀 𝑖
*𝑈 𝑖0(𝑟). (3.11)

Решение в приближении 𝑂(1) — невозмущённый газ

ρ00 = 𝑝00 = 1, 𝑣00 = 0. (3.12)

Будем считать, что энтропийная мода возмущений отсутствуют и 𝑈 𝑣𝑜𝑟𝑡 вклю­
чает только вихревую моду. Тогда возмущения давления и плотности имеются
только в чётных степенях по числу Маха:

ρ𝑣𝑜𝑟𝑡 = 1 +𝑀 2
*ρ20(𝑟) +𝑂(𝑀 4

* ), 𝑝𝑣𝑜𝑟𝑡 = 1 +𝑀 2
*𝑝20(𝑟) +𝑂(𝑀 4

* ), (3.13)

а поле скорости — в нечётных:

𝑣𝑣𝑜𝑟𝑡 = 𝑀*𝑣10(𝑟) +𝑂(𝑀 3
* ). (3.14)

В главном приближении течение удовлетворяет условию несжимаемости:

∇ · 𝑣10 = 0. (3.15)

Часть (3.10), зависящая от времени, описывает акустическое поле:

𝑈 𝑖𝑛𝑐 +𝑈 𝑠𝑐𝑎𝑡 = 𝑎e−i𝑡
∞∑︁
𝑖=0

𝑀 𝑖
*𝑈 𝑖1(𝑟) + ... (3.16)

Падающее поле есть часть (3.16), не зависящая от 𝑀*:

𝑈 𝑖𝑛𝑐 = 𝑎𝑈 01(𝑟)e
−i𝑡; (3.17)
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рассеянная волна — оставшаяся часть

𝑈 𝑠𝑐𝑎𝑡 = 𝑎e−i𝑡
∞∑︁
𝑖=1

𝑀 𝑖
*𝑈 𝑖1(𝑟) + ... (3.18)

Таким образом, сумма «чистых» компонент (3.11) + (3.17) описывает
суперпозицию поля течения и падающего акустического поля и задаётся по
условию задачи. Сумма «смешанных» компонент (3.18) описывает результат их
взаимодействия (рассеянное поле) и определяется в ходе решения. До тех пор
пока представление степенным рядом равномерно пригодно, каждая из компо­
нент удовлетворяет уравнениям, следующим из подстановки (3.10) в (3.4)–(3.6):

(∇2 + 𝑗2)ρ𝑖𝑗 = 𝑞ρ𝑖𝑗, (∇2 + 𝑗2)𝑝𝑖𝑗 = 𝑞𝑝𝑖𝑗, ∇(∇ · 𝑣𝑖𝑗) + 𝑗2𝑣𝑖𝑗 = 𝑞𝑣
𝑖𝑗, (3.19)

где 𝑞𝑈
𝑖𝑗 (𝑟) — известные функции, описывающие взаимодействие между компо­

нентами более низких порядков, с первым индексом меньшим либо равным 𝑖 и
вторым меньшим либо равным 𝑗. Для падающего поля (3.17) уравнения (3.19)
будут однородными. Граничные условия задаются для каждой компоненты ин­
дивидуально.

Вышесказанное означает, что течение и падающая волна считаются вза­
имодействующими малыми возмущениями (вихревой и акустической моды,
соответственно), а невозмущённый газ (3.12) фоновым состоянием. Коррект­
ность данной концепции обеспечивается условиями (3.8)–(3.9). Аналогичный
подход с дополнительным предположением 𝑎 << 𝑀* был применён в работах
[20; 107]. Он является более последовательным по сравнению с общепринятым
(не только в аэроакустике), когда волна считается малым возмущением на фоне
вихря:

|𝑈 𝑖𝑛𝑐| << |𝑈 𝑣𝑜𝑟𝑡|, (3.20)

и уравнения (3.4)–(3.6) линеаризуются относительно 𝑈 𝑣𝑜𝑟𝑡. Действительно,
предположение (3.20) нарушается в случаях типа ПВТВ, когда 𝑣𝑣𝑜𝑟𝑡 → 0

при 𝑟 → ∞ и |𝑣𝑖𝑛𝑐| = const. Это справедливо для волн различной природы,
например в геострофических течениях («near-inertial waves») [108—110], враща­
тельных течениях мелкой воды [111; 112], стратифицированных течениях [113].
При этом в действительности относительная величина поля течения 𝑂(𝑀*) и
падающего акустического течения 𝑂(𝑎) не имеет значения, поскольку 𝑈 10 и
𝑈 01 определяются из (3.19) независимо друг от друга. Вследствие этого, с од­
ной стороны, дополнительное предположение 𝑎 << 𝑀* из [20; 107] является
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излишним; с другой стороны, решение в рамках предположения (3.20) оста­
ётся справедливым.

Представление в виде степенного ряда и, следовательно, уравнения (3.19)
равномерно пригодны до тех пор, пока

𝑀*|𝑈 𝑖+1,1| << |𝑈 𝑖1|. (3.21)

Борновское приближение (3.7) подразумевает, что данное предположение спра­
ведливо для главного приближения рассеянного поля:

𝑀*|𝑈 11| << |𝑈 01|. (3.22)

При наличии нескольких пространственных масштабов в (3.1)–(3.2) возможно
|𝑈 𝑖+1,1| >> 1, что может привести к нарушению (3.21) и появлению несте­
пенных членов высокого порядка в (3.18). К примеру, в [20] получены члены
высокого порядка 𝑂(𝑀 𝑖

*𝑎 ln𝑀*) в случае ПВТВ, возникающие вследствие лога­
рифмического поведения функции Грина уравнений (3.19) в ближнем пределе.
При этом условие 𝑎|𝑈 𝑖1| << |𝑈 𝑖0|, похожее на (3.21), не требуется, поскольку
𝑈 𝑖1 и 𝑈 𝑖0 по-разному зависят от времени.

Разделение суммарного акустического поля (3.16) на падающее и рассеян­
ное в действительности является нетривиальным вопросом, ответ на который
может показаться неоднозначным [19]. В физическом эксперименте измеряются
амплитуда 𝐴 и фаза φ суммарного акустического поля [93], а не падающего или
рассеянного поля по отдельности. Для простоты свяжем их с полем плотности:

ρ𝑖𝑛𝑐 + ρ𝑠𝑐𝑎𝑡 ≡ 𝑎𝐴ei(φ−𝑡), (3.23)

и разложим в ряд по 𝑀*:

𝐴 =
∞∑︁
𝑖=0

𝑀 𝑖
*𝐴𝑖(𝑟) + ..., φ =

∞∑︁
𝑖=0

𝑀 𝑖
*φ𝑖(𝑟) + ... (3.24)

Сравнивая (3.23)–(3.24) с (3.16), получим главное приближение

𝐴0 = |ρ01|, φ0 = arg ρ01 (3.25)

и линейную поправку вследствие взаимодействия с течением

𝐴1/𝐴0 = Real (ρ11/ρ01) , φ1 = Imag (ρ11/ρ01) . (3.26)
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В данной работе падающее поле определяется формулой (3.17) как задан­
ное акустическое поле в отсутствие среднего течения 𝑀* = 0, так что

|ρ𝑖𝑛𝑐| = 𝑎𝐴0, arg ρ𝑖𝑛𝑐 = φ0 − 𝑡, (3.27)

а рассеянное поле формулой (3.18), аналогично [20; 21].
Между тем, как показано в работе [14] для случая осесимметричного вих­

ря (4), поле (3.18) является суммой двух составляющих:

𝑈 𝑠𝑐𝑎𝑡 = 𝑈 𝑟𝑎𝑑 +𝑈 𝑑𝑖𝑠, (3.28)

«собственно рассеянной волны», описывающей переизлучение звука

𝑈 𝑟𝑎𝑑 = 𝑎e−i𝑡
∞∑︁
𝑖=1

𝑀 𝑖
*𝑈

𝑟
𝑖1(𝑟) + ..., (3.29)

и слагаемого, описывающего искажение фронта падающей волны в результате
переноса неоднородным полем скорости

𝑈 𝑑𝑖𝑠 = 𝑎e−i𝑡
∞∑︁
𝑖=1

𝑀 𝑖
*𝑈

𝑑
𝑖1(𝑟) + ... (3.30)

Изменение амплитуды и сдвиг фазы в линейном приближении представляются
в соответствии с (3.28): 𝐴1 = 𝐴𝑟

1 + 𝐴𝑑
1, φ1 = φ𝑟

1 + φ
𝑑
1, где каждая компонента

определяется аналогично (3.26). Компонента «искажения» 𝑈 𝑑𝑖𝑠 не интерфери­
рует с падающим полем:

𝐴𝑑
1 = 0, (3.31)

Поэтому [19; 22; 29; 30; 33] считают данную компоненту частью падающего поля:

𝑈 ′
𝑖𝑛𝑐 = 𝑎𝑈 01(𝑟)e

−i𝑡 +𝑈 𝑑𝑖𝑠. (3.32)

Поле (3.32) удовлетворяет неоднородным уравнениям (3.19) с внепорядковым
источниковым членом 𝑂(𝑀*) [24; 73] и отличается от (3.17) формой линий
фронта:

|ρ′𝑖𝑛𝑐| = 𝑎𝐴0, arg ρ′𝑖𝑛𝑐 = φ0 − 𝑡+𝑂(𝑀*). (3.33)

Рассеянное поле в этом случае отождествляется с компонентой «излучения»:

𝑈 ′
𝑠𝑐𝑎𝑡 = 𝑈 𝑟𝑎𝑑. (3.34)
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Таким образом, в литературе используются два разных значения терми­
нов «падающая волна» и «рассеянная волна»; одна терминология соответствует
(3.17), (3.28), другая — (3.32), (3.34). Относительная разница между двумя опре­
делениями составляет 𝑂(𝑀*) для падающей волны и 𝑂(1) для рассеянной.

Для устранения неоднозначности поставим условие сохранения полного
потока энергии в области, где взаимодействие вихря со звуком несущественно.
В разделе 3.3.8 показано, что в рассмотренном ниже случае оно выполняется,
только если рассеянная волна определена согласно (3.28). Это делает термино­
логию (3.17), (3.28), выбранную в данной статье, физически более осмысленной,
чем (3.32), (3.34).

3.2 Корректность постановки

В борновском приближении (3.7) в случае (3.1), (3.2) решение для
рассеянного поля в главном приближении 𝑈 11(𝑟) удовлетворяет уравнению
Гельмгольца (3.19)

∇2ρ11 + ρ11 = 𝑞11 (3.35)

с источниковым членом (индекс «ρ» далее опускается), который с учётом (3.15)
принимает вид

𝑞11 = −2
𝜕2(𝑣10α𝑣01β)

𝜕𝑟α𝜕𝑟β
= −2∇ · (𝑣10 · ∇𝑣01). (3.36)

Источник (3.36) описывает взаимодействие падающей волны с полем скорости
течения и соответствует квадруполям Лайтхилла [23; 114]. Поля давления и
скорости выражаются через поле плотности подстановкой (3.10) в (3.5)–(3.6):

𝑝11 = κρ11, 𝑣11 = −i(∇ρ11 + 𝑣10 · ∇𝑣01 + 𝑣01 · ∇𝑣10). (3.37)

Далее будем рассматривать случай двумерного пространства (с очевид­
ным обобщением на трёхмерное). Зададим условие излучения Зоммерфельда
для уравнения (3.35), т. е. предположим, что существует некоторое дальнее по­
ле 𝑟 >> 𝑟𝐹 , в котором рассеянное поле имеет вид уходящей на бесконечность
цилиндрической волны (3):

𝜕ρ11
𝜕𝑟

− iρ11 = 𝑜(𝑟−1/2) при 𝑟/𝑟𝐹 → ∞. (3.38)
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Часто добавляемое условие

ρ11 = 𝑂(𝑟−1/2) при 𝑟/𝑟𝐹 → ∞, (3.39)

избыточно, поскольку оно выполняется для любого решения однородного урав­
нения Гельмгольца, удовлетворяющего (3.38) [18; 115]. Краевую задачу (3.35),
(3.38) будем называть ЗИ (задача излучения).

Условие (3.38) естественно в случае, когда источник (3.36) достаточно
быстро затухает на больших расстояниях, поскольку оно исключает волны,
приходящие из бесконечности. В этом случае решение ЗИ единственно [78] и
представляется в виде свёртки источникового члена с функцией Грина урав­
нения Гельмгольца:

ρ11 = − i

4

∫︁
R2

𝑞11(𝑟
′)𝐻

(1)
0 (|𝑟 − 𝑟′|) d2𝑟′, (3.40)

где 𝐻(1)
0 (𝑟) — функция Ганкеля 1-го рода. ЗИ корректна, если интеграл в (3.40)

сходится абсолютно и некорректна в противном случае, поскольку кратный ин­
теграл сходится только в случае абсолютной сходимости [37]. Из вида (3.36) и
дальней асимптотики функции Ганкеля

𝐻
(1)
0 (𝑟) ∼

√︂
2

π𝑟
ei𝑟−iπ/4 при 𝑟 → ∞, (3.41)

следует критерий корректности двумерной задачи рассеяния в борновском при­
ближении с условием излучения:

|𝑞11| = 𝑂(𝑟−𝑛), 𝑛 > 3/2 при 𝑟/𝑅 → ∞, (3.42)

или, без ограничения общности,

|𝑣10||𝑣01| = 𝑂(𝑟−𝑛), 𝑛 > 3/2 при 𝑟/𝑅 → ∞, (3.43)

где 𝑅 — подходящий пространственный масштаб. В трёхмерном случае в (3.42),
(3.43) получим 𝑛 > 2 вместо 𝑛 > 3/2.

При |𝑣01| = const условие (3.43) сводится к

|𝑣10| = 𝑂(𝑟−𝑛), 𝑛 > 3/2 при 𝑟/𝑅 → ∞. (3.44)

Отсюда следует, что задача в случае ПВТВ и, шире, задача рассеяния од­
нородной плоской волны произвольным течением с ненулевой суммарной
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циркуляцией некорректна. Противоречия здесь нет, так как полная кинети­
ческая энергия течения несжимаемой жидкости в пространстве без границ с
|𝑣10| ∝ 𝑟−1 при 𝑟/𝑅 → ∞ бесконечна:

𝐸𝑣𝑜𝑟𝑡 ∝
1

2

∫︁
R2

|𝑣10|2d2𝑟 ∝
∫︁ ∞ d𝑟

𝑟
= ∞, (3.45)

следовательно, оно не может существовать, как было отмечено в работах [10;
34]. В трёхмерном пространстве без границ могут возникать только вихревые
структуры с нулевой суммарной циркуляцией по любому поперечному сече­
нию, такие как вихревой след за самолётом с крылом большого удлинения,
состоящий из двух вихревых трубок с противоположными циркуляциями, или
вихревое кольцо вертолёта. Примеры корректно поставленных задач рассея­
ния приведены во введении в разделе «Степень разработанности темы».
Поскольку вихри, затухающие по степенному закону с дробным показателем,
неизвестны, на практике условие (3.44) эквивалентно условию нулевой суммар­
ной циркуляции:

Γ → 0 при 𝑟/𝑅 → ∞, (3.46)

или, для течений без особенностей, условию конечности кинетической энергии.
Вместе с тем в случае |𝑣01| = const и гипотетического вихря с |𝑣10| ∝ 𝑟−3/2

при 𝑟/𝑅 → ∞ ЗИ излучения некорректна, несмотря на (3.46). Здесь также
нет противоречия, поскольку полный поток энергии однородной плоской вол­
ны бесконечен:

𝑊𝑖𝑛𝑐(𝑥) ∝
∫︁ ∞

−∞
|𝑣01|2 d𝑦 ∝

∫︁ ∞

−∞
d𝑦 = ∞, (3.47)

следовательно, она не может существовать. Здесь 𝑥, 𝑦 — декартовы координаты,
причём 𝑥 отсчитывается вдоль волнового вектора. Естественное акустическое
поле с конечным полным потоком энергии, излучаемое локализованным источ­
ником в двумерном пространстве, представляет собой цилиндрическую волну
вида (3). В случае, когда такой вид имеет падающее поле: |𝑣01| ∝ 𝑟−1/2 при
𝑟/𝑅 → ∞, условие (3.43) сводится к (3.46). Таким образом, задача рассеяния
корректна для любой физически реализуемой постановки 𝐸𝑣𝑜𝑟𝑡 < ∞, 𝑊𝑖𝑛𝑐 < ∞.
При этом существуют физически нереализуемые задачи, которые тем не менее
ставятся корректно; это имеет место, когда (3.43) выполняется несмотря на
то, что одна из величин 𝐸𝑣𝑜𝑟𝑡, 𝑊𝑖𝑛𝑐 бесконечна. Примеры с экспоненциальным
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затуханием были предложены в работе [36] (см. введение). Вместе с тем, поста­
новка с цилиндрической падающей волной и вихрем с ненулевой циркуляцией,
предложенная в работе [22] (без использования борновского приближения), в
борновском приближении остаётся некорректной из-за |𝑣10||𝑣01| ∝ 𝑟−3/2 при
𝑟/𝑅 → ∞.

3.3 Взаимодействие акустических возмущений с экспоненциально
затухающим цилиндрическим вихрем

3.3.1 Постановка задачи

Сформулируем корректно поставленную ЗИ для случая, в некотором
смысле близкого к ПВТВ, но в котором область взаимодействия волны и вихря
будет ограниченной. Это означает, что необходимо задать источник (3.36), удо­
влетворяющий условию (3.42). Для совместимости с имеющимися результатами
сосредоточимся на случае рассеяния однородной плоской волны осесиммет­
ричным вихрем с полем окружной скорости (1), близким к (4) в пределах
ограниченной области и достаточно быстро затухающим на бесконечности в
соответствии с (3.44).

Подходящее течение возникает в задаче, рассмотренной в главе 2, в
главном приближении в случае несжимаемой жидкости 𝑀* = 0 или сжима­
емого газа при малых числах Маха 𝑀* << 1 и малом перепаде температур
|𝐹* − 1| << 1. Действительно, поместим бесконечно протяжённый полый твёр­
дый круговой цилиндр радиуса 𝑟* в покоящийся вязкий сжимаемый газ и
начиная с момента 𝑡 = 0 будем вращать вокруг своей оси с постоянной уг­
ловой скоростью Γ*/2π𝑟

2
*. Температуру стенки цилиндра будем считать равной

температуре невозмущённого газа. В главном приближении при малых числах
Маха 𝑀* = Γ*/(2π𝑟*𝑐∞) << 1 распределение циркуляции будет иметь вид

Γ

Γ*
∼

⎧⎪⎪⎨⎪⎪⎩
(𝑟/𝑟*)

2, 𝑟/𝑟* = 𝑂(1), 𝑟 ⩽ 𝑟*

1, 𝑟/𝑟* = 𝑂(1), 𝑟 > 𝑟*

e−𝑟2/(4ν∞𝑡), 𝑟/
√
ν∞𝑡 = 𝑂(1)

при 𝑟*/
√
ν∞𝑡 → 0, (3.48)
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где ν∞ — кинематическая вязкость невозмущённого газа. Такое течение пред­
ставляет собой вихрь Ранкина, экранированный нестационарным вихревым
слоем с противоположной суммарной циркуляцией, и эквивалентно разности
потенциального вихря и вихря Лэмба–Озеена [96] вне цилиндра [10] и твердо­
тельному вращению внутри цилиндра.

Задачу рассеяния можно организовать следующим образом. В достаточно
удалённый момент 𝑡 = 𝑡0, когда эффективный радиус вихря 𝐿 = 2

√
ν∞𝑡0 велик

по сравнению с радиусом цилиндра 𝑟*, цилиндр изымается. Из области 𝑟 >> 𝐿

запускается однородная плоская акустическая волна. Длина волны 2π/𝑘 пред­
полагается намного большей 𝑟* и намного меньшей 𝐿. До тех пор, пока вязкой
диффузией можно пренебречь [116] и считать течение стационарным — на вре­
менах 𝑡 − 𝑡0 << 𝑟2*/ν∞ — справедливы уравнения Эйлера. Периодическое по
времени акустическое поле устанавливается в области 𝑟/𝑟𝐹 = 𝑂(1) после того,
когда падающая волна проходит сквозь неё, т. е. на временах 𝑡− 𝑡0 >> 𝑟𝐹/𝑐∞.
Чем дольше длилось вращение цилиндра, тем более протяжённой будет область
𝑟 << 𝐿, в которой (3.48) сводится к вихрю Ранкина, соответствующему случаю
ПВТВ (4). В промежуточной области 𝑟* < 𝑟 << 𝐿 рассеянное поле будет су­
ществовать на фоне потенциального поля скорости, индуцируемого точечным
вихрем с интенсивностью Γ*.

Выше были использованы следующие предположения: 1) числа Маха
малы (3.8); 2) имеется временной промежуток, на протяжении которого аку­
стическое поле периодично по времени в области, в которой оно достигает
своей дальней асимптотики (3); 3) имеется область, содержащая много длин
волн, в которой поле скорости близко к полю точечного вихря (3.53). Для
выполнения второго условия падающая волна должна успеть пройти через
область 𝑟/𝑟𝐹 = 𝑂(1) намного раньше, чем нарушится периодичность по вре­
мени; последнее может произойти вследствие: а) вязкой диффузии вихря на
временах 𝑂(𝑟2*/ν∞); б) акустической неустойчивости вихря Ранкина на вре­
менах 𝑂(𝑟6*𝑐

4
∞/Γ5

*) [117; 118]; в) нелинейного самопереноса волны на временах
𝑂(ω−1/𝑎). Таким образом, задача рассеяния в приведённой в разделе 3.1 поста­
новке реализуется при следующих соотношениях между пространственными
масштабами:

max (ν∞/𝑐∞, Γ*/𝑐∞) << 𝑟* << 𝑘−1 << 𝐿 << 𝑟𝐹 ,

𝑟𝐹 << 𝑐∞(𝑡− 𝑡0) << min
(︀
𝑟6*𝑐

5
∞/Γ5

*, 𝑟2*𝑐∞/ν∞, 𝑘−1/𝑎
)︀
. (3.49)
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В безразмерных переменных требование, что 𝑟𝐹/𝑐∞ должно быть намного ко­
роче трёх перечисленных временных масштабов, приводит к дополнительным
ограничениям на малые параметры (3.8), (3.9), (3.53):

𝑀 5
* << βε2, 𝑀* << Re βε2, 𝑎 << ε2, (3.50)

из которых первое связана с наступлением неустойчивости, второе — с диф­
фузией и третье — с нелинейной конвекцией. Здесь безразмерные параметры
β и ε определены соотношениями (3.53); Re = Γ*/ν∞; для безразмерного 𝑟𝐹

использовано соотношение (3.70).
Для применения теории возмущений необходимо также борновское при­

ближение (3.22). Из уравнения (3.35) с источником (3.58), (3.54) можно
заключить, что достаточным является условие высокочастотного рассеяния,
т. е. угловая частота падающей волны должна быть велика по сравнению с
максимальной угловой скоростью течения:

𝑀*/β = Γ*/(2πω𝑟2*) << 1. (3.51)

В действительности достаточное условие является менее строгим, чем (3.51),
хотя и более строгим, чем (3.8):

𝑀* << β or 𝑀* << 1, 𝑀* ̸= β/𝑛+𝑂(β2), 𝑛 ∈ Z. (3.52)

Последнее из ограничений связано с тем фактом, что вихрь Ранкина может
излучать звук на собственных частотах 𝑛𝑀*/β, где 𝑀*/β — безразмерная уг­
ловая скорость в области 𝑟 < β. При угловой частоте падающей волны, близкой
к одной из собственных частот, происходит резонансное усиление и амплитуда
рассеянного поля становится порядка амплитуды падающего [20; 22; 119].

С использованием безразмерных параметров

β = 𝑘𝑟* << 1, ε = 1/(𝑘𝐿) << 1 (3.53)

и безразмерной циркуляции Γ = Γ/Γ* (чёрточка далее опускается), распреде­
ление (3.48) переписывается в виде

Γ ∼

⎧⎪⎪⎨⎪⎪⎩
(𝑟/β)2, 𝑟/β = 𝑂(1), 𝑟 ⩽ β

1, 𝑟/β = 𝑂(1), 𝑟 > β

e−ε
2𝑟2, ε𝑟 = 𝑂(1)

при βε→ 0, (3.54)
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причём βε = ε0/2, где ε0 – малый параметр из главы 2. Переопределим безраз­
мерные функции 𝑈 𝑖𝑗(𝑟), заменяя максимальное число Маха 𝑀* = Γ*/(2π𝑟*𝑐∞)

в разложении (3.10) числом Маха на масштабе длины акустической волны
𝑟 = 1:

𝑀λ = 𝑀*β = 𝑘Γ*/(2π𝑐∞). (3.55)

Тогда однородная плоская падающая волна, удовлетворяющая линеаризован­
ным уравнениям (3.4)–(3.6), принимает вид

ρ01 = ei𝑘̂·𝑟, 𝑝01 = κe
i𝑘̂·𝑟, 𝑣01 = 𝑘̂ei𝑘̂·𝑟, (3.56)

а осесимметричный вихрь (1) – вид

ρ10 = 0, 𝑝10 = 0, 𝑣10 =
Γ(𝑟)

𝑟
θ̂. (3.57)

Приближения более высоких порядков не входят в уравнение (3.36)–(3.37), опре­
деляющее рассеянное поле в главном приближении, и потому не представляют
интереса в контексте задачи рассеяния. Источник (3.36), (3.56)–(3.57) прини­
мает вид

𝑞11 = −2i𝑘̂ · ∇

[︃
𝑧 · (𝑟 × 𝑘̂)

𝑟2
Γ(𝑟)ei𝑘̂·𝑟

]︃
, (3.58)

где 𝑧 = 𝑟 × θ̂ — единичный вектор вдоль вектора завихренности.
Вследствие (3.53) в интересующей нас области 𝑟 >> 1 рассеянное поле

(3.40) для источника (3.58), (3.54) в главном приближении не зависит от β, т. е.
распределение завихренности в ядре вихря не играет роли [21]. Это позволяет
положить β = 0 в ЗИ, так что (3.54) упрощается до

Γ = e−ε
2𝑟2. (3.59)

Действительная часть источника (3.58), (3.59) при ε = 0.05 показана на ри­
сунке 27а.

Решение ЗИ для источника (3.58), (3.59) является центральным пунктом
данного раздела. Экспоненциальное затухание

Γ = 𝑂((ε𝑟)−∞) при ε𝑟 → ∞ (3.60)

обеспечивает корректность постановки при ε > 0. Подстановка ε = 0 в (3.59)
ведёт к случаю ПВТВ с точечным вихрем Γ = 1, в котором задача рассеяния
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а) б)

в) г)
Рисунок 27 — Поля, относящиеся к рассеянной волне: а – источник Real(𝑞11)
(3.58), б – Фурье-образ источника Imag(̂︀𝑞11) (3.74), в – решение Real(ρ11) (А.1),
(А.4)–(А.10), г – Фурье-образ решения Imag(̂︀ρ11) (3.74)/(1 − 𝐾2) при Γ(𝑟) =

exp(−ε2𝑟2), ε = 0.05. Показанные диапазоны значений: −0.2 < Real(𝑞11) < 0.2,
−ε−1 < Imag(̂︀𝑞11) < ε−1, −2.62 < Real(ρ11) < 2.62 и −2ε−1 < Imag(̂︀ρ11) < 2ε−1
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некорректна. Целью является получить решение в главном приближении при
ε → 0, когда имеется два пространственных масштаба, различимых на рисун­
ке 27а: длина волны 𝑟 = 𝑂(1) и эффективный радиус вихря ε𝑟 = 𝑂(1). При
этом не требуется использовать метод сращиваемых асимптотических разложе­
ний, поскольку известно точное решение (3.40). Особый интерес представляет
решение в промежуточной области 𝑟 → ∞, ε𝑟 → 0, где вихрь близок к потен­
циальному, как в случае ПВТВ:

Γ → 1 при ε𝑟 → 0. (3.61)

Предложенная в работе [36] модель Γ = exp(−ε𝑟) также удовлетворяет (3.60)
и (3.61), но не имеет ясного физического смысла и, по-видимому, требует более
громоздких вычислений.

3.3.2 Представление решения

Получим сначала точное представление решения общей корректно постав­
ленной ЗИ, не содержащее неэлементарных функций. Применим двумерное
преобразование Фурье

̂︀ρ11(𝐾) =
1

2π

∫︁
R2

ρ11(𝑟)e
−i𝐾·𝑟 d2𝑟, ̂︀𝑞11(𝐾) =

1

2π

∫︁
R2

𝑞11(𝑟)e
−i𝐾·𝑟 d2𝑟 (3.62)

к уравнению Гельмгольца (3.35). Вследствие условия излучения (3.39)

1

2π

∫︁
R2

∇2ρ11e
−i𝐾·𝑟 d2𝑟 = −𝐾2̂︀ρ11. (3.63)

Из уравнений (3.62), (3.63) следует

(1−𝐾2)̂︀ρ11 = ̂︀𝑞11. (3.64)

Выражаем ̂︀ρ11 и берём обратное преобразование Фурье:

ρ11 =
1

2π

∫︁
𝒞

̂︀𝑞11(𝐾)

1−𝐾2
ei𝐾·𝑟 d2𝐾, (3.65)

Двумерный цикл 𝒞 ⊂ C2 в (3.65) представляет собой плоскость R2, дефор­
мированную таким образом, что особая окружность 𝐾 = 1, соответствующая
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собственным решениям оператора Гельмгольца, обходится так, чтобы удовле­
творить условию излучения (3.38):

Real(𝐾) · Imag(𝐾) < 0 при 𝐾 ∈ 𝒞 вблизи 𝐾 = 1, (3.66)

что эквивалентно условию причинности (см. введение). Представление (3.65)
с циклом 𝒞 и правилом обхода (3.66) и представление (3.40) эквивалентны и
связаны друг с другом через теорему о свёртке.

Источник (3.58), (3.59) локализован в пределах области течения ε𝑟 =

𝑂(1). Следовательно, в области покоящегося газа ε𝑟 → ∞ можно использовать
дальнюю асимптотику (3.41) функции Грина в (3.40): каждая из элементар­
ных волн, исходящих из области ε𝑟′ = 𝑂(1), преодолевает большое расстояние
|𝑟 − 𝑟′| >> 1. Расстояние раскладывается в степенной ряд по 𝑟′:

|𝑟 − 𝑟′| = 𝑟 − 𝑟 · 𝑟′ +
(θ̂ · 𝑟′)2

2𝑟
+𝑂

(︂
1

ε3𝑟2

)︂
при ε𝑟 → ∞. (3.67)

В знаменателе (3.41) можно учитывать только главный член в (3.67), но в по­
казателе экспоненты необходимо сохранять все члены.

Наибольшее возможное упрощение в экспоненте (3.41) — линеаризация
(3.67) по 𝑟′, известное как приближение Фраунгофера. Оно применимо толь­
ко в области ε2𝑟 → ∞ — наиболее дальней части области покоящегося газа.
Производя подстановку в (3.40) и используя (3.37), получаем уходящую цилин­
дрическую волну (3)

ρ11 ∼
ei𝑟−iπ/4

√
𝑟

𝑓(θ), 𝑣11 ∼ 𝑟ρ11 при ε2𝑟 → ∞ (3.68)

с амплитудой рассеяния

𝑓 = −i

√︂
π

2
̂︀𝑞11(𝑟), (3.69)

где ̂︀𝑞11 — Фурье-образ источника (3.62). Аргумент 𝑟 отражает направление
распространения звука в дальнем поле. Решение (3.68), (3.69) удовлетворяет
условию излучения (3.38) и в главном приближении уравнению Гельмгольца
(3.35), которое будет однородным из-за (3.60). Оно также может быть получено
из (3.65) с помощью метода перевала в многомерном пространстве [120].

В области ε2𝑟 = 𝑂(1) необходимо учитывать квадратичный член в (3.67),
зависящий от 𝑟, что приводит к нарушению (3.68). Это определяет границу
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дальнего поля согласно (3.38):

𝑟𝐹 = ε−2. (3.70)

Формула (3.70) показывает, что ближнее поле 𝑟/𝑟𝐹 = 𝑂(1), в котором рассеян­
ное поле отлично от (3.68), намного больше области течения. Таким образом,
картина рассеяния будет многомасштабной, в том числе в области покояще­
гося газа ε𝑟 → ∞.

3.3.3 Качественный анализ

Преобразование Фурье от источника (3.58) в результате интегрирования
по частям сводится к преобразованию Фурье от продольной компоненты скоро­
сти (3.57) с аргументом, сдвинутым на волновой вектор 𝑘̂ падающей волны
(3.56):

̂︀𝑞11(𝐾) =
1

π
𝐾 · 𝑘̂

∫︁
R2

𝑧 · (𝑟 × 𝑘̂)

𝑟2
Γ(𝑟)e−i(𝐾−𝑘̂)·𝑟 d2𝑟. (3.71)

Согласно принципу неопределённости, преобразование Фурье (3.71) ис­
точника (3.58), (3.59), распределённого в пределах области 𝑟 = 𝑂(ε−1),
локализовано в окрестности волнового вектора падающей волны |𝐾 − 𝑘̂| =

𝑂(ε). Это приводит к значительному усилению рассеянного звука в направле­
нии падения вследствие конструктивной интерференции элементарных волн:
мгновенная разность фаз 𝑘̂ · 𝑟 компенсируется разностью хода −𝐾 · 𝑟. В част­
ности, решение в дальнем поле (3.69) локализовано в пределах малых углов
рассеяния |𝑟 − 𝑘̂| ∼ θ = 𝑂(ε), т. е. достигает там максимума. Преобразование
Фурье точного решения (3.65) достигает максимума в той части окрестности
|𝐾−𝑘̂| = 𝑂(ε), которая соответствует волновому числу 𝐾 = 1, как у падающей
волны, — на параболической кривой, локализованной в области |𝐾𝑥−1| = 𝑂(ε2),
|𝐾𝑦| = 𝑂(ε), где 𝐾𝑥 = 𝑘̂ · 𝐾 и 𝐾𝑦 = 𝑧 · (𝑘̂ ×𝐾) — декартовы координаты 𝐾

(см. рисунок 28). Согласно принципу неопределённости, решение распределено
в области 𝑥 = 𝑂(ε−2), |𝑦| = 𝑂(ε−1) ориентированной в переднем направлении,
где 𝑥 = 𝑘̂ · 𝑟 = 𝑟 cos θ и 𝑦 = 𝑧 · (𝑘̂ × 𝑟) = 𝑟 sin θ — декартовы координаты. Это
подсказывает, что решение имеет вид уходящей цилиндрической волны (3.68)
вне этой области и некоторый другой вид внутри. В случае плоской падающей



79

0 ε

ε2

Kx

1

Ky

Рисунок 28 — Асимптотические области Фурье-образа источника ̂︀𝑞11(𝐾) и Фу­
рье-образа решения ̂︀ρ11(𝐾) при ε → 0, представленных на рисунках 27б, 27г.
Фурье-образ источника локализован в пределах закрашенного круга. Фурье­
образ решения имеет особенность на большой окружности. Жирная кривая —

их пересечение

ε-1

ε-2

ε
O(1)

дальнее поле
(область Фраунгофера)

ближнее поле
(область Френеля)

геометрическая акустика

Рисунок 29 — Асимптотические области источника 𝑞11(𝑟) и решения ρ11(𝑟) при
ε→ 0, представленных на рисунках 27а, 27в. Закрашенный круг соответствует

области потенциального течения ε𝑟 → 0

волны (3.56) в ближнем поле остаётся область течения 𝑟 = 𝑂(ε−1) и «след» дли­
ной 𝑂(ε−2) за ней (см. рисунок 29); остальная её часть вырождается в дальнее
поле, так что граница (3.70) сжимается до

𝑟𝐹 (θ) =

{︃
ε−2, θ/ε = 𝑂(1)

ε−1/θ, θ/ε→ ∞,
(3.72)

сохраняя своё положение на малых углах. Отметим, что рисунок 29, как и ри­
сунок 32 ниже, подразумевает гомоморфизм, который ставит в соответствие
отношения порядка «много меньше» и «меньше», а также «одного порядка» и
«приближённо равно», так что значения одного порядка показаны как тожде­
ственные; в частности, области ε2𝑟 → ∞ и ε2𝑟 → 0 показаны как области, а
область ε2𝑟 = 𝑂(1) без ε2𝑟 → 0 — как кривая.

Имеется глубокая аналогия между картиной рассеяния в данной задаче
и картиной дифракции в задаче о коротковолновой дифракции плоской волны
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на щели в случае, когда длина волны порядка 𝑂(1), а ширина щели 𝑂(ε−1). Де­
тальное описание можно найти в книгах [121; 122], где рассмотрено рассеяние
плоской волны турбулентным течением в ограниченном объёме. Причиной явля­
ется аналогия между представлением (3.40) и двумерной формулой дифракции
Кирхгофа [77; 123], основанных на уравнении Гельмгольца (3.35); при этом в за­
даче рассеяния потоком источник распределён, а в задаче дифракции на щели
сосредоточен на отверстии. В переднем направлении, где, как правило, интерес­
на картина дифракции, дальнее поле ε2𝑟 → ∞ можно отождествить с областью
дифракции Фраунгофера, а ближнее поле ε2𝑟 = 𝑂(1) — с областью дифракции
Френеля. Угловая область θ/ε = 𝑂(1) аналогична области, заданной услови­
ем Брэгга-Вульфа [79]. Подобласть ε2𝑟 → 0 ближнего поля интерпретируется
как область геометрической акустики, в которой длина акустической волны не
влияет на структуру решения, т. е. волна движется как пучок лучей. Вместе
с тем в [27] отмечено, что приближение геометрической акустики, исследован­
ное в работах [26; 27; 124; 125] для случая ПВТВ, не имеет общего диапазона
применимости с борновским приближением; это препятствует прямому срав­
нению результатов.

Далее рассматривается случай Γ = exp(−ε2𝑟2). Фурье-образ источника
(3.71) вычисляется с помощью соотношения, которое можно вывести с помощью
теоремы о свёртке и которое было использовано в работе [15], где рассматри­
вался случай ПВТВ для вихря Лэмба–Озеена:

1

2π

∫︁
R2

𝑧 · (𝑟 × 𝑘̂)

𝑟2
e−ε

2𝑟2e−iα·𝑟 d2𝑟 = −i
𝑧 · (α× 𝑘̂)

α2

(︁
1− e−α

2/4ε2
)︁
. (3.73)

Подстановка (3.73) в (3.71) даёт

̂︀𝑞11(𝐾) = −2i
𝐾 · 𝑘̂ 𝑧 · (𝐾 × 𝑘̂)

|𝐾 − 𝑘̂|2
(︁
1− e−|𝐾−𝑘̂|2/4ε2

)︁
. (3.74)

Поля мнимой части Фурье-образа источника (3.74) и Фурье-образа решения
(3.74)/(1 − 𝐾2) при ε = 0.05 показаны на рисунках 27б и 27г, соответственно
(ср. с рисунком 28).

Вычисления, проделанные с помощью точного представления (3.65) с
правилом обхода (3.66) для Фурье-образа источника (3.74), представлены в
приложении А. Аналитическое решение получено в дальнем поле ε2𝑟 → ∞, в
области больших углов θ/ε→ ∞ и в области геометрической акустики ε2𝑟 → 0.
Условие 𝑟 → ∞ предполагается всюду и ниже будет опущено.
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3.3.4 Асимптотическое решение в дальнем поле

Амплитуда рассеяния в дальнем поле может быть найдена прямой под­
становкой (3.74) в (3.69):

𝑓 = 𝑓0(1− e−|𝑟−𝑘̂|2/4ε2) ∼ 𝑓0(1− e−θ
2/4ε2), (3.75)

где

𝑓0 = −
√
2π

𝑟 · 𝑘̂ 𝑧 · (𝑟 × 𝑘̂)

|𝑟 − 𝑘̂|2
=

√︂
π

2
cos θ ctg

θ

2
(3.76)

есть в точности выражение (i) для случая ПВТВ, имеющее особенность при
θ = 0; |𝑟 − 𝑘̂| = 2 sin(θ/2).

Аналогичным образом в работе [36] получено решение для случая Γ =

exp(−ε𝑟):

𝑓 = 𝑓0
|𝑟 − 𝑘̂|2/ε2√︁

1 + |𝑟 − 𝑘̂|2/ε2 (1 +
√︁

1 + |𝑟 − 𝑘̂|2/ε2)
, (3.77)

где, как в (3.75), допускается замена |𝑟− 𝑘̂| → θ. Масштаб дальнего поля ε2𝑟 →
∞, в котором применимо решение (3.77), в [36] не был определён. Между тем, в
ближнем поле ε2𝑟 = 𝑂(1) решение (3.77) некорректно, а в области течения ε𝑟 =
𝑂(1) оно вообще не удовлетворяет уравнению Гельмгольца (3.35) (объяснение
см. в разделе 3.4).

Каждое из решений (3.75) и (3.77) представляет собой регулярное распре­
деление с максимумом на малых углах рассеяния:

𝑓 = 𝑂(ε−1), |𝑈 11| = 𝑂(ε−1/
√
𝑟) << 1 при θ/ε = 𝑂(1), (3.78)

𝑓 = 𝑂(1), |𝑈 11| = 𝑂(1/
√
𝑟) при θ = 𝑂(1), (3.79)

и сращивается с выражением (i) на больших углах (рисунок 30):

𝑓 ∼ 𝑓0 при θ/ε→ ∞. (3.80)
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Рисунок 30 — Амплитуда рассеяния в дальнем поле: выражение (i) (3.76) при
Γ = 1 (чёрный пунктир); решение (3.75) при Γ = exp(−ε2𝑟2), ε = 0.05 (оранже­
вая сплошная); решение (3.77) при Γ = exp(−ε𝑟), ε = 0.05 (зелёная сплошная)

3.3.5 Асимптотическое решение в области геометрической
акустики

Рассеянное поле в области геометрической акустики включает как компо­
ненту «излучения», так и компоненту «искажения», которые были определены
в разделе 3.1:

𝑈 11 = 𝑈 𝑟
11 +𝑈 𝑑

11, (3.81)

в то время как в дальнем поле — только компоненту «излучения». Ниже будут
использоваться формулы для амплитуды и фазы (3.25) однородной плоской
падающей волны (3.56):

𝐴0 = 1, φ0 = 𝑘̂ · 𝑟, (3.82)

и для изменения амплитуды и сдвига фазы (3.26) вследствие рассеяния

𝐴1 = |ρ11| cos(arg ρ11 − 𝑘̂ · 𝑟), φ1 = |ρ11| sin(arg ρ11 − 𝑘̂ · 𝑟). (3.83)

Компонента «излучения» имеет вид

ρ𝑟11 ∼ −πiei𝑟(1−θ2/2)θ
2
cos θ ctg

θ

2

[︂
sgn(θ)− erf

(︂
e−iπ/4

√
𝑟θ√

2

)︂]︂
,

𝑣𝑟
11 ∼ 𝑟ρ𝑟11. (3.84)
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В пределах узкой параболической области на малых углах она описывает неза­
тухающее поле:

|𝑈 𝑟
11| = 𝑂(1) при

√
𝑟θ = 𝑂(1). (3.85)

На больших углах (3.84), как и решение в дальнем поле (3.75), имеет вид ухо­
дящей цилиндрической волны и сращивается с выражением (i):

ρ𝑟11 ∼
ei𝑟−iπ/4

√
𝑟

𝑓0(θ) при
√
𝑟θ→ ∞. (3.86)

Характерные угловые масштабы решений (3.75) и (3.84) различны; каждый из
них при экстраполяции в оставшуюся из двух областей будет более тонким по
сравнению с местным характерным масштабом (см. рисунок 32).

Компонента «искажения» имеет вид

ρ𝑑11 ∼ −iei𝑘̂·𝑟
∫︁ 𝑟

−𝑘̂∞
𝑘̂ · 𝑣10(𝑟

′) 𝑘̂ · d𝑟′ =

= πiei𝑥
[︂
2𝑇
(︁√

2ε𝑦, 𝑥/𝑦
)︁
+

1

2
(sgn(𝑦)− erf(ε𝑦))

]︂
,

𝑣𝑑
11 ∼ 𝑘̂ρ𝑑11, (3.87)

где 𝑇 -функция Оуэна определяется формулой (А.5). Она имеет вид неоднород­
ной плоской волны, не интерферирующей с падающей волной (3.56):

𝐴𝑑
1 = 0, φ𝑑

1 = sgn(𝑦)|ρ𝑑11|, (3.88)

как следует из (3.83). В альтернативной терминологии (3.32), (3.34), рассеянная
волна соответствует (3.84), падающая волна — (3.56) + 𝑀λ (3.87). Последняя
представляет собой неоднородную плоскую волну; решение может быть пере­
писано с использованием (3.82) как

ρ01 +𝑀λρ
𝑑
11 ∼ exp[i(𝑘̂ · 𝑟 +𝑀λφ

𝑑
1(𝑟))]. (3.89)

По сравнению с (3.56) волновой фронт (3.89) будет запаздывать в полуплоско­
сти 𝑦 > 0, где звук распространяется вверх по потоку, и опережать при 𝑦 < 0,
где вниз (рисунок 31). Согласно интегральному выражению в (3.87), сдвиг фазы
(3.88) пропорционален циркуляции скорости вихря вдоль прямой, начинающей­
ся в бесконечности со стороны падения волны. Искажение волнового фронта
будет проявляться в пределах области течения и в следе за ней:

|𝑈 𝑑
11| = 𝑂(1) при ε𝑟θ = 𝑂(1), (3.90)
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Рисунок 31 — Линии фронта падающей волны согласно определению (3.56)
𝑥 = −10π; 0; 10π; 20π (красные пунктиры) и определению (3.89) 𝑥+𝑀λφ

𝑑
1 = π𝑛,

𝑛 ∈ Z (чёрные сплошные) в области геометрической акустики ε2𝑟 → 0 при
Γ = exp(−ε2𝑟2), ε = 0.05, 𝑀λ = 0.25

и экспоненциально затухать за пределами области течения и следа. В области
покоящегося газа, в которой циркуляция Γ → 0, из (3.87) имеем

ρ𝑑11 ∼ πiei𝑥ℋ(𝑥) [sgn(𝑦)− erf(ε𝑦)] при ε𝑟 → ∞, (3.91)

где ℋ(𝑥) — функция Хевисайда, равная 1 в переднем и 0 в заднем направлении.
В области ε𝑦 → 0, в том числе в области потенциального течения ε𝑟 → 0, где
циркуляция Γ → 1,

ρ𝑑11 ∼ πiei𝑟 cos θ [sgn(θ)− θ/π] при ε𝑦 → 0. (3.92)

Согласно (3.92), деформация волнового фронта вследствие переноса полем ско­
рости вихря, затухающим пропорционально 𝑟−1 при 𝑟 → ∞, конечна; причина
в том, что продольная компонента скорости затухает при 𝑥 → ∞ быстрее —
пропорционально 𝑥−2.

Итого, рассеянное поле (3.84) + (3.87) за пределами области течения и сле­
да имеет вид уходящей цилиндрической волны и сращивается с выражением (i):

ρ11 ∼
ei𝑟−iπ/4

√
𝑟

𝑓0(θ), 𝑣11 ∼ 𝑟ρ11 при ε𝑟θ→ ∞. (3.93)

Это подтверждает вывод из раздела 3.3.3 о том, что данная область факти­
чески относится к дальнему полю. Поскольку след (3.87) намного шире, чем
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параболическая область в (3.84) (см. рисунок 32), в промежуточной области
доминирует компонента «искажения»

ρ11 ∼ ρ𝑑11, 𝑣11 ∼ 𝑘̂ρ11 при ε𝑟θ = 𝑂(1). (3.94)

При этом вклад в интерференционную картину вносит только компонента «из­
лучения», так что

|𝑈 11| = 𝑂(1), |𝐴1| = 𝑂(1/
√
𝑟) при ε𝑟θ = 𝑂(1). (3.95)

В пределах параболической области

|𝑈 11| = 𝑂(1), |𝐴1| = 𝑂(1) при
√
𝑟θ = 𝑂(1). (3.96)

Разрыв при θ = 0, присутствующий (3.84) и в (3.87), исчезает в их сумме.
Решение (3.84) + (3.92) представляет собой в точности незатухающее вы­

ражение (ii) для случая ПВТВ с Γ = 1, эквивалентное следующим выражениям:
(23) из работы [19]; (5.7), (5.12) из [20]; (12), (20) из [21]; (24), (34) из [22];
(22), (23) из [29]; (A5), (A9) [33] (некоторые из данных решений выписаны для
других величин; некоторые содержат опечатки). Оно не затухает ни в какой
области. (Отметим, что рассеянное поле в терминологии (3.34) не затухает толь­
ко в пределах параболической области

√
𝑟θ = 𝑂(1).) Оно пригодно в области

потенциального течения ε𝑟 → 0, в которой Γ → 1. Более того, оно остаётся
справедливым в области ε2𝑥 → 0, ε𝑦 → 0 (как в заднем, так и в переднем
направлении), т. е. рассеянная волна не чувствует затухания поля скоростей
вихря. Независимость решения от ε является признаком области геометриче­
ской акустики: в этом случае длина волны остаётся единственным характерным
масштабом, и стремление её к нулю не меняет картину.

3.3.6 Асимптотическое решение в ближнем поле

Решение в ближнем поле на больших углах имеет вид уходящей цилиндри­
ческой волны и сращивается с выражением (i), что согласуется с решениями,
приведёнными выше:

ρ11 ∼
ei𝑟−iπ/4

√
𝑟

𝑓0(θ) при ε2𝑟 = 𝑂(1), θ/ε→ ∞. (3.97)
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ε-1

ε-2

ε

r

O(1)

1a

1b

a

2b

Рисунок 32 — Асимптотические области источника (закрашенный круг) и ре­
шения при ε → 0 с точки зрения порядков величин в соответствии с таблицей

1

Как показано в разделе 3.3.3, ближнее поле ε2𝑟 = 𝑂(1) на малых углах
θ/ε = 𝑂(1) будет основной характерной областью задачи. Здесь происходит
перестройка решения, от (3.84) + (3.87) в области геометрической акустики до
качественно отличного (3.68), (3.75), (3.76) в дальнем поле. Решение в ближ­
нем поле удалось получить только в виде интеграла по одной переменной
(А.4)–(А.10). Порядок амплитуды рассеянной волны, очевидно,

|𝑈 11| = 𝑂(1) при ε2𝑟 = 𝑂(1), θ/ε = 𝑂(1). (3.98)

3.3.7 Численное решение

Оценки, выполненные в разделах 3.3.4 и 3.3.5, определяют четыре асимп­
тотических области с различными порядками величин |𝑈 11|, |𝐴1|, которые
можно классифицировать по двум независимым критериям (рисунок 32, таб­
лица 1). В этом смысле область геометрической акустики является частью
ближнего поля. Дальнее и ближнее поля являются в точности такими, как
предсказывает анализ представления решения через преобразование Фурье в
разделе 3.3.3 (ср. с рисунком 29). Кроме того, дальнее и ближнее поля в точно­
сти совпадают с областями, в которых амплитуда рассеянной волны |𝑈 11| << 1

и |𝑈 11| = 𝑂(1), соответственно. Отметим, что max |𝑈 11| = 𝑂(1), так что бор­
новское приближение, как и требовалось, остаётся равномерно пригодным.

Полученное решение сводится к выражениям (i), (ii) и аналогу решения из
работы [36] в различных областях (таблица 2). Выражение (i) — уходящая волна
с особенностью (3.68), (3.76) — содержится в области 1a. Выражение (ii) — неза­
тухающая сумма компоненты «излучения» (3.84) и компоненты «искажения»
(3.92) — во внутренней части ближнего поля 2a ∪ 2b (в области геометрической
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Таблица 1 — Порядки |𝑈 11|, |𝐴1|, |𝑓 | в асимптотических областях, показанных
на рисунке 32

√
𝑟|𝐴1| = 𝑂(1)

√
𝑟|𝐴1| >> 1

дальнее поле:
|𝑈 11| << 1

1a
|𝑈 11| = 𝑂(1/

√
𝑟)

|𝐴1| = 𝑂(1/
√
𝑟)

|𝑓 | = 𝑂(1)

1b
|𝑈 11| = 𝑂(ε−1/

√
𝑟)

|𝐴1| = 𝑂(ε−1/
√
𝑟)

|𝑓 | = 𝑂(ε−1)

ближнее поле:
|𝑈 11| = 𝑂(1)

2a
|𝑈 11| = 𝑂(1)

|𝐴1| = 𝑂(1/
√
𝑟)

|𝑓 | = 𝑂(
√
𝑟)

2b
|𝑈 11| = 𝑂(1)

|𝐴1| = 𝑂(1)

|𝑓 | = 𝑂(
√
𝑟)

акустики). Аналог решения из работы [36] — уходящая волна без особенности
(3.68), (3.75), (3.76) — в дальнем поле 1a ∪ 1b.

Действительная часть решения, полученного численным интегрировани­
ем (А.4)–(А.10) при ε = 0.05, представлена на рисунке 33 (ср. со схемами на
рисунках 29, 32). Сходное поведение, при котором порядок амплитуды рассеян­
ного поля сохраняется в пределах ограниченной области ε2𝑟 = 𝑂(1) и затухает
при ε2𝑟 → ∞, может наблюдаться в физическом эксперименте, если вихрь с
постоянной циркуляцией имеется в ограниченной области. Примером, по-види­
мому, является картина волн на поверхности воды, соответствующая случаю
𝑀λ ≈ 0.2 на рисунке 2а из работы [92].

Для визуализации решения в ближнем поле в виде диаграммы направ­
ленности обобщим амплитуду рассеяния на комплекснозначную функцию,
зависящую от 𝑟:

ρ11 ≡
ei𝑟−iπ/4

√
𝑟

𝑓(𝑟). (3.99)

Диаграммы рассеяния |𝑓(𝑟, θ)| на различных расстояниях 𝑟 = const в преде­
лах покоящегося газа ε𝑟 >> 1 при ε = 0.05 представлены на рисунках 34–36.
Показаны решение в главном приближении при ε → 0, найденное в разде­
лах 3.3.4 и 3.3.5, и численное решение, полученное из точного представления
(А.4)–(А.10). Поскольку 𝑓(𝑟,−θ) = −𝑓(𝑟, θ), показана только верхняя полу­
плоскость 0 ⩽ θ ⩽ π. Видны максимумы на малых углах и нули в переднем
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Таблица 2 — Известные ранее выражения, которые включены в решение
данной задачи в разных асимптотических областях (см. рисунок 32)

Выражение (i) Выражение (ii)

Формулы (3.68), (3.110), (3.76) (3.84) + (3.92)

Свойства:
регулярность − +

затухание на ∞ + −

Случай Γ = 1 Γ = 1

Корректность
постановки задачи

некорректна некорректна

Впервые получено:
точно [11] [19]

аналогичное − [29]

Соответствующая
область

дальнее поле,
большие углы

1a

область геом. акустики
(ближнее поле

2a ∪ 2b,
«внутренняя» часть)

Решение из работы [36]

Формулы (3.68), (3.77), (3.76)

Свойства:
регулярность +

затухание на ∞ +

Случай Γ = exp(−ε𝑟)

Корректность постановки задачи корректна

Впервые получено:
точно −

аналогичное [36]

Соответствующая область
дальнее поле

1a ∪ 1b
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Рисунок 33 — Численное решение Real(ρ11) при Γ(𝑟) = exp(−ε2𝑟2), ε = 0.05.
Показан диапазон значений −2.63 < Real(ρ11) < 2.63

|f|

0

ε-1

Рисунок 34 — Диаграммы рассеяния в дальнем поле при Γ = exp(−ε2𝑟2), ε =

0.05: решение в главном приближении при ε2𝑟 → ∞ (3.75) (чёрный пунктир)
и численное решение при ε2𝑟 = 0.5 (синяя сплошная), ε2𝑟 = 1 (оранжевая

сплошная)

|f|

0

ε-1

Рисунок 35 — Диаграммы рассеяния в области геометрической акустики при
Γ = exp(−ε2𝑟2), ε = 0.05: решение в главном приближении при ε𝑟 → ∞,
ε2𝑟 → 0 соответствующее (3.84) + (3.91) (пунктиры) и численное решение при

ε𝑟 = 2, ε2𝑟 = 0.1 (зелёные), ε𝑟 = 4, ε2𝑟 = 0.2 (красные)

θ = 0, боковом θ = π/2 и заднем θ = π направлениях. Рисунки 36а, 36в пока­
зывают, что на практике область 𝑟 < 0.2ε−2 можно рассматривать как область
геометрической акустики, а область 𝑟 > 0.5ε−2 — как дальнее поле. Осцилля­
ции в области геометрической акустики (рисунок 35) отражают интерференцию
компонент «излучения» (3.84) и «искажения» (3.87).
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|f|

0

ε-1

а)

|f|

0

ε-1

б)

|f|

0

ε-1

в)
Рисунок 36 — Диаграммы рассеяния при Γ = exp(−ε2𝑟2), ε = 0.05: решение
в главном приближении в дальнем поле (3.75) (синие сплошные), решение в
главном приближении в области геометрической акустики соответствующее
(3.84) + (3.91) (красные сплошные), композитное решение соответствующее
(3.100) (светло-зелёные сплошные) и численное решение (чёрные пунктиры):

а – ε2𝑟 = 0.2, б – ε2𝑟 = 0.3, в – ε2𝑟 = 0.5

Структура полученного решения позволяет составить выражение, равно­
мерно пригодное в дальнем поле ε2𝑟 → ∞, на больших углах θ/ε → ∞ и в
области геометрической акустики ε2𝑟 → 0. Для этого используем аналог ме­
тода мультипликативного составления, который используется для построения
равномерно пригодного решения из сращиваемых асимптотических разложений
взятием произведения внешнего и внутреннего разложений, делённого на про­
межуточную асимптотику [106]. Возьмём решение в дальнем поле (3.68), (3.75),
(3.76) в качестве внешнего разложения, решение в области геометрической аку­
стики (3.84) + (3.87) в качестве внутреннего и решение на больших углах (3.97),
(3.76) в качестве промежуточной асимптотики. Это возможно, поскольку в об­
ласти 1a все три разложения сращиваются. Композитное решение имеет вид

ρ11|ε2𝑟→∞ ρ11|ε2𝑟→0

ρ11|θ/ε→∞
∼ πi

(︁
1− e−θ

2/4ε2
)︁{︁

ei𝑟 cos θ
[︁
2𝑇
(︁√

2ε𝑟 sin θ, ctg θ
)︁
+

+
1

2
(sgn(θ)− erf(ε𝑟 sin θ))

]︂
−

−ei𝑟(1−θ
2/2)θ

2
cos θ ctg

θ

2

[︂
sgn(θ)− erf

(︂
e−iπ/4

√
𝑟θ√

2

)︂]︂}︂
.(3.100)
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Выражение (3.100) наиболее близко к численному решению, в том числе в
ближнем поле (рисунок 36б). Помимо ближнего поля, единственная область,
в которой оно даёт относительную ошибку 𝑂(1), — это не представляющая ин­
тереса окрестность оси симметрии, где ρ11 ∝ θ, в то время как выражение
(3.100) пропорционально θ3.

3.3.8 Сечение рассеяния

Обобщим полное сечение рассеяния и сечение переноса импульса [11] с
учётом направления распространения рассеянной волны. В безразмерных пе­
ременных

σ(𝑟) =

∫︁ π

−π
|𝑣11|2 𝑣11 · 𝑟 dθ, σ*(𝑟) =

∫︁ π

−π
|𝑣11|2 (𝑣11 − 𝑘̂) · 𝑟 dθ, (3.101)

где 𝑣11 = 𝑣11/|𝑣11| — волновой вектор рассеянной волны, 𝑣11 → 𝑟 при ε2𝑟 → ∞.
В области покоящегося газа, где можно пренебречь взаимодействием вихря со
звуком, поток энергии рассеянной волны и перенос импульса должны быть по­
стоянны:

σ(𝑟) → σ∞, σ*(𝑟) → σ*∞ при ε𝑟 → ∞. (3.102)

Подстановка решения в дальнем поле вида (3.68) в (3.101) даёт

σ∞ =

∫︁ π

−π
𝑓 2(θ) dθ, σ*∞ =

∫︁ π

−π
𝑓 2(θ)(1− cos θ) dθ. (3.103)

Для решения (3.75) полное сечение рассеяния из (3.103)

σ∞ → 4π

∫︁ ∞

0

(1− e−θ
2/4ε2)2

θ2
dθ =

(︁
4− 2

√
2
)︁
π3/2ε−1 (3.104)

имеет порядок размера области течения, причём большая часть энергии излу­
чается на малые углы θ/ε = 𝑂(1). Размерное полное сечение рассеяния имеет
порядок 𝑂(𝑀 2

*β
2ε−1) относительно длины волны; условия (3.50) допускают от­

ношение как много больше, так и много меньше единицы.
В области геометрической акустики за пределами области течения под­

становка (3.84) + (3.91) в (3.101) даёт:

σ→ 2π2𝑟

∫︁ ∞

0

(1− erf(ε𝑟θ))2 dθ =
(︁
4− 2

√
2
)︁
π3/2ε−1 при ε𝑟 → ∞, ε2𝑟 → 0,

(3.105)
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что совпадает со значением в дальнем поле (3.104), несмотря на качественное
различные диаграммы рассеяния. Это соответствует требованию условия сохра­
нения потока энергии (3.102). Большая часть энергии относится к компоненте
«искажения» (3.91), поскольку её характерный поперечный масштаб намного
больше, чем у компоненты «излучения». Таким образом, рассеянное поле, опре­
делённое согласно (3.34) как компонента «излучения», нарушает (3.102):

σ′ → 2π2𝑟

∫︁ ∞

0

[︂
sgn(θ)− erf

(︂
e−iπ/4

√
𝑟θ√

2

)︂]︂2
dθ = 𝑂(

√
𝑟) при ε𝑟 → ∞, ε2𝑟 → 0.

(3.106)
Поэтому в данной статье мы считаем компоненту «искажения» также частью
рассеянного поля несмотря на то, что она не влияет на интерференционную
картину.

В области потенциального течения из (3.84) + (3.92) имеем

σ ∼ 𝑟

∫︁ π

−π
|ρ11|2 cos θ dθ→ 2π2𝑟

∫︁ ∞

0

(1− θ/π)2 cos θ dθ = 4π𝑟 при ε𝑟 → 0.

(3.107)
Сечение переноса импульса имеет порядок длины волны и будет одинако­

вым в дальнем и ближнем поле:

σ*∞ → π2/2, (3.108)

поскольку компонента «искажения», а также малые углы не вносят вклад. Бла­
годаря этому результат (3.108), полученный в работах [11; 12] для случая ПВТВ
на основе выражения (i) и использованный для вычисления взаимной силы тре­
ния в сверхтекучем гелии, верен несмотря на некорректность выражения (i).

3.4 Взаимодействие акустических возмущений с вихревой нитью

В разделе 3.3 было показано, что выражения (i), (ii), известные из случая
ПВТВ с Γ = 1, совпадают с решением в главном приближении для случая
Γ = exp(−ε2𝑟2) при ε → 0 в разных областях. В данном разделе объясняется,
к чему приводит подстановка ε = 0 и решение соответствующей некорректной
задачи методами, корректными только при ε > 0 (что и было проделано в
работах, посвящённых случаю ПВТВ).
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В вырожденном случае ε = 0 единственный характерный масштаб для ис­
точника и, следовательно, для решения есть длина акустической волны 𝑂(1).
Фурье-образ источника (3.71) при Γ = 1 имеет особенность на векторе пада­
ющей волны 𝑘̂:

̂︀𝑞11(𝐾) = −2i
𝐾 · 𝑘̂ 𝑧 · (𝐾 × 𝑘̂)

|𝐾 − 𝑘̂|2
. (3.109)

Подстановка (3.109) в представление в дальнем поле (3.68), (3.69) ведёт к
выражению (i), определённому формулой (3.76):

𝑓 = 𝑓0, (3.110)

с особенностью на линии, представляющей собой вырожденную область θ/ε =
𝑂(1):

𝑓0 → ∞ при θ→ 0, (3.111)

Как отмечено в работе [36], сингулярность представляет собой неопределён­
ность ∞−∞ (см. рисунок 30). Выражение (i) удовлетворяет условию излучения
(3.38), но не удовлетворяет уравнению Гельмгольца (3.35), правая часть кото­
рого всюду будет существенной. В действительности представление в дальнем
поле теряет силу, поскольку дальнюю асимптотику (3.41) функции Грина
нельзя использовать в области течения [19]: вклад источников в окрестности
|𝑟 − 𝑟′| = 𝑂(1) учитывается с ошибкой, из-за чего теряется свойство функции
Грина быть фундаментальным решением уравнения. (В общем случае, Фурье­
образ источника (3.71) и, следовательно, амплитуда рассеяния (3.69), не имеет
особенностей 𝑟 = 𝑘̂ при условии |𝑣10| = 𝑂(𝑟−𝑛), 𝑛 > 2 при 𝑟/𝑅 → ∞, которое
является более строгим по сравнению с условием (3.44) корректности постанов­
ки задачи рассеяния в случае однородной плоской падающей волны (3.56). Это
наводит на мысль, что в случае поля скорости вихря |𝑣10| ∝ 𝑟−𝑛 при 3/2 < 𝑛 ⩽ 2

также нельзя использовать дальнюю асимптотику (3.41) функции Грина, т. е.
всё пространство необходимо рассматривать как область течения.)

Подстановка (3.109) в точное представление решения (3.65) с (3.66) ведёт
к незатухающему выражению (ii), определённому формулой (3.84) + (3.92):

|𝑈 11| = 𝑂(1) при 𝑟 → ∞, (3.112)

В главном приближении выражение (ii) удовлетворяет уравнению Гельмгольца
(3.35), но не удовлетворяет условию излучения (3.38), даже если относить к
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рассеянной волне только компоненту «излучения» (3.84). В действительности,
точное представление (3.65) теряет силу, поскольку выражение (ii) не удовле­
творяет условию затухания (3.39) и, следовательно, уравнению (3.63). Другие
авторы выражения (ii) использовали другие представления, которые также не
удовлетворяли условию излучения (3.38).

Итого, ни представление в дальнем поле (3.68), (3.69), ни точное представ­
ление (3.65) неприменимо в случае ПВТВ и ни одно из выражений (i), (ii) не
удовлетворяет (3.35), (3.38). Тем не менее, выражение (ii) имеет то преимуще­
ство, что оно соответствует существующей области геометрической акустики,
в то время как выражение (i) — дальнему полю, которое, как и вся область
покоящегося газа, отсутствует.

3.5 Взаимодействие акустических возмущений с вихревой парой
вблизи твёрдой поверхности

3.5.1 Постановка задачи

Пусть в двумерном пространстве имеются твёрдая поверхность 𝑦 = 0 и
два точечных вихря с координатами 𝑥 = ±𝑙, 𝑦 = ℎ и циркуляциями ±Γ0. Та­
кая конфигурация соответствует начальному условию задачи, рассмотренной
в главе 1. Твёрдая поверхность гармонически колеблется в направлении оси 𝑦;
при этом излучается монохроматическая плоская акустическая волна длиной
2π/𝑘. Требуется определить периодическое по времени рассеянное акустиче­
ское поле, возникающее в результате взаимодействия падающей акустической
волны с течением.

Как и в задаче о рассеянии звука цилиндрическим вихрем, рассмотренной
в разделе 3.3, будем считать характерные числа Маха (на масштабах длины вол­
ны и расстояния между вихрями) малыми и пренебрегать влиянием вязкости.
Последнее предположение качественно отличает постановку задач в данной гла­
ве от постановок в главах 1 и 2. При малых числах Маха характерное время
перемещения вихрей на масштаб длины волны 𝑙λ/Γ0 намного больше времени
прохождения волной расстояния до вихрей ℎ/𝑐∞. Поэтому вихри можно счи­
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тать неподвижными. Решение для возмущений плотности ρ11 удовлетворяет
неоднородному уравнению Гельмгольца (3.35), (3.36). При этом в (3.36) поле
возмущений скорости в падающей волне имеет вид (3.56), а

𝑣10 =
4∑︁

𝑖=1

Γ𝑖

|𝑟 − 𝑟𝑖|
θ̂𝑖 (3.113)

– поле скорости, индуцированное парой вихрей и их отражениями относительно
твёрдой поверхности 𝑘̂ · 𝑟 = 0:

Γ1 = Γ3 = Γ0, Γ2 = Γ4 = −Γ0, (3.114)

𝑟1 = −𝑙𝑧× 𝑘̂+ℎ𝑘̂, 𝑟2 = 𝑙𝑧× 𝑘̂+ℎ𝑘̂, 𝑟3 = 𝑙𝑧× 𝑘̂−ℎ𝑘̂, 𝑟4 = −𝑙𝑧× 𝑘̂−ℎ𝑘̂,

(3.115)
θ̂𝑖 = 𝑧 × 𝑟 − 𝑟𝑖

|𝑟 − 𝑟𝑖|
, (3.116)

где 𝑧 — единичный вектор вдоль вектора завихренности. Поле скорости
(3.113)–(3.116) удовлетворяет условию непротекания 𝑘̂ · 𝑣10 = 0. Источниковый
член (3.36) с учётом (3.56) переписывается в виде

𝑞11 = −2i𝑘̂ · ∇(𝑣10 · 𝑣01) = −2i𝑘̂ · ∇(𝑘̂ · 𝑣10e
i𝑘̂·𝑟). (3.117)

Решение уравнения (3.35) с достаточно быстро затухающим источником
(3.117) должно удовлетворять граничному условию излучения Зоммерфельда
(3.38) при 𝑘̂·𝑟/𝑟𝐹 → +∞, где 𝑟𝐹 — некоторый масштаб, и условию непротекания
на твёрдой поверхности

𝑘̂ · 𝑣11 = 0 при 𝑘̂ · 𝑟 = 0. (3.118)

С учётом (3.37) условие (3.118) для полей скорости (3.56), (3.113)–(3.116) пе­
реписывается в виде

𝑘̂ · ∇ρ11 = 0 при 𝑘̂ · 𝑟 = 0. (3.119)

Не считая граничного условия непротекания, к постановке задачи приме­
нимы соображения, перечисленные в разделах 3.1 и 3.2.

3.5.2 Представление решения

Сведём задачу (3.35), (3.117), (3.38) при 𝑘̂ · 𝑟/𝑟𝐹 → +∞, (3.119) к задаче
рассеяния в неограниченном пространстве, в которой условие (3.38) ставится
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при 𝑟/𝑟𝐹 → ∞. Для этого необходимо продолжить источниковый член (3.117)
на нижнюю полуплоскость так, чтобы условие (3.119) выполнялось тождествен­
но.

Точное решение задачи рассеяния в неограниченном пространстве выра­
жается через свёртку функции Грина с источниковым членом

ρ11 =

∫︁
R2

𝐺(𝑟, 𝑟′)𝑞11(𝑟
′) d2𝑟′, (3.120)

𝐺(𝑟, 𝑟′) = − i

4
𝐻

(1)
0 (|𝑟 − 𝑟′|), (3.121)

где 𝐻
(1)
0 (𝑟) — функция Ганкеля 1-го рода. Необходимо выбрать такое распре­

деление источника, чтобы функция 𝑄 ≡ 𝑘̂ · ∇𝑞11 была антисимметричной
относительно твёрдой поверхности 𝑘̂ · 𝑟 = 0:

𝑄(𝑟) = −𝑄(𝑟 − 2(𝑘̂ · 𝑟)𝑘̂). (3.122)

Условию (3.122) удовлетворяет распределение

𝑞11 = −2i𝑘̂ · ∇(𝑘̂ · 𝑣10e
i|𝑘̂·𝑟|), (3.123)

симметричное относительно твёрдой поверхности.
Решение задачи (3.35), (3.123) с граничным условием (3.38) при 𝑟/𝑟𝐹 → ∞

в полуплоскости 𝑘̂ · 𝑟 > 0 имеет вид (3.120), (3.121) и совпадает с решением
исходной задачи (3.35), (3.117), (3.38) при 𝑘̂ · 𝑟/𝑟𝐹 → +∞, (3.119).

Эквивалентная формулировка состоит в интегрировании (3.120) по реаль­
ной полуплоскости 𝑘̂ · 𝑟 > 0 с функцией Грина

𝐺(𝑟, 𝑟′) = − i

4

[︁
𝐻

(1)
0 (|𝑟 − 𝑟′|) +𝐻

(1)
0 (|𝑟 − (𝑟′ − 2(𝑘̂ · 𝑟′)𝑘̂)|)

]︁
. (3.124)

3.5.3 Асимптотическое решение в дальнем поле

Решение в дальнем поле 𝑟/𝑟𝐹 → ∞ имеет вид

ρ11 ∼
ei𝑟−iπ/4

√
𝑟

𝑓(θ) при 𝑟/𝑟𝐹 → ∞, (3.125)
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где амплитуда рассеяния

𝑓 = −i

√︂
π

2
̂︀𝑞11(𝑟), (3.126)

где ̂︀𝑞11(𝐾) =
1

2π

∫︁
R2

𝑞11(𝑟)e
−i𝐾·𝑟 d2𝑟. (3.127)

Подстановка (3.123) в (3.127) и интегрирование по частям даёт

̂︀𝑞11 = 1

π
𝑘̂ ·𝐾

∫︁
R2

𝑘̂ · 𝑣10e
i|𝑘̂·𝑟|e−i𝐾·𝑟 d2𝑟. (3.128)

Вычислим (3.128) с помощью теоремы о свёртке и выражений

1

2π

∫︁
R2

𝑘̂ · 𝑣10e
−i𝐾·𝑟 d2𝑟 = −i

𝑧 · (𝐾 × 𝑘̂)

𝐾2

(︀
e−i𝐾·𝑟1 − e−i𝐾·𝑟2 + e−i𝐾·𝑟3 − e−i𝐾·𝑟4

)︀
,

(3.129)
1

2π

∫︁
R2

ei|𝑘̂·𝑟|e−i𝐾·𝑟 d2𝑟 =
2iδ(𝐾𝑦)

1−𝐾2
𝑥

, (3.130)

где 𝐾𝑥 = 𝑘̂ · 𝐾, 𝐾𝑦 = 𝑧 · (𝐾 × 𝑘̂). Теорема о свёртке даёт

̂︀𝑞11 = 4i

π
κ𝐾𝑦 sin(𝑙𝐾𝑦)

∫︁ +∞

−∞

d𝐾 ′
𝑥

1− (𝐾𝑥 −𝐾 ′
𝑥)

2

1

𝐾 ′2
𝑥 +𝐾2

𝑦

(︁
eiℎ𝐾

′
𝑥 − e−iℎ𝐾 ′

𝑥

)︁
. (3.131)

Для вычисления несобственного интеграла (3.131) введём комплексную плос­
кость 𝐾 ′

𝑥. Будем обходить полюса 𝐾 ′
𝑥 = 𝐾𝑥 − 1 и 𝐾 ′

𝑥 = 𝐾𝑥 + 1 соответственно
по и против часовой стрелки: такое правило обхода позволит получить прообраз
выражения (3.130) взятием обратного преобразования Фурье. Для применения
теоремы о вычетах при вычислении первого слагаемого в (3.131) контур инте­
грирования необходимо замыкать в пределах полуплоскости Imag(𝐾 ′

𝑥) > 0, а
при вычислении второго в Imag(𝐾 ′

𝑥) < 0. Итого получаем

̂︀𝑞11 = −4𝐾𝑥𝐾𝑦 sin(𝑙𝐾𝑦)

(︂
eiℎ(1+𝐾𝑥)

(𝐾𝑥 + 1)2 +𝐾2
𝑦

− eiℎ(1−𝐾𝑥)

(𝐾𝑥 − 1)2 +𝐾2
𝑦

)︂
(3.132)

или, в векторной форме,

̂︀𝑞11 = −4𝑘̂ ·𝐾 𝑧 · (𝐾 × 𝑘̂) sin(𝑙𝑧 · (𝐾 × 𝑘̂))

(︃
eiℎ(1+𝑘̂·𝐾)

|𝐾 + 𝑘̂|2
− eiℎ(1−𝑘̂·𝐾)

|𝐾 − 𝑘̂|2

)︃
. (3.133)

Амплитуда рассеяния (3.126) с учётом (3.133) принимает вид

𝑓 = i
√
2π cos θ sin θ sin(𝑙 sin θ)

(︂
eiℎ(1+cos θ)

1 + cos θ
− eiℎ(1−cos θ)

1− cos θ

)︂
= (3.134)

= i
√
2π cos θ sin(𝑙 sin θ)eiℎ

(︃
tg
θ

2
eiℎ cos θ −

(︂
tg
θ

2
eiℎ cos θ

)︂−1
)︃
,
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где угол θ отсчитывается от направления 𝑘̂. Представим решение (3.135) в
форме

𝑓 = 𝐴𝑓e
iφ𝑓 . (3.135)

Тогда

𝐴𝑓 =
√
2π

cos θ sin(𝑙 sin θ)

sin(θ/2)

√︁
cos2 θ cos2(ℎ cos θ) + sin2(ℎ cos θ), (3.136)

φ𝑓 =
π

2
+ ℎ− arctan

tg(ℎ cos θ)

cos θ
. (3.137)

Для непрерывности решения к функции arctan в (3.137) в точках ℎ cos θ =

π/2 + π𝑛, 𝑛 ∈ Z добавляется или отнимается значение π.
Согласно решению (3.135)–(3.137), фаза рассеянной волны 𝑟−π/4+φ𝑓(θ)

зависит от угла рассеяния. Это означает, что линии волнового фронта отлича­
ются от окружностей, т. е. рассеянная волна, хотя и удовлетворяет условию
излучения (3.38), отлична от цилиндрической. Это качественно отличает реше­
ние данной задачи от решений задач рассеяния в пространстве без твёрдых
границ [79; 81; 83; 84; 4], в которых акустическая волна движется из беско­
нечности. В последнем случае вещественная часть источника 𝑞11 нечётна, а
мнимая — чётна; следовательно, амплитуда рассеяния, выражающаяся через
фурье-образ, является вещественной.

В случае 𝑙 ∼ ℎ >> λ, когда расстояние между вихрями и их высота над
землёй намного больше длины акустической волны λ = 2π/𝑘, дальнее поле
охватывает область 𝑟 >> 𝑙2/λ, так что

𝑟𝐹 = 𝑙2/λ. (3.138)

Амплитуда (3.136) достигает максимума порядка 𝑂(𝑙) в направлении распро­
странения падающей волны θ = 0 и имеет число нулей порядка 𝑂(𝑙). Диаграмма
направленности напоминает интерференционную картину суперпозиции волн
от нескольких источников (рисунок 37). Разность фаз (3.137) в различных на­
правлениях на окружности 𝑟 = const имеет порядок 𝑂(ℎ) (рисунок 38). Отличие
волнового фронта от окружности будет 𝑜(ℎ/𝑟𝐹 ) = 𝑜(λ/𝑙).
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|Af |

θ

Рисунок 37 — Амплитуда рассеяния, абсолютная величина |𝐴𝑓(θ)| (3.136) при
𝑙 = 5, ℎ = 10

|φf |

θ

0

Рисунок 38 — Фаза рассеянной волны 𝑟 − π/4 + φ𝑓(θ) (3.137) на окружности
𝑟 = 50 при 𝑙 = 5, ℎ = 10

3.6 Выводы по главе 3

Рассмотрены две задачи взаимодействия плоской акустической волны дли­
ной λ с вихревыми течениями из глав 1 и 2.

В первой из задач рассматривается вихрь, порождённый вращением кру­
гового цилиндра в вязкой среде в течение конечного времени. Поле скорости
такого вихря пропорционально 𝑟−1 exp(−𝑟2/𝐿2) и близко к полю скорости вихре­
вой нити в области 𝑟 << 𝐿. Получено решение вида уходящей на бесконечность
цилиндрической волны в дальнем поле 𝑟 >> 𝐿2/λ без особенностей. Асимпто­
тическая структура рассеянной волны в случае λ << 𝐿 аналогична структуре
решения в задаче о дифракции плоской волны на щели шириной 𝐿. Решение в
дальнем поле имеет максимум интенсивности на углах θ = 𝑂(λ/𝐿) и близко к
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решению Л. П. Питаевского с особенностью [11] при θ >> λ/𝐿. В области гео­
метрической акустики, в том числе в области потенциального течения 𝑟 << 𝐿,
решение близко к незатухающему решению П. В. Сакова [19].

Во второй задаче рассматривается вихревая пара вблизи бесконечной
плоской твёрдой поверхности, и акустическая волна генерируется источника­
ми, расположенными на поверхности. Получено решение вида уходящей на
бесконечность рассеянной волны, отличной от цилиндрической. Максимум ин­
тенсивности наблюдается в направлении, перпендикулярном плоскости.



101

Заключение

Основные результаты работы заключаются в следующем.
1. Получено численное решение двумерной задачи об эволюции в вязкой

несжимаемой жидкости двух вихрей с противоположными циркуляци­
ями вблизи бесконечной прямолинейной твёрдой поверхности. Описан
механизм глобального нестационарного отрыва пограничного слоя. Рас­
считаны модификация траекторий движения вихрей и уменьшение со
временем их циркуляции под влиянием отрыва.

2. Впервые на основе асимптотического анализа уравнений Навье–Сток­
са определены характеристики цилиндрического вихря, возникающего
при вращении кругового цилиндра в вязкой среде, для случая сжи­
маемого газа с линейной зависимостью коэффициентов диффузии от
температуры. Найдены условия, при которых циркуляция скорости
будет на больших расстояниях от цилиндра выше, чем в случае несжи­
маемой жидкости, и в некоторой промежуточной области — выше, чем
на поверхности цилиндра.

3. Впервые рассмотрена задача взаимодействия цилиндрического вихря,
возникающего при вращении кругового цилиндра в вязкой среде, с
плоской акустической волной. Построено асимптотическое решение для
случая, когда характерный масштаб области течения велик по срав­
нению с длиной волны. Два известных решения для случая вихревой
нити, решение Л. П. Питаевского и решение П. В. Сакова, содержат­
ся в качестве предельных случаев в двух различных асимптотических
областях. Получено решение в дальнем поле задачи взаимодействия
плоской акустической волны и двух вихрей с противоположными цир­
куляциями вблизи бесконечной прямолинейной твёрдой поверхности.
Рассеянная волна имеет вид уходящей на бесконечность волны, отлич­
ной от цилиндрической.

В заключение автор выражает признательность научному руководителю
Гайфуллину А. М. за постановку задач, поддержку, помощь, обсуждение ре­
зультатов и научное руководство. Также автор благодарит коллектив отдела
№4 НИО-2 ЦАГИ за поддержку и помощь и авторов шаблона *Russian-Phd­
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Приложение А

Вывод решения из § 3.3

Решение ЗИ с источником (3.58) при Γ = exp(−ε2𝑟2) в главном прибли­
жении при ε→ 0 можно вывести, используя точное представление с помощью
преобразования Фурье (3.65) с правилом обхода (3.66) для Фурье-образа ис­
точника (3.74). Будем использовать метод, разработанный [20; 21] для случая
ПВТВ, соответствующему ε = 0.

Решение (3.65), (3.74) представляется в виде суммы двух членов:

𝑈 11 = 𝑈 𝑝
11 +𝑈 𝑐

11, (А.1)

ρ𝑝11 = − i

2π

∫︁
R2

𝐾 · 𝑘̂ 𝑧 · (𝐾 × 𝑘̂)

1−𝐾 · 𝑘̂
(1− e−|𝐾−𝑘̂|2/4ε2)

|𝐾 − 𝑘̂|2
ei𝐾·𝑟 d2𝐾, (А.2)

ρ𝑐11 = − i

2π

∫︁
𝒞

𝐾 · 𝑘̂ 𝑧 · (𝐾 × 𝑘̂)

1−𝐾 · 𝑘̂
(1− e−|𝐾−𝑘̂|2/4ε2)

1−𝐾2
ei𝐾·𝑟 d2𝐾, (А.3)

причём полюс 𝐾𝑥 = 1 обходится по правилу Imag(𝐾𝑥) < 0, что согласуется
с (3.66).

Интеграл (А.2) представляет собой обратное преобразование Фурье от
функции ̂︀𝑞11(𝐾𝑥, 𝐾𝑦)/2(1 − 𝐾𝑥). При выбранном правиле обхода Фурье-образ
1/2(1 − 𝐾𝑥) равен −πiei𝑥ℋ(𝑥)δ(𝑦), где ℋ(𝑥) — функция Хевисайда, δ(𝑦) —
дельта-функция. Применяя теорему о свёртке и подставляя (3.58), (3.59) вме­
сто 𝑞11(𝑥, 𝑦), получаем точное представление

ρ𝑝11 = −ei𝑘̂·𝑟
{︂
i

∫︁ 𝑟

−𝑘̂∞
𝑘̂ · 𝑣10(𝑟

′) 𝑘̂ · d𝑟′ + 𝑘̂ · 𝑣10(𝑟)

}︂
=

= ei𝑥
{︂
πi

[︂
2𝑇
(︁√

2ε𝑦, 𝑥/𝑦
)︁
+

1

2
(sgn(𝑦)− erf(ε𝑦))

]︂
+

+
𝑦

𝑥2 + 𝑦2
e−ε

2(𝑥2+𝑦2)

}︂
, (А.4)

где

𝑇 (ζ, 𝑎) =
1

2π

∫︁ 𝑎

0

e−ζ
2(1+𝑥′2)/2

1 + 𝑥′2
d𝑥′ (А.5)

– 𝑇 -функция Оуэна [126; 127]. Особенность в (А.4) связана с рассмотрением
точечного вихря.
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Проинтегрируем выражение (А.3) по 𝐾𝑦, обходя полюса 𝐾𝑦 = ±
√︀

1−𝐾2
𝑥

и выбирая регулярную ветвь функции
√︀
𝐾2

𝑥 − 1 в соответствии с (3.66). Реше­
ние представляется в виде интеграла Зоммерфельда по переменной ψ = ξ+ iη

такой, что 𝐾𝑥 = cosψ, i
√︀
𝐾2

𝑥 − 1 = sinψ:

ρ𝑐11 = ρ
𝑐,0
11 + ρ𝑐,111 , (А.6)

ρ𝑐,011 =
i

2π
sgn(𝑦)

∫︁ ∞

−∞

𝐾𝑥

1−𝐾𝑥
ei𝐾𝑥𝑥

(︂∫︁ ∞

−∞

𝐾𝑦

1−𝐾2
𝑥 −𝐾2

𝑦

ei𝐾𝑦|𝑦| d𝐾𝑦

)︂
d𝐾𝑥 =

=
sgn(𝑦)

2

∫︁ ∞

−∞

𝐾𝑥

1−𝐾𝑥
e−
√

𝐾2
𝑥−1|𝑦|+i𝐾𝑥𝑥 d𝐾𝑥 =

= −sgn(θ)
2

∫︁
𝐶

ei𝑟 cos(ψ−|θ|) cosψ ctg
ψ

2
dψ, (А.7)

ρ𝑐,111 = − i

2π
sgn(𝑦)

∫︁ ∞

−∞

𝐾𝑥

1−𝐾𝑥
e−(𝐾𝑥−1)2/4ε2ei𝐾𝑥𝑥 d𝐾𝑥 ·

·
∫︁ ∞

−∞

𝐾𝑦

1−𝐾2
𝑥 −𝐾2

𝑦

e−𝐾2
𝑦/4ε

2

ei𝐾𝑦|𝑦| d𝐾𝑦 =

= ρ
𝑐,1|+
11 + ρ

𝑐,1|−
11 ,

ρ
𝑐,1|±
11 =

sgn(𝑦)
2

∫︁ ∞

−∞
𝐹±

𝐾𝑥

1−𝐾𝑥
e∓
√

𝐾2
𝑥−1|𝑦|+i𝐾𝑥𝑥 d𝐾𝑥 =

= −sgn(θ)
2

∫︁
𝐶

𝐹±e
i𝑟 cos(ψ∓|θ|) cosψ ctg

ψ

2
dψ, (А.8)

𝐹± = ∓1

2
e(𝐾𝑥−1)/2ε2

[︃
1 + erf

(︃
−
√︀
𝐾2

𝑥 − 1

2ε
± ε|𝑦|

)︃]︃

= ∓1

2
e− sin2(ψ/2)/ε2

[︂
1 + erf

(︂
i sinψ

2ε
± ε𝑟 sin |θ|

)︂]︂
. (А.9)

Контур интегрирования 𝐶 в (А.7), (А.8) состоит из трёх прямых линий

ψ = π+ iη, −∞ < η ⩽ 0; ψ = ξ, π ⩾ ξ > 0; ψ = iη, 0 < η < ∞
(А.10)

и бесконечно малой дуги, обходящей полюс ψ = 0 против часовой стрелки
(рисунки 39–40).

Точное представление (А.4)–(А.10) используется для получения численно­
го решения, что особенно важно в ближнем поле, где решение в аналитическом



116

виде неизвестно. Область с существенными значениями подынтегральной функ­
ции включает Imag(ψ) = 𝑂(1) для слагаемого (А.7) и ψ = 𝑂(

√
ε) для (А.8).

Вклад дуги равен вычету подынтегральной функции ψ = 0, помноженному
на πi/2.

Выражение (А.4) при 𝑟 → ∞ сводится к (3.87), что составляет компоненту
«искажения» в области геометрической акустики ε2𝑟 → 0.

Для вычисления (А.7)–(А.8) при 𝑟 → ∞ используем метод перевала
[128]: деформируем контур 𝐶 в путь наибыстрейшего спуска (ПНС) 𝐶*, кото­
рый определяется наиболее быстро осциллирующим множителем exp(𝐸*(ψ)) в
подынтегральной функции члена ρ𝑐,*11 . ПНС определяется как контур, проходя­
щие через стационарную точку ψ𝑠,* такую, что

d𝐸*/dψ = 0 при ψ = ψ𝑠,*, (А.11)

в направлении, в котором

Imag(𝐸*(ψ)) = Imag(𝐸*(ψ𝑠,*)), Real(𝐸*(ψ)) ⩽ Real(𝐸*(ψ𝑠,*)) при ψ ∈ 𝐶*.

(А.12)
На рисунках 39–40 стационарные точки — пересечения кривых Imag(𝐸*(ψ)) =

Imag(𝐸*(ψ𝑠,*)). Поскольку показатель экспоненты 𝐸*(ψ) в (А.7)–(А.8) при
𝑟 → ∞ велик, вклад в интеграл по контуру 𝐶* вносит только окрестность
стационарной точки |ψ − ψ𝑠,*| → 0.

В случае непрерывной деформации интеграл по контуру 𝐶 равен инте­
гралу по 𝐶*. Если контур при деформации пересекает полюс ψ = 0, значение
интеграла изменяется на значение вычета подынтегральной функции в дан­
ной точке помноженный на 2πi. Деформация с пересечением неограниченных
областей, в которых подынтегральная функция неограниченно растёт, не до­
пускается. Поскольку подынтегральная функция 2π-периодична, комплексная
плоскость ψ изоморфна не плоскости, а цилиндру; поэтому необходимо разли­
чать деформации по и против часовой стрелки.

Для слагаемого ρ𝑐,011 наиболее быстро осциллирующий множитель и стаци­
онарные точки, определяемые (А.11), имеют вид

𝐸0(ψ) = i𝑟 cos(ψ− |θ|); ψ𝑠,0 = |θ|, ψ′
𝑠,0 = |θ| − π. (А.13)

ПНС, который может быть получен непрерывной деформацией контура 𝐶, про­
ходит через точку ψ𝑠,0 и находится из (А.12) (см. рисунок 39):

ψ = |θ|+ τ+ i ln
1− sin τ

cos τ
на 𝐶0, −π/2 < τ < π/2. (А.14)
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-π -0.5π 0 0.5π π

Рисунок 39 — Контуры интегрирования для (А.7) в комплексной плоскости ψ
при θ = π/6: исходный контур 𝐶 (чёрный жирный) и ПНС 𝐶0 (оранжевый). Тон­
кие цветные линии обозначают Real(𝐸0(ψ)) = 0,±0.5,±1,±1.5; синие кривые
соответствуют отрицательным значениям, зелёные — нулю, красные — положи­

тельным. Пунктирные кривые — Imag(𝐸0(ψ)) = Imag(𝐸0(ψ𝑠,0))

Подставляя (А.14) в (А.7) и используя приближение ψ → |θ| +
√
2e−iπ/4τ при

τ → 0 и т. д., имеем

ρ𝑐,011 ∼ sgn(θ)√
2

ei𝑟−iπ/4 cos θ

∫︁ ∞

−∞
e−𝑟τ2 ctg

|θ|+
√
2e−iπ/4τ

2
dτ ∼

∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−πiei𝑟(1−θ2/2)

[︂
sgn(θ)− erf

(︂
e−iπ/4

√
𝑟θ√

2

)︂]︂
при

√
𝑟θ = 𝑂(1),√︂

π

2𝑟
ei𝑟−iπ/4 cos θ ctg

θ

2
при θ = 𝑂(1).

(А.15)

Метод мультипликативного составления сращиваемых асимптотических разло­
жений в (А.15), т. е. их произведение делённое на промежуточное приближение
[106], даёт равномерно пригодное решение (3.84), которое составляет компонен­
ту «излучения» в области геометрической акустики ε2𝑟 → 0.

Таким образом, ρ𝑝11 + ρ
𝑐,0
11 есть решение (3.84) + (3.87) в области геомет­

рической акустики ε2𝑟 → 0.
Для слагаемых ρ𝑐,1|±11 выписать наиболее быстро осциллирующий множи­

тель в явном виде затруднительно из-за наличия функции ошибок в (А.9).
Для анализа поведения ПНС рассмотрим два упрощённых случая, в которых
функция ошибок заменяется ближней или дальней асимптотикой; будем исполь­
зовать индексы «n» и «f», соответственно.

В случае «n» множитель с функцией ошибок в (А.9) предполагается по­
стоянным. Наиболее быстро осциллирующий множитель и стационарные точки,
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определяемые (А.11), имеют вид

𝐸𝑛
1|±(ψ) = i𝑟 cos(ψ∓|θ|)− sin2(ψ/2)/ε2; ψ𝑛

𝑠,1|± = − i

2
ln

2iε2𝑟e±i|θ| + 1

2iε2𝑟e∓i|θ| + 1
, (А.16)

где каждое изψ𝑛
𝑠,1|+ иψ𝑛

𝑠,1|− включает по две стационарные точки на расстоянии
π друг от друга, соответствующие различным ветвям комплексного логарифма.
В каждой из них

𝐸𝑛
1|±(ψ

𝑛
𝑠,1|±) = −

(︁
1−

√︀
1 + 4iε2𝑟 cos θ− 4(ε2𝑟)2

)︁
/2ε2; (А.17)

угол наклона к оси 𝑥 равен −(1/4)arccot[(1− 4(ε2𝑟)2)/(4ε2𝑟 cos θ)]. ПНС, кото­
рый может быть получен допустимой деформацией контура 𝐶, проходит через
стационарную точку с действительной частью лежащей между 0 и ±π. Ти­
пичные ПНС 𝐶𝑛

1|+ и 𝐶𝑛
1|−, антисимметричные друг другу относительно начала

координат, показаны на рисунках 40а,б,г,д. Контур 𝐶𝑛
1|+ стремится к 𝐶0 при

ε2𝑟 → ∞ и к кусочно прямолинейному контуру ψ = π + iη, −∞ < η ⩽

0; ψ = ξ, π ⩾ ξ ⩾ −π; ψ = −π + iη, 0 < η < ∞ при ε2𝑟 → 0.
В случае «f» множитель с функцией ошибок в (А.9) заменяется на даль­

нюю асимптотику

1+erf(φ) → − exp(−φ2)/(
√
πφ) при φ→ ∞ кроме −π/4 ⩽ arg(φ) ⩽ π/4,

(А.18)
которая достигается на контуре 𝐶. Наиболее быстро осциллирующий множи­
тель и стационарные точки, определяемые (А.11), совпадает для ρ𝑐,1|+11 и ρ𝑐,1|−11 :

𝐸𝑓
1 (ψ) = −ε2𝑟2 sin2 θ+ i𝑟 cos θ cosψ− sin4(ψ/2)/ε2;

ψ𝑓
𝑠,1 = 0, ψ𝑓 ′

𝑠,1 = π, ψ𝑓±
𝑠,1 = ± arccos(1 + 2iε2𝑟 cos θ). (А.19)

Из-за члена четвёртой степени, ПНС представляет собой кусочно гладкую кри­
вую, качественно различную при |θ| < π/2 и |θ| > π/2.

При |θ| < π/2 контур 𝐶𝑓
1 проходит через точки ψ𝑓

𝑠,1 (с обходом про­
тив часовой стрелки), ψ𝑓+

𝑠,1 и ψ𝑓−
𝑠,1 (рисунок 40с). Участок между ψ𝑓+

𝑠,1 и ψ𝑓−
𝑠,1

совпадает с (А.14) при θ = 0. Достигая точек ψ𝑓+
𝑠,1 и ψ𝑓−

𝑠,1 с углом наклона
−(1/2)arccot(−ε2𝑟 cos θ) к оси 𝑥, контур 𝐶𝑓

1 поворачивает на 90∘ для того,
чтобы остаться в пределах области с убывающей подынтегральной функцией.
На бесконечности он стремится к 𝐶. Максимальное значение подынтегральной
функции достигается в точке ψ𝑓

𝑠,1:

Real(𝐸𝑓
1 (ψ

𝑓
𝑠,1)) = −ε2𝑟2 sin2 θ, Real(𝐸𝑓

1 (ψ
𝑓±
𝑠,1 )) = −ε2𝑟2. (А.20)



119

-π -
π

2
0

π

2
π -π -

π

2
0

π

2
π -π -

π

2
0

π

2
π

а) б) в)

-π -
π

2
0

π

2
π -π -

π

2
0

π

2
π -π -

π

2
0

π

2
π

г) д) е)
Рисунок 40 — Контуры интегрирования для (А.8) в комплексной плоскости ψ
при 𝑟 = 0.5, исходный контур 𝐶 (чёрные жирные) и вспомогательные ПНС
(оранжевые): а – 𝐶𝑛

1|+ при θ = π/6, б – 𝐶𝑛
1|− при θ = π/6, в – 𝐶𝑓

1 при θ = π/6,
г – 𝐶𝑛

1|+ при θ = 5π/6, д – 𝐶𝑛
1|− при θ = 5π/6, е – 𝐶𝑓

1 при θ = 5π/6.
Тонкие цветные линии обозначают Real(𝐸*(ψ)) = 𝑛ε−2, 𝑛 = 0,±1,±2,±3;
синие кривые соответствуют отрицательным значениям, зелёные — нулю, крас­
ные — положительным (А.16). Пунктирные и штрих-пунктирные кривые —

Imag(𝐸*(ψ)) = Imag(𝐸*(ψ
𝑛
𝑠,*)), соответствующие различным Imag(𝐸*(ψ

𝑛
𝑠,*))

При ε2𝑟 → 0 контур 𝐶𝑓
1 стремится к 𝐶; при ε2𝑟 → ∞ его 𝐶0-подобная часть

неограниченно расширяется.
При |θ| > π/2 контур 𝐶𝑓

1 состоит из двух участков с разными значения­
ми Imag(𝐸𝑓

1 (ψ)) (рисунок 40е), примыкающих друг к другу в точке, близкой
к π + iη, η >> 1, в которой значение подынтегральной функции экспоненци­
ально мало. Участок с Imag(𝐸𝑓

1 (ψ)) = −𝑟 cos θ проходит через стационарную
точку ψ𝑓 ′

𝑠,1, участок с Imag(𝐸𝑓
1 (ψ)) = 𝑟 cos θ — через точку ψ𝑓+

𝑠,1 . Максимальное
значение подынтегральной функции достигается в точке ψ𝑓+

𝑠,1 и определяется
формулой (А.20).

Действительный ПНС 𝐶1|± должен быть близок к 𝐶𝑛
1|± вблизи стационар­

ной точки из (А.16) и к 𝐶𝑓
1 вдали. Интеграл по 𝐶1|± равен интегралу по 𝐶𝑛

1|±,
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поскольку вклад даёт только окрестность стационарной точки. Поведение 𝐶𝑓
1

задаёт направление деформации контура, по или против часовой стрелки, —
то, при котором нет пересечения неограниченных областей, в которых подынте­
гральная функция неограниченно растёт. Сравнение рисунков 40а,б с 40с и 40г,д
с 40е показывает, что 𝐶 деформируется в 𝐶1|+ непрерывно как при |θ| < π/2,
так и при |θ| > π/2; в то время как в 𝐶1|− — с пересечением полюса ψ = 0 при
|θ| < π/2 и непрерывно при |θ| > π/2.

Теперь вычислим ρ𝑐,111 . Из (А.8)–(А.9) ясно, что

ρ
𝑐,1|−
11 ∼ −ρ𝑐,1|+11 при ε𝑦 → 0. (А.21)

Кроме того, на регулярной ветви (А.17), соответствующей выбранному ПНС,

Real
(︁
𝐸𝑛

1|±(ψ
𝑛
𝑠,1|±)

)︁
→ −∞ при

{︃
θ/ε→ ∞, ε2𝑟 = 𝑂(1) или ε2𝑟 → ∞,
√
𝑟θ→ ∞, ε2𝑟 → 0.

(А.22)
При условии (А.22) слагаемые ρ𝑐,1|±11 экспоненциально затухают. Итого, из
(А.21)–(А.22) следует

ρ𝑐,111 → 0 при ε2𝑟 → 0 или θ/ε→ ∞. (А.23)

Это доказывает, что решение (3.84) + (3.87) пригодно в области геометрической
акустики, а также в ближнем поле на больших углах, где оно сводится к (3.97).

В дальнем поле ε2𝑟 → ∞, значимая часть ПНС 𝐶1|+ стремится к 𝐶0, а
значимая часть ПНС 𝐶1|− — к контуру, антисимметричному 𝐶0 относительно
начала координат. Повторим вывод формулы (А.15), подставляя значение (А.9)
в стационарной точке ψ = ±|θ|. К ρ

𝑐,1|−
11 при |θ| < π/2 добавим вычет подынте­

гральной функции в точке ψ = 0, помноженный на 2πi:

ρ
𝑐,1|+
11 ∼ − 1

2
e−θ

2/4ε2 [1 + erf (ε𝑟 sin |θ|)] ρ𝑐,011 , (А.24)

ρ
𝑐,1|−
11 ∼ − πiei𝑟 cos θℋ(cos θ) [sgn(θ)− erf (ε𝑟 sin θ)] ∼

− 1

2
e−θ

2/4ε2 [1− erf (ε𝑟 sin |θ|)] ρ𝑐,011 при ε2𝑟 → ∞. (А.25)

Сумма (А.24) и (А.25) даёт

ρ𝑐,111 ∼ −πiei𝑟 cos θℋ(cos θ) [sgn(θ)− erf (ε𝑟 sin θ)]− e−θ
2/4ε2ρ𝑐,011 при ε2𝑟 → ∞.

(А.26)
Первый член в (А.26) сокращается с (3.87); сумма второго и (3.84) в главном
приближении эквивалентно решению в дальнем поле (3.68), (3.75), (3.76).
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