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Общая характеристика работы 
Актуальность темы. При решении различных прикладных и 

исследовательских задач часто возникают ситуации, когда какие-либо данные 
точно не известны, но есть информация о диапазонах, в которых находятся их 
значения. Для таких задач является актуальным получение интервальных 
оценок интересующих величин по известным исходным интервальным данным. 
Применительно к прямым задачам речь идет о нахождении интервальных 
оценок решения по интервальным значениям параметров, а применительно к 
обратным задачам — об определении интервальных оценок параметров, при 
которых соответствующее интервальное решение содержало бы в себе 
экспериментальные данные. 

Традиционно подобные задачи формулируются в виде задачи Коши для 
системы обыкновенных дифференциальных уравнений (ОДУ) с интервальными 
параметрами, которые могут содержаться как в правой части системы, так и в 
начальных условиях.  

Выделим несколько групп существующих методов, посвященных 
решению рассматриваемого класса задач (преимущественно прямых задач, так 
как обратные задачи, как правило, сводятся к ним). 

Первая группа методов, представленных в работах И. М. Соболя, 
С. М. Ермакова, Г. А. Михайлова, Г. Крамера, В. М. Золотарева и др., относится 
к методам типа Монте-Карло. Они заключаются в проведении многократных 
расчетов с использованием случайных значений параметров. Эти методы 
обладают рядом положительных свойств, таких как простота, возможность 
параллельного выполнения, и им достаточно представления правой части 
системы ОДУ в виде «черного ящика». Однако они имеют низкую скорость 
сходимости (квадратный корень из количества симуляций), требуют 
значительных вычислительных ресурсов и знания информации об исходном 
распределении значений. 

К следующим группам отнесем методы, основанные на интервальных 
вычислениях. Активное развитие этих методов началось в XX веке в работах 
R. C. Young, P. S. Dwyer, M. Warmus, T. Sunaga, R. E. Moore, R. J. Lohner, 
E. Hansen, Г. Алефельда, Ю. Херцбергера, R. Krawczyk, K. Nickel, A. Neumaier, 
R. Rihm, G. F. Corliss и др. В России интервальную математику развивали и 
развивают В. М. Брадис, Л. В. Канторович, Ю. И. Шокин, Б. С. Добронец, 
С. П. Шарый, А. Н. Рогалев, М. А. Посыпкин и др. Интервальные методы 
подвержены эффекту обертывания (эффекту Мура), который проявляется в 
неограниченном увеличении ширины интервальных оценок решений. Этот 
эффект возникает из-за замены точной формы множества решений на более 
простую форму и зачастую приводит к экспоненциальному расхождению 
границ интервалов. Многие из существующих и разрабатываемых методов 
направлены на преодоление данного эффекта. 

Методы, относящиеся ко второй группе, базируются на рядах Тейлора и 
способны получать гарантированные оценки решений задачи Коши для систем 
ОДУ. Они не полностью исключают эффект обертывания. Основная концепция 
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этих методов заключается в разложении решения в ряд Тейлора до 
определенного члена и в интервальном оценивании остаточного члена. Чтобы 
уменьшить эффект Мура, сохраняются линейные преобразования, которые 
были применены ко множеству решений в процессе расчетов. Эти методы 
включают метод Мура, QR-метод Лонера, метод параллелепипедов и др. Они 
просты в использовании, не требуют больших вычислительных мощностей и 
эффективны в задачах с небольшими интервалами или слабыми проявлениями 
нелинейности. Существует несколько библиотек, в которых реализованы 
данные методы, например: AWA, VNODE, ADIODES, VSNODE, VNODE-LP. 

Третья группа методов определяет явную зависимость решения задачи от 
точечных значений параметров из заданных интервалов. Она включает две 
подгруппы: символьные методы, которые используют символьные выражения, 
и полиномиальные методы, которые представляют решение в виде полинома от 
интервальных параметров. 

К символьным методам относятся методы модели Тейлора (M. Berz, 
K. Makino, M. Neher, K. R. Jackson, N. S. Nedialkov и др.), а также метод, 
аппроксимирующий оператор сдвига вдоль траектории (А. Н. Рогалев). Как и 
методы модели Тейлора, метод сдвига вдоль траектории в каждый момент 
времени получает решение в виде символьного выражения относительно 
интервальных параметров. Эти методы не подвержены или слабо подвержены 
эффекту обертывания, справляются с широким классом задач, но при этом для 
них характерна высокая вычислительная сложность и трудности при 
распараллеливании. Среди библиотек, реализующих методы модели Тейлора, 
можно выделить несколько: COSY Infinity, RiOT, FlowStar, Verifyode (INTLAB) 
и др. 

К подгруппе полиномиальных методов можно отнести метод, основанный 
на полиномиальной аппроксимации решения (C. Fu, X. Ren, Y.-F. Yang, K. Lu, 
W. Qin и др.). 

В работах Б. С. Добронца, С. А. Некрасова и др. приводятся методы для 
решения задач, обладающих определенными свойствами. Они основаны на 
анализе чувствительности, теоремах сравнения и интервальной математике и 
применимы только для определенных классов систем ОДУ. 

Также существуют методы, которые приближают множество решений 
эллипсоидами, параллелепипедами или многогранниками (Ф. Л. Черноусько, 
А. В. Kurzhanski, I. Vdlyi и др.). Они могут завышать оценки и обычно требуют, 
чтобы множество было выпуклым. 

В общем случае определение явной зависимости между решением в 
каждый момент времени и точечными значениями параметров из заданных 
интервалов является ключевым подходом к устранению эффекта обертывания. 
Однако сложность таких методов экспоненциально зависит от количества 
интервальных неопределенностей, поэтому важно, чтобы они были хорошо 
распараллеливаемыми. 

Обратные задачи играют важную роль в различных областях. Они 
помогают определить закономерности на основе экспериментальных данных и 
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построить математические модели. Задача параметрической идентификации 
возникает, когда модель физического процесса уже известна, но неизвестны ее 
параметры. 

Методы восстановления зависимостей по интервальным данным подробно 
описаны в работах Л. В. Канторовича, С. П. Шарого, А. Н. Баженова, 
С. И. Жилина, С. И. Кумкова, Л. Жолена, М. Кифера, О. Дидри, Э. Вальтера, 
Yu. A. Merkuryev и др. В частности, в диссертации Я. И. Петрикевич 
предлагается структурно-параметрическая идентификация динамических 
объектов по интервальным исходным данным. В публикации 
А. Н. Дилигенской и А. В. Самокиша исследуется использование нейронных 
сетей для параметрической идентификации в обратных задачах 
теплопроводности с учетом интервальной неопределенности. В работе 
Э. Н. Мифтахова, Д. Р. Зигангирова, С. А. Мустафина и Н. Д. Морозкина 
описан оригинальный метод на основе метода Хука — Дживса для решения 
обратной задачи химической кинетики в условиях неопределенности исходных 
данных. В работах О. Г. Кантор выполняется разработка методов решения задач 
параметрической идентификации систем линейных уравнений и автономных 
систем дифференциальных уравнений на основе предельно допустимых оценок 
параметров в условиях неточности и неполноты экспериментальных данных. 

Преимущество в использовании интервальных моделей в задачах 
параметрической идентификации заключается в том, что они дают коридор 
значений, который включает в себя экспериментальные данные, в отличие от 
классических моделей, которые аппроксимируют данные. 

Зачастую существующие методы не всегда применимы к нелинейным 
задачам и не лишены свойства завышения получаемых интервальных оценок. 

Исторически интервальные методы возникли для гарантированных 
вычислений, учитывающих погрешности вычислительных схем и ошибки 
округления на ЭВМ. Однако в современных задачах интервальные 
неопределенности зачастую являются частью постановки. При этом 
гарантированность вычислений отходит на второй план, если имеется 
возможность получать границы оценок решений с контролируемой точностью. 
Поэтому требуются методы, которые позволяют за приемлемое время находить 
интервальные оценки с контролируемой точностью, не подвержены эффекту 
обертывания, обладают высокой параллельностью, способны работать с 
нелинейными задачами и широкими интервалами. 

В диссертации разработан и теоретически обоснован алгоритм адаптивной 
интерполяции, который предназначен для моделирования динамических систем 
с интервальными неопределенностями и удовлетворяет большинству 
вышеперечисленных требований. Данный алгоритм относится к 
полиномиальным методам, так как для каждого момента времени он получает 
кусочно-полиномиальную функцию, интерполирующую зависимость решения 
задачи от точечных значений интервальных параметров с заданной точностью. 
Для получения такой функции над множеством, образованным интервальными 
параметрами задачи, строится структурированная адаптивная сетка (адаптивное 
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разбиение исходного множества на подобласти). Все ячейки сетки 
сгруппированы в kd-дереве. Каждая ячейка сетки соответствует определенной 
вершине дерева и содержит в себе регулярную интерполяционную сетку. Здесь 
в каждом узле находится вектор вещественных значений фазовых 
переменных — состояние динамической системы, полученное при 
определенных параметрах из заданных интервалов. 

Алгоритм адаптивной интерполяции при всех своих достоинствах 
(универсальность, робастность, точность и возможность распараллеливания) 
подвержен проклятию размерности: с увеличением количества интервальных 
параметров в задаче его сложность возрастает экспоненциально. С целью 
преодоления этой проблемы в диссертации предлагается использовать 
разреженные сетки и разложение в тензорный поезд. 

Выполняется развитие и обобщение идей, на которых построен алгоритм 
адаптивной интерполяции, а также разработка на их основе подходов и 
алгоритмов для параметрической идентификации динамических систем с 
интервальными параметрами. За счет того, что алгоритм адаптивной 
интерполяции получает в явном виде зависимость решения прямой задачи от 
точечных значений интервальных параметров, появляется возможность 
эффективно решать задачи параметрической идентификации. 

Целью работы является разработка эффективных алгоритмов и их 
соответствующих программных реализаций для задач моделирования и 
параметрической идентификации динамических систем с интервальными 
параметрами. В диссертации были поставлены и решены следующие задачи: 

1. Разработка и формализация интерполяционного подхода к решению задач 
моделирования динамических систем с интервальными параметрами. 

2. Разработка алгоритма адаптивной интерполяции на основе разреженных 
сеток для решения задач моделирования динамических систем с 
небольшим и средним количеством интервальных параметров. 

3. Разработка алгоритма адаптивной интерполяции на основе использования 
разложения в тензорный поезд (ТТ-разложения) для решения задач 
моделирования динамических систем с большим количеством 
интервальных параметров. 

4. Разработка интервального подхода к решению задачи параметрической 
идентификации динамических систем на основе адаптивной интерполяции.  

5. Разработка программного комплекса, включающего в себя реализацию 
предложенных алгоритмов решения задач моделирования и 
параметрической идентификации динамических систем с интервальными 
параметрами. 

6. Сравнительный анализ различных вариантов алгоритма адаптивной 
интерполяции с доступными библиотеками программ гарантированных 
вычислений AWA, VNODE-LP, COSY Infinity, RiOT, FlowStar, Verifyode 
(INTLAB). 

7. Решение ряда актуальных прикладных и исследовательских задач с 
интервальными параметрами из области вычислительного 
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материаловедения, химической кинетики, небесной механики, 
микроэлектроники и других областей, включая задачи, содержащие 
дробно-дифференциальные уравнения с интервальными параметрами в 
показателях производных, с помощью предложенных подходов. 
Разработка соответствующих интервальных вычислительных моделей. 
Методы исследования. Для исследования теоретических вопросов 

использовались: математический анализ, интервальный анализ, численные 
методы и теория дифференциальных уравнений. Для разработки программного 
комплекса и проведения вычислительных экспериментов использовались 
современные компьютерные технологии. 

Научная новизна. В диссертационной работе получены новые 
результаты: 

1. Разработан интерполяционный подход к решению задач моделирования 
динамических систем с интервальными параметрами. 

2. Разработан алгоритм адаптивной интерполяции на основе разреженных 
сеток для решения задач моделирования динамических систем с 
небольшим и средним количеством интервальных параметров. Доказана 
теорема о зависимости глобальной погрешности алгоритма от уровня 
разреженной сетки. 

3. Разработан алгоритм адаптивной интерполяции на основе использования 
разложения в тензорный поезд для решения задач моделирования 
динамических систем с большим количеством интервальных параметров. 

4. Разработан интервальный метод решения задач параметрической 
идентификации динамических систем. Сформулированы постановки задач, 
в которых экспериментальные данные являются точечными и 
интервальными. Доказаны две теоремы: о ширине получаемых 
интервальных оценок параметров и о переходе от интервальных 
экспериментальных данных к точечным.  

5. Разработан алгоритм подвижного окна для параметрической 
идентификации динамических систем с прямоугольными и 
эллипсоидными областями неопределенности параметров. 

6. Построены интервальные вычислительные модели, которые позволяют 
решить ряд задач из области вычислительного материаловедения, 
химической кинетики, небесной механики, микроэлектроники и др. 
Научная и практическая значимость работы состоит в том, что 

разработанные подходы и алгоритмы на их основе, а также созданный 
программный комплекс могут использоваться для решения ряда актуальных 
практических и исследовательских задач из области материаловедения, 
химической кинетики, газовой динамики, небесной механики и электроники, в 
том числе для решения задач, содержащих дробно-дифференциальные 
уравнения, и задач моделирования динамических систем, в которых имеют 
место бифуркации и динамический хаос. 

Разработанный математический аппарат применен для решения задач 
вычислительного материаловедения в рамках проекта 075-15-2020-799 
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Министерства науки и высшего образования Российской Федерации «Методы 
построения и моделирования сложных систем на основе интеллектуальных и 
суперкомпьютерных технологий, направленные на преодоление больших 
вызовов». Построен метод расчета интервального тензора напряжений 
материалов с ковалентной химической связью. Предложены методы 
моделирования и идентификации сложноструктурированных систем, 
описываемых дробно-дифференциальными уравнениями. 

Достоверность и обоснованность результатов, полученных в ходе 
диссертационной работы, обеспечивается строгостью математических 
постановок и выкладок, тестированием вычислительных алгоритмов и 
реализующего их программного обеспечения, согласованностью результатов 
проведенных вычислительных экспериментов с результатами, полученными с 
использованием других методов и программных комплексов, на 
представительном наборе как тестовых, так и прикладных задач. 

Апробация результатов исследования. Основные результаты по теме 
работы были представлены и обсуждались на российских и международных 
научных конференциях и семинарах: семинар «Вычислительные методы и 
математическое моделирование» им. Ю. П. Попова (ИПМ им. М. В. Келдыша 
РАН, Москва, 2023); Всероссийский веб-семинар по интервальному анализу и 
его приложениям (Новосибирск, Барнаул, Томск, Красноярск, Москва и др., 
2023); II Международный семинар «Вычислительные технологии и прикладная 
математика» (CTAM) (Благовещенск, 2023); XX, XXI, XXII, XXIII 
Международные конференции «Вычислительная механика и современные 
прикладные программные системы» (ВМСППС) (Алушта, 2017, 2019, 2021; 
Дивноморское, 2023); XII, XIII, XIV Международные конференции по 
прикладной математике и механике в аэрокосмической отрасли (NPNJ, 
AMMAI) (Алушта, 2018, 2020, 2022); 19th International symposium on scientific 
computing, computer arithmetic, and verified numerical computations (SCAN'2020) 
(Hungary, Szeged, 2021); Международная конференция «Современные 
проблемы вычислительной математики и математической физики», 
посвященная памяти академика А. А. Самарского и приуроченная к 100-летию 
со дня его рождения (Москва, 2019); XXII Международная научно-
практическая конференция, посвященная памяти генерального конструктора 
ракетно-космических систем академика М. Ф. Решетнева, «Решетневские 
чтения» (Красноярск, 2018); 15-я, 16-я, 19-я Международные конференции 
«Авиация и космонавтика» (Москва, 2016, 2017, 2020); XLIII, XLIV 
Международные молодежные научные конференции «Гагаринские чтения» 
(Москва, 2017, 2018); Международная научно-техническая конференция 
студентов, аспирантов и молодых специалистов им. Е. В. Арменского (Москва, 
2016); Школа молодых ученых «Микроэлектроника-2021» (Гурзуф, 2021). 

Личный вклад автора заключается в разработке эффективных подходов и 
алгоритмов для решения задач моделирования и параметрической 
идентификации динамических систем с интервальными параметрами, 
формулировке и доказательстве сопутствующих утверждений и теорем, 
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разработке соответствующего программного комплекса и в проведении 
вычислительных экспериментов с последующим анализом полученных 
результатов, в подготовке статей и докладов на конференциях. Положения 
диссертации, выносимые на защиту, получены соискателем самостоятельно. 

Публикации. Основные результаты диссертации изложены в 46 научных 
публикациях [1–46], из них 1 рецензируемая монография, 7 публикаций в 
рецензируемых научных изданиях из Перечня ВАК, в том числе 6 в изданиях, 
отнесенных к категории К-2, 14 публикаций в изданиях, индексируемых в БД 
Scopus или Web of Science. В рамках работы по диссертации получено 2 
свидетельства о регистрации программы для ЭВМ. 

Соответствие диссертации паспорту научной специальности. 
Диссертационная работа соответствует направлениям исследований 
(пп. 1, 2, 3 и 8) паспорта научной специальности 1.2.2 — «Математическое 
моделирование, численные методы и комплексы программ». 

Объем и структура работы. Диссертационная работа состоит из 
введения, шести глав, заключения и списка использованных источников (280 
наименований). Работа изложена на 354 страницах и содержит 179 
иллюстраций и 48 таблиц. 

Содержание работы 
Во введении обосновывается актуальность диссертационного 

исследования, представляется обзор существующих результатов в 
рассматриваемой области, формулируется цель работы, указываются решенные 
задачи и использованные методы исследования, а также подчеркивается 
научная новизна и практическая значимость данной работы. 

В первой главе представлен интерполяционный подход к решению задачи 
моделирования динамических систем с интервальными параметрами. Суть 
подхода заключается в последовательном построении функций, 
интерполирующих зависимость состояний динамической системы от значений 
параметров из заданных интервалов с контролируемой точностью.  

Без ограничения общности рассматриваются динамические системы, 
заданные в виде задачи Коши для системы ОДУ, состоящей из n  уравнений с 
m  интервальными параметрами в начальных условиях: 

        

 

 
 

1 2

0 0
0

0
0

0

, ,..., , 1,..., ,

, , 1,..., ,

, 1,..., ,

, ,

i
i n

i i i

i i

N

dy t
f y t y t y t i n

dt

y t y y i m

y t y i m n

t t t


 


     
   
 

     (1) 

где вектор-функция  T
1 2, ,..., nf f ff  обладает всеми свойствами, 

гарантирующими, что решение задачи (1) существует и единственное для 
каждого   0 0

0 ,i i iy t y y   , 1,...,i m .   
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Решение задачи (1) является функцией от независимой переменной t  и 
точечных значений интервальных начальных условий: 
         T

1 2 1 1 2 2 1 2 1 2, ,..., , , ,..., , , , ,..., , ,..., , ,..., , ,m m m n mt y t y t y t           y  

где 0 0,i i iy y    , 1,...,i m .  

Рассматривается 1N   точка из интервала интегрирования  0, Nt t : 

0 1 2 1... ... .k N Nt t t t t t        В общем виде решение задачи (1) в точках kt , 
0,...,k N  является параметрическим множеством kY : 

    0 0
1 2, ,..., , , 1,..., ,k k

m i i iY y y i m        y      (2) 

где    1 2 1 2, ,..., , ,..., ,k
m m kt     y y . Множество kY  является нелинейно 

деформированным m -мерным прямоугольным параллелепипедом, 
находящимся в n -мерном фазовом пространстве. Множество (2) можно 
рассматривать как сечение пучка (ансамбля) траекторий задачи (1) в момент kt . 

Зачастую интерес представляет внешняя интервальная оценка kW  
множества (2), которая может быть представлена в виде прямого произведения 
интервальных оценок значений фазовых переменных: 

1 1 2 2, , ... , ,k k k k k k k
n nW y y y y y y                   

(3) 

где  
0 0 1 2

, ,
1,...,

min , ,...,
j j j

k k
i i m

y y
j m

y y


  
   



    ,  
0 0 1 2

, ,
1,...,

max , ,...,
j j j

k k
i i m

y y
j m

y y


  
   



    , 1,...,i n . 

Основная задача заключается в определении зависимости  1 2, ,...,k
m  y . 

Требуется для каждого значения kt , 0,...,k N  построить вектор-функцию  

        T

1 2 1 1 2 2 1 2 1 2, ,..., , ,..., , , ,..., ,..., , ,..., ,k k k k
m m m n mP P P           P  (4) 

где 0 0,i i iy y    , 1,...,i m , интерполирующую  1 2, ,...,k
m  y  с 

контролируемой точностью. При наличии функции kP  нахождение 
интервальной оценки решения (3) (нахождение левой и правой границ 
интервалов) сводится к решению 2n  задач условной оптимизации для явно 
заданной функции. 

Изложим суть интерполяционного подхода, выполнив последовательное 
построение функций (4). Для 0k   компоненты  0

1 2, ,...,i mP    , 1,...,i n  
вектор-функции  0

1 2, ,..., m  P  будут являться линейными функциями 
   0

1 2, ,..., , 1,...,i m iP i m       
и константами 
   0 0

1 2, ,..., , 1,..., .i m iP y i m n        
Предположим, что на k -м шаге известен интерполяционный полином 

 1 2, ,...,k
m  P . Получение  1

1 2, ,...,k
m  P  сводится к интерполяции функции 
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          T1
1 2 1 1 2 1 1, ,..., , ,..., ,k

m k k n ky t y t y t  
  F   

являющейся решением задачи Коши: 
        
   
 

1 2

1 2

1

, ,..., ,

, ,..., , 1,..., ,
, .

i
i n

k
i k i m

k k

dy t
f y t y t y t

dt
y t P i n
t t t

  




 

 








       (5) 

Интерполяционный полином может быть выбран произвольно, главное 
условие — возможность контроля над ошибкой интерполяции. 

Как правило, интерполяционный полином kP  строится по набору узлов, 
каждому из которых соответствует определенное значение kv  и которые 
образуют сетку k :  

      T 0 0
1 2 1 2: , ,..., , , ,..., , , , 1,..., .k k k k k k

m n i i iv v v y y i m           ξ v ξ v   

Процесс получения 1kP  можно представить следующим образом: 
1. Перенос всех значений, содержащихся в узлах сетки k , в точку 1kt   и 

получение 1k (а также соответствующего полинома 1kP ): 
         1 1ˆ: : ,k k k k k   ξ F v ξ v  

где         T1
1 1 2 1 1

ˆ , ,...,k k
k k n ky t y t y t
  F v  — решение следующей задачи 

Коши: 
        
 
 

1 2

1

, ,..., ,

, 1,..., ,
, .

i
i n

k
i k i

k k

dy t
f y t y t y t

dt
y t v i n
t t t 










 





 

2. Вычисление апостериорной оценки погрешности интерполяции: 
      1 1ˆ .k k kerror   ξ P ξ F P ξ  

3. Уплотнение сетки — добавление новых узлов в k  в местах, где 
локальная погрешность превышает заранее заданное значение  . Значения 

kv , связанные с новыми узлами, вычисляются с помощью kP . Если новые 
узлы имели место, то переход к пункту 1. 

4. Разрежение сетки — удаление узлов из 1k  в местах с незначительной 
локальной погрешностью. 
В результате будет получена сетка 1k  и интерполяционный полином 

1kP . Отметим, что пункт 1 является наиболее трудозатратным в 
вычислительном плане и при этом представляет собой набор независимых 
подзадач, что говорит о высоком потенциале к созданию эффективных 
параллельных реализаций алгоритмов, основанных на данном подходе. 
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Описанный подход применим и к дискретным динамическим системам. В 
этом случае в качестве 1ˆ kF  будет выступать функция перехода из одного 
состояния динамической системы в другое состояние. 

Разработанный алгоритм адаптивной интерполяции является одним из 
возможных воплощений интерполяционного подхода. На рис. 1 
проиллюстрирован процесс работы алгоритма. Для структуризации узлов и 
выполнения адаптации в нем используется kd-дерево. Каждая l -я вершина 
дерева соответствует определенной прямоугольной подобласти 0

lY  из исходной 
области неопределенности и содержит в себе регулярную интерполяционную 
сетку l , с которой на каждом k -м шаге сопоставляется ( 1)m  -мерный массив 
значений k

lG  и интерполяционный полином k
lP  степени p  в форме Лагранжа. 

Сверху на рис. 1 представлены получающиеся разбиения области 
неопределенности в процессе работы алгоритма, посередине — 
параметрические множества решений kY , а снизу — соответствующие kd-
деревья. Процесс разбиения областей (процесс адаптации) всегда происходит 
на предыдущем шаге, что показано пунктирными линиями.  

 
Рис. 1. Иллюстрация работы алгоритма адаптивной интерполяции. 

Можно выделить два подхода к апостериорной оценке погрешности 
интерполяции в каждой вершине дерева, на основе которой принимается 
решение о разбиении или удалении вершин. Первый подход заключается в 
добавлении тестового множества случайных точек в каждую вершину при ее 
создании. Для тестовых точек строятся решения исходной задачи, с которыми 
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выполняется сравнение решений, полученных путем интерполяции. Второй 
подход основан на понижении порядка интерполяции, когда из сетки 
убираются некоторые узлы, значения в которых интерполируются по остав-
шимся узлам с пониженным порядком, и выполняется сравнение c исходными 
значениями. 

Рассмотрим задачу Коши для одного дифференциального уравнения: 
 

 

 

0 0 0

,

0 , ,

0, .N

y f y

y y y y

t t

 
     


        (6) 

Утверждение 1. Если f  непрерывно дифференцируема 1p   раз, то для 
каждого фиксированного kt  можно построить кусочно-полиномиальную 
функцию степени p , которая интерполирует решение задачи Коши  0 , ky y t , 

0 0 0,y y y     с заданной точностью. 

По теореме о дифференцируемости решения задачи Коши для системы 
ОДУ по начальному условию следует, что решение задачи (6)  0 , ky y t  
непрерывно дифференцируемо 1p   раз по 0y . В свою очередь, если функция 

1p   раз непрерывно дифференцируемая, то можно построить кусочно-
полиномиальную функцию степени p , которая будет интерполировать 
исходную функцию с заданной точностью.  

Утверждение 2. Верхняя оценка глобальной погрешности алгоритма 
прямо пропорциональна высоте kd-дерева. 

Для каждого конкретного значения 0y  количество шагов, в которых 
возникает локальная погрешность от интерполяции в процессе работы 
алгоритма, равняется глубине листовой вершины, в которой содержится 0y , и 
ограничено сверху высотой kd-дерева. Одним из способов оценки глобальной 
погрешности является суммирование всех оценок для локальных 
погрешностей, перенесенных на конец интервала интегрирования. Таким 
образом, оценка глобальной погрешности прямо пропорциональна высоте kd-
дерева.   

Теорема 1. Если правая часть системы ОДУ в задаче Коши имеет 

непрерывные производные до r -го порядка (
1

1 2
1 2

,
... n

n

r
y y y  




  

α f α ), то 

существует такая оптимальная степень p r  интерполяционного полинома 
для алгоритма адаптивной интерполяции, при которой вычислительные 
затраты будут минимальны. 

Увеличение степени интерполяционного полинома p , с одной стороны, 
приводит к уменьшению погрешности интерполяции и, следовательно, к 
уменьшению количества вершин в kd-дереве, но, с другой стороны, к росту 
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вычислительных затрат в рамках одной вершины. Таким образом, существует 
некоторая степень p , при которой вычислительные затраты алгоритма будут 
минимальны.  

Для оценки вычислительных затрат алгоритма используется критерий, 
значение которого равно эквивалентному числу решенных точечных задач 
Коши (1): 

  1
10

1 N

k k k
kN

I C t t t
t t 



 
  ,       (7) 

где  kC t  — общее количество узлов в сетках в точке kt . 
Критерий (7) позволяет выполнить сравнение вычислительных затрат 

алгоритма адаптивной интерполяции с методом Монте-Карло. Для него (7) 
будет равен количеству выполненных симуляций. 

Рассмотрим задачу Коши для системы ОДУ, которая описывает 
консервативный осциллятор и содержит два интервальных начальных условия: 

   
    

,
sin ,

x t y t
y t x t
 
  





 
   
   

0

0

0 1,1 ,

0 0,1 .

x x

y y

  

 
    (8) 

Для точки 40t   метод Монте-Карло с одним миллионом симуляций 
( 610I  ) дает границы интервальной оценки решения с точностью 210 – 410 , в 
то же время алгоритм адаптивной интерполяции при параметрах 4p   и 
относительной погрешности 510   обеспечивает точность 510 – 710  и 

1579I  . Это демонстрирует превосходство алгоритма адаптивной 
интерполяции над методом Монте-Карло как по точности, так и по 
вычислительным затратам. Дополнительно данная задача была решена с 
использованием разных значений p , от 2 до 20, и получено, что наименьшее 
время работы программной реализации алгоритма наблюдается при 8p  . На 
рис. 2 представлено параметрическое множество решений задачи (8) в 
различных точках t . Линиями показано адаптивное разбиение, которое 
получается в процессе работы алгоритма. 
 

 
Рис. 2. Параметрическое множество решений задачи (8) в различных точках t . 

При всех своих достоинствах алгоритм адаптивной интерполяции обладает 
экспоненциальной сложностью относительно количества интервальных 
параметров. Улучшению данной ситуации посвящены вторая и третья главы. 
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Во второй главе рассматривается вариант алгоритма адаптивной 
интерполяции на основе разложения в тензорный поезд, позволяющий решать 
задачи моделирования динамических систем с большим количеством 
интервальных параметров.  

Формат тензорного поезда — это эффективный способ представления 
многомерных данных (многомерных массивов, также называемых тензорами). 
В начале главы рассматриваются вопросы параллелизации и реализации 
алгоритма TT-cross, который позволяет построить разложение в тензорный 
поезд, не вычисляя всех элементов исходного тензора, на графических 
процессорах (GPU). Алгоритм TT-cross состоит из нескольких более простых 
алгоритмов, распараллеливание каждого из которых рассматривается отдельно. 
На представительном наборе тестовых примеров получено ускорение в 20–90 
раз, что подтверждает эффективность созданных параллельных реализаций 
алгоритмов под GPU. 

В ходе работы алгоритма адаптивной интерполяции над множеством, 
образованным интервальными неопределенностями, создаются регулярные 
сетки. Количество узлов в этих сетках экспоненциально зависит от количества 
интервальных параметров, что ограничивает применимость алгоритма. Часто 
зависимость состояния динамической системы от совокупности параметров 
может быть вырожденной. В таких случаях данные в сетках содержат 
избыточную информацию. Использование ТТ-разложения позволяет расширить 
область применения алгоритма адаптивной интерполяции за счет устранения 
этой избыточности. Все операции с сетками в процессе выполнения алгоритма 
происходят в рамках ТТ-формата. 

Рассматривается задача моделирования движения шести тел, у которых 
начальные скорости заданы в виде интервалов, вокруг массивного тела под 
действием силы гравитации. Размерность области неопределенности: 6 3 18  . 
Задача Коши для системы ОДУ в безразмерных переменных записывается 
следующим образом: 

     

           
             

7 7 7

3 3 3
1, 1, 1,, , ,

1,4,5,6,7 1,2,3,6,7 1,2,3,4,5 1 1 1

2,3 2,3 2,3 2,3

, , , 1,2,...,7,

0 0 0 0 0 0 0,

0 1, 0 2, 2 , 0 316.23 6, 6 , 0 2, 2 ,

j i j i j i
i j i j i j

j j i j j i j j ii j i j i j

x x x x x x
x m y m z m i

r r r

x y z x y z

x x y z

y

     

  
     

       

          

  

             
             

 

4,5 4,5 4,5 4,5

6,7 6,7 6,7 6,7

5 5
1 2,3,4,5,6,7

0 1, 0 2, 2 , 0 2, 2 , 0 316.23 2, 2 ,

0 1, 0 316.23 2, 2 , 0 2, 2 , 0 2, 2 ,

10 , 10 , 0.0, 0.02 ,

x y z

z x y z

m m t

          

       








  






 






 

где      2 2 2

,i j j i j i j ir x x y y z z       — расстояние между i -м и j -м 

телом. 
Количество элементов в тензоре в каждой вершине равно 18 155 42 10  , что 

соответствует параметру алгоритма 4p   и количеству фазовых переменных в  
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задаче — 42. Значение критерия I  при использовании предложенного варианта 
алгоритма на основе разложения в тензорный поезд равно приблизительно 610 , 
а при использовании классического варианта алгоритма имеет порядок 1210  — 
существенно больше. Решение задачи представлено на рис. 3.  

 
Рис. 3. Неопределенности в положении тел в точках  0.005,0.015t . 

Отметим, что построение ТТ-разложения требует дополнительных 
вычислительных расходов, поэтому, как правило, данный вариант алгоритма 
адаптивной интерполяции эффективен только в задачах с большим 
количеством интервальных параметров и существенной избыточностью в 
данных, содержащихся в сетках. 

В третьей главе представлен вариант алгоритма адаптивной 
интерполяции на основе разреженных сеток, позволяющих снизить 
экспоненциальную сложность при решении задач с многомерной областью 
неопределенности параметров. Здесь используется иерархический базис. 
Выполнено построение квадратичного базиса и базиса четвертой степени. 

Предположим, что для решения исходной задачи (1) используются 
разреженные сетки с линейным базисом. Пусть на каждом  1k  -м шаге 
фиксируется локальная погрешность  :  

   
0 0

1
1

1

, , 1,...,
2 1 2max , ,..., , ,...,

i i i

k k
m m

y y i m
      

    

  P F ,   (9) 

где  1 2
1 , ,..., m

k   F  — решение задачи Коши (5). Уровень разреженной сетки 
1k

gn   берется минимально возможным, чтобы условие (9) выполнялось. 

Теорема 2. Пусть компоненты  1 2, ,...,k
j my    , 1,...,j n , решения 

 1 2, ,...,k
m  y , 0,...,k N  задачи (1) принадлежат пространству 

 
1

1 2 2
1 2

: , 2, 0 ,
... m

m
mix

fH f L f
x x x  

            

α

α  

где 0 0 0 0 0 0
1 1 2 2, , ... ,m my y y y y y             . Тогда для глобальной погрешности 

справедливо асимптотическое равенство  
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     
0 0, , 1,...,

1 2 1 2, ,...,m ,ax ,..., ,
i i i

N N
g

y y
m

i

N

m
m O n


      

    

 yP     

где N
gn  — уровень разреженной сетки в конечной точке Nt . 
Идея доказательства аналогична идее доказательства утверждения 2 — 

количество шагов, на которых возникала локальная погрешность от 
интерполяции, ограничено сверху уровнем разреженной сетки. 

С помощью варианта алгоритма адаптивной интерполяции на основе 
разреженных сеток успешно решен ряд задач, содержащих до десяти 
интервальных параметров. Показано, что по критерию I  данный вариант 
алгоритма работает быстрее, чем классический вариант, описанный в первой 
главе. Выполнена программная реализация c применением OpenMP.  

В четвертой главе сначала описывается реализация классического 
варианта алгоритма адаптивной интерполяции с применением технологии 
CUDA. При проведении расчетов получено ускорение вычислений практически 
в 100 раз по сравнению с вычислениями на центральном процессоре.  

Затем приводится обзор имеющихся библиотек и методов моделирования 
динамических систем с интервальными параметрами. Рассмотрены следующие 
программные библиотеки гарантированных вычислений: AWA, VNODE-LP, 
COSY Infinity, RiOT, FlowStar — и выполнено их сравнение с различными 
непараллельными реализациями вариантов алгоритма адаптивной 
интерполяции. 

Рассматривается задача Коши для системы ОДУ, которая соответствует 
модели Лотки — Вольтерры: 

       
       

2 2 ,
,

x t x t x t y t
y t y t x t y t
  
   





 
   
   
0 0.95,1.05 ,

0 2.95, 3.05 .

x

y




   (10) 

В табл. 1 и на рис. 4 приведено сравнение результатов, полученных 
разными программными комплексами.  

Табл. 1. Сравнение результатов решения задачи (10). 
Библиотека Время, с  4.39x   4.39y  

Эталонное решение —  2.469047, 2.847741   0.244560, 0.315898  
Алгоритм 

адаптивной 
интерполяции 

Классический вариант 0.038 
 , 2.469047 2.847741   , 0.244560 0.315898  Тензорные поезда 0.045  

Разреженные сетки 0.033  

AWA 0.114  .207070, 3.1119532   0.172401, 816250.3  

VNODE-LP 0.005  .243064, 3.0759592   0.187871, 661560.3  

RiOT 23.82  8492,  84752.46 2.84   2515,  62250.24 0.31

FlowStar 68.87  .373701, 3.1799432   20549, 702950.2 0.3  

Verifyode (INTLAB) 4.25  3900, 522002.46 2.8    39700, 63000.2 0.31  
Библиотеки AWA и VNODE-LP практически не устраняют эффект 

обертывания. Кроме того, уже после момента 4.5t   этот эффект становится 
значительным и решения начинают расходиться. Библиотеки RiOT и FlowStar 
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аварийно завершают расчет при 16t  . Алгоритм адаптивной интерполяции и 
его варианты способны решать данную задачу Коши практически до любого 
значения t . 

 
Рис. 4. Сравнение решений задачи (10), полученных различными библиотеками и методами. 

В пятой главе представлен интервальный подход к решению задачи 
параметрической идентификации динамических систем. Цель предлагаемого 
подхода заключается в нахождении такой оценки области неопределенности 
параметров, при которой параметрические множества состояний динамической 
системы содержали бы в себе экспериментальные данные (или при которой 
расстояние между ними было бы минимальным). В его основе лежит 
интерполяционный подход, описанный в первой главе и позволяющий 
получить в явном виде параметрические множества состояний динамической 
системы (или, по-другому, явную зависимость состояний динамической 
системы от параметров из заданной области значений). Для определения 
искомой области неопределенности параметров необходимо решить задачу 
минимизации расстояния между параметрическими множествами состояний и 
экспериментальными данными. Благодаря тому, что параметрические 
множества состояний представлены явными зависимостями, в процессе 
решения задачи минимизации основные действия выполняются с явными, 
кусочно-полиномиальными функциями. В этом и заключается достоинство 
предлагаемого подхода.  

Рассмотрены несколько постановок задачи интервальной параметрической 
идентификации: для случая, когда экспериментальные данные являются 
точечными, и для случая с интервальными экспериментальными данными. Для 
всех постановок задач построена целевая функция, минимизация которой 
эквивалентна решению исходной задачи параметрической идентификации. В 
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ходе анализа целевой функции получено выражение ее градиента, что 
позволило в дальнейшем применить методы оптимизации первого порядка.  

Без ограничения общности и для удобства изложения далее будем 
предполагать, что интервальные неопределенности содержатся только в 
параметрах. Задача Коши (1) запишется следующим образом: 

        
 

 
 

1 2 1 2

0
0
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1 2
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, ,..., , , ,..., ,

, 1,..., ,

, ,..., ,

, ,

i
i n m

i i

m

N
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f y t y t y t
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y t y i n

t t t

  

  






 












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    (11) 

где 1 1 2 2, , ... ,m m                   . 
Сначала рассмотрим случай точечных экспериментальных данных. Пусть 

известны N  экспериментальных точек в фазовом пространстве в различные 
точки kt :  ˆ kty , 1,...,k N . В этом случае целевая функция примет вид: 

    2
1

1 2

2

1, , , ˆ, ,..., , ,m

N

k
m

k
kJ tY     



 y      (12) 

где  ˆ ˆ, min
Y

Y


 
y

y y y  — расстояние между множеством Y  и точкой ŷ . 

Теорема 3. Если 1 , 1 , 2 , 2 , …, m , m  — набор значений, на котором 
достигается минимум целевой функции (12), тогда на любом другом наборе 1 , 

1 , 2 , 2 , …, m , m , таком, что 1 1,    1 1,   2 2 ,    2 2 ,   ...,  ,m m    

,m m   будет достигаться минимум. 
Данную теорему можно рассматривать и в обратную сторону — зачастую 

может быть получена более узкая интервальная оценка параметров, что 
является важным моментом на практике.  

Ключевым является явное представление множества kY , которое 
получается с помощью алгоритма адаптивной интерполяции, потому что тогда 
для каждой точки  ˆ kty  можно определить прообраз в пространстве 
параметров:  

   ˆargmin .k
k k t




ξ
ξ ξP y        (13) 

Целевая функция и компоненты ее градиента в случае евклидовой нормы 
запишутся следующим образом: 

      2

1
1 1 2 2

1

ˆ, ,, ,.. ,., ,
N

k
i

n

m i
k

k

i
kmJ P ty     

 

   ξ  

     
11

ˆmin 0,2 1,...,, ,
k knN

ik
i k

kj j

k k
i

i

PJ P t j my
  

 
    




 

 



ξ

ξ


  
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     
1 1

ˆmax 0,2 , 1,..., .
kN

ik
i k

k

n
k

i j

k
k
i

j

PJ P t j my
 

 
 


 


  
 


ξ

ξ


   

Дополнительно определим правила сужения интервалов: 

   
1,..., 1,...,

min , если 0, max , если 0, 1,..., .k k
j j j jk N k N

j j

J J j m   
  

 
    

 
   (14) 

Так как решение задачи (13) может быть не единственным, то с практической 
точки зрения в качестве kξ  лучше брать точку, наиболее близкую к центру 
области  .  

Далее рассматривается более общий случай, когда известны N  
экспериментальных интервальных оценок фазовых переменных в различных 
точках kt : 1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ... ,k k k k k k k
n nY y y y y y y              , 1,...,k N  — и область 

неопределенности   является параллелепипедом или эллипсоидом, который 
может быть сориентирован определенным образом в пространстве:  

       
,1 2

1 1

, ,..., , 0,1 ,
i j

m m
mc

m
i j i

z z z 
  

          
  

Tz z z R S g ξ ξ   

где cz  — центр области; 
,i jR  — матрица поворота на угол ,i j  относительно 

плоскости, образованной осями i  и j ;  1 2diag , ,..., ms s sS  — диагональная 
матрица масштабирования;  g ξ  — отображение единичного куба в куб с 
центром в начале координат и длиной стороны 2 или в единичный шар. Для 

сокращения записи обозначим наборы параметров  T

1 2, ,...,c c c c
mz z zz , 

 T
1 2, ,..., ms s ss  и  1,2 , 1,,..., ,...,i j m m   φ , i j , через  T

1 2, ,...,
pn  θ , где 

 2 1 2pn m m m   . Множество решений (2) запишется следующим образом: 

       , 0,1 mk kY  θ y z θ ξ ξ , и целевая функция примет вид: 

 
 

2

ˆˆ1

ˆmax min
k kk k

N
k k

YYk

J


 
y θy

θ y y .  

Теорема 4. Если множество kY  является выпуклым, то максимум по ˆ ky  в 

 

2

ˆˆ
ˆmax min

k kk k

k k

YY 


y θy
y y  будет достигаться в одной из вершин прямоугольного 

параллелепипеда ˆ kY :  

           1 1 1 1 2 2 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,..., 0,1k k k k k k k k k k

n n n n iV Y y y y j y y y j y y y j j        .  

Идея доказательства основана на неравенстве треугольника. 
Требование выпуклости kY  не всегда может выполняться, однако если 

множество   изначально является эллипсоидом, то это улучшает ситуацию. 
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С учетом теоремы 4 получается следующая целевая функция:  

 
 

  
 

2

0,1ˆ1 ˆ

ˆmin , .
m

k k

N
k k

k V Y

J
 

  
ξy

θ P z θ ξ y       (15) 

Для минимизации (15) можно применить метод градиентного спуска, 
однако здесь нет подобных (14) правил сужения, и область   будет 
увеличиваться в размерах. Поэтому был разработан алгоритм подвижного окна, 
который стремится получить область  , минимальную по объему, и относится 
к градиентным методам.  

Алгоритм принимает на вход:  0  — начальное окно, которое задается 
параметрами  0θ  (начальная область); h  — параметр расширения окна;   — 
параметр остановки. Рассмотрим r -й шаг алгоритма: 

1. С помощью алгоритма адаптивной интерполяции решается прямая задача 
(11) в окне  r , и получаются вектор-функции    ,rkP z θ ξ , 1,...,k N . 

2. Для каждой точки  ˆˆ k kV Yy  определяется прообраз в пространстве 

параметров   ,rk kη z θ ξ , где 
 

   
2

0,1

ˆarg min ,
m

rk k k



 
ξ

ξ P z θ ξ y . 

3. Определяются точки k
nextη , в направлении которых должны переместиться 

прообразы kη  из пункта 2, чтобы уменьшилось значение целевой функции: 

     1
, ,

0, иначе,

k k k k
k k k k
next

J Jh J 
       



η ηη η η   

где    
2

ˆk k kJ  z P z y .   

4. Выполняется построение минимального по объему окна  1r , которое 
содержит в себе все точки kη  и k

nextη .  
5. Алгоритм останавливается, когда ( 1) ( )r r  . 

Для дополнительного контроля размера получающихся окон, в пункте 4 
добавляются ограничения на коэффициенты масштабирования s  окна  1r .  

Рассмотрим задачу Коши для системы ОДУ с двумя неизвестными 
параметрами: 

         
         

     

10

20

1 2

2 , 0 1,

, 0 3,

cos sin
,

sin cos

1,1 , 1,1 , 0,2.5 ,

u t u t u t v t u

v t v t u t v t v

s
s

t









  
   

 

   

    


      

       
      
     

 

где 0 , 0 , s , s ,   — неизвестные параметры области неопределенности 
(окна). 
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На рис. 5 показаны квазиэкспериментальные интервальные данные, 
сгенерированные при следующих значениях параметров: 0 2.00  , 0 0.98  , 

0.21s  , 0.39s  , 0.67   .  

 
Рис. 5. Квазиэкспериментальные интервальные оценки фазовых переменных в различных 

точках t . 

Выполняется решение задачи параметрической идентификации. 
Начальные значения параметров:  0

0 2.50  ,  0
0 0.50  ,  0 0.05s  ,  0 0.05s  , 

 0 0.00  . На рис. 6 проиллюстрирован процесс работы алгоритма. В верхних 
четырех строках показаны квазиэкспериментальные оценки фазовых 
переменных (темно-серый цвет) для нескольких моментов времени 8kt k  
( 1,7,14,20k  ) и соответствующие модельные множества (светло-серый цвет) 
на всех шагах алгоритма подвижного окна. Серые линии соединяют каждую 
вершину темно-серого прямоугольника с ближайшей точкой в 
соответствующем параметрическом множестве. Сумма квадратов длин этих 
линий фактически определяет значение минимизируемой целевой функции.  

 
Рис. 6. Иллюстрация работы алгоритма подвижного окна. 
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Последняя строка на рис. 6 демонстрирует, как движется окно 
(закрашенная фигура) в пространстве параметров   . Исходное множество 
показано незакрашенной фигурой (точное решение). Серые линии соединяют 
найденные прообразы и точки, куда они должны переместиться. Каждое окно 
покрывает линии, полученные на предыдущем шаге. Со 2-й итерации линии 
начинают вырождаться, это говорит о том, что для соответствующей 
экспериментальной точки найдены значения   и  , при которых отклонение 
от модельного решения будет минимально (в данном примере равно нулю). 
После 5-й итерации окно перестает перемещаться.  

Найденные значения 0 , 0 , s , s ,   на последней итерации алгоритма 
совпадают с исходными значениями. Модельные множества полностью 
содержат в себе интервальные оценки фазовых переменных, что говорит о 
работоспособности и эффективности алгоритма. 

Выполнена программная реализация представленного подхода c 
применением OpenMP. 

В шестой главе приводится описание разработанного программного 
комплекса, включающего в себя реализацию предложенных алгоритмов 
решения задач моделирования и параметрической идентификации 
динамических систем с интервальными параметрами. Рассматривается ряд 
актуальных прикладных и исследовательских задач из области 
вычислительного материаловедения, химической кинетики, газовой динамики, 
небесной механики и микроэлектроники. Кроме этого, рассматриваются модели 
с бифуркациями и динамическим хаосом, а также модели, описываемые 
дробно-дифференциальными уравнениями. Выполняется применение 
разработанных и описанных в предыдущих главах подходов. 

Для моделирования динамических систем, в которых имеют место 
бифуркации и динамический хаос, выполняется модификация разработанного 
интерполяционного подхода, которая заключается в ограничении плотности 
интерполяционной сетки. 

Рассмотрим модель Лоренца, в которой возникает странный аттрактор:  
      
        
       

,

,

,

x t y t x t

y t x t r z t y t

z t x t y t bz t

  

   

















 
 
 
 

0 1,

0 0,

0 0,

x

y

z







      (16) 

где  10,11  ,  28, 29r  и 8 3b  .   
Решение задачи Коши (16) выполнялось с использованием варианта 

алгоритма адаптивной интерполяции на основе разреженных сеток. На рис. 7 
показано параметрическое множество решений в различных точках t . Здесь 
решения, которые соответствуют местам с повышенной плотностью сетки, не 
отображаются: заметно, что некоторые линии не замыкаются и обрываются 
(точка 17t  ). На рис. 8 показана получающаяся адаптивная разреженная сетка. 
Уплотнения узлов сетки образуют линии, количество которых с увеличением t  
экспоненциально возрастает.  
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Рис. 7. Параметрическое множество решений задачи (16) в различных точках t . 

 
Рис. 8. Разреженные сетки, получающиеся в процессе решения задачи (16). 

Появление таких ярко выраженных уплотнений в процессе расчетов 
является признаком наличия в системе неустойчивости и динамического хаоса. 

Проблемы интервальных неопределенностей в динамических системах 
ярко проявляются в задачах химической кинетики. Константы скоростей 
химических реакций описываются температурными зависимостями, которые 
получают экспериментальными методами, и они часто дают только 
приближенные оценки. Разброс в значении константы скорости, полученной 
разными исследователями для одной и той же реакции, может достигать 
десятков раз. Для учета данных различий предлагается использовать 
интервальный аппарат. В этом случае в модель вводятся интервальные 
параметры, и результатом моделирования являются интервальные оценки для 
интересующих величин.  

Выполнено моделирование горения смеси водорода и кислорода с 
использованием двух кинетических механизмов, включающих 8 и 20 реакций 
соответственно. Получено, что интервальные неопределенности оказывают 
влияние на время задержки воспламенения смеси, но при этом равновесное 
состояние системы остается неизменным, что дополнительно подтверждает 
правильность расчетов. Проведено моделирование одномерного сверхзвукового 
химически неравновесного течения в сопле с двумя сужениями, в котором 
возникает стоячая детонационная волна (ДВ). С учетом введенной 
пространственной сетки итоговая система ОДУ содержала порядка 30 тысяч 
уравнений. Показано, что в окрестности ДВ разброс в значениях концентраций 
компонент может достигать нескольких раз, при этом влияние интервальных 
неопределенностей на газодинамические характеристики, такие как 
температура, давление и число Маха, является менее значительным. 

Решена задача параметрической идентификации интервальных констант 
скоростей химической реакции окисления нафталина. Полученные 
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интервальные оценки согласуются с известными, но при этом имеют меньшую 
ширину, что демонстрирует преимущество предложенного подхода. 

Остановимся подробнее на задаче моделирования одномерного химически 
неравновесного течения в сопле жидкостного ракетного двигателя (рис. 9), 
работающего на несимметричном диметилгидразине  3 2 22

CH N H  и азотном 
тетраксиде 2 4N O . Давление в камере сгорания 100P   атм, коэффициент 
избытка окислителя 1  , энтальпия 42.57H   кДж / кг. Для моделирования 
химических процессов используется кинетический механизм, состоящий из 15 
реакций, в которых участвуют компоненты O , 2O , H , 2H , N , 2N , OH , 2H O , 
NO , CO , 2CO . Предэкспоненциальный множитель в уравнении Аррениуса для 
реакций 2CO+O+M CO +M  и 2CO+OH CO +H  задавался интервально: 

2 33.5 10 ,3.5 10     и 6 72.5 10 ,2.5 10    . Система уравнений, описывающая 
течение газа в каналах с пологими стенками без учета влияния вязкости, 
теплопроводности и диффузии, может быть записана в дивергентной форме: 

 

 

2

0,

,

0,

, 1,..., .i i i

F uF
t x

dFuF u P F P
t x dx

EF u E P F
t x

F u F W F i N
t x

 

 

  

    
    

 
     
 
     
 

 Здесь первые три уравнения — уравнения сохранения массы, импульса и 
энергии соответственно; последние уравнения — уравнения, описывающие 
изменение химического состава;  , P , T  — плотность, давление и 
температура; u  — скорость; e  — внутренняя энергия;  2 2E e u   — 
полная энергия; ( )F F x  — зависимость площади канала от продольной 
координаты; N  — число компонентов в смеси; i  и iW  — концентрация и 
скорость образования i -го компонента. Система уравнений замыкается 
термическим и калорическим уравнениями состояний:  1 2, , , ,..., NT P      
и  1 2, , , ,..., Ne e T P    . 

Для моделирования течения был использован метод конечных объемов с 
TVD-монотонизацией. Для определения потоков через границы ячеек 
применялась схема Harten — Lax — van Leer (HLL). Система ОДУ, полученная 
в результате, является жесткой, поэтому ее интегрирование проводилось с 
использованием неявного метода Розенброка. 

На рис. 10 представлены интервальные оценки концентраций после 
установления течения. Концентрации на выходе из сопла зависят от 
неопределенностей в константах скоростей реакций, что соответственно 

 
Рис. 9. Профиль сопла. 
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приводит к разбросу экологических характеристик двигателя. Отметим, что все 
решения, полученные методом Монте-Карло, часть из которых изображена на 
рисунке пунктирными линиями, полностью содержатся в найденных 
интервальных оценках. 

 
Рис. 10. Распределение концентраций компонентов смеси в сопле. 

В заключение рассмотрим задачи, содержащие дробно-дифференциальные 
уравнения с интервальными параметрами в показателях производных. 
Отметим, что данные уравнения могут использоваться при описании систем с 
избирательной памятью и процессов в сложноструктурированных средах. 
Например, при моделировании вязкоупругих свойств материалов, в том числе 
композитов.  

Начально-краевая задача для уравнения аномальной диффузии имеет вид: 
       , ,

,
c x t c x t

d x q x t
t x

 

 

 
 

 
, L x R  , 0t  ,  

   0, 0c x t F x  ,    , Lc x L t F t  ,    , Rc x R t F t  ,  
где  ,c x t  — функция концентрации вещества;  ,q x t  — функция источника 

(стока);   0d x   — коэффициент диффузии; ,     , ,       — 

интервальные показатели производных, 1 2    , 0 1    . 
Для схемы численной аппроксимации вводятся следующие обозначения: 

  — шаг по времени: kt k ; n  — число отрезков, на которое делится 
исходный отрезок  ,L R ;   0h R L n    — шаг сетки по пространственной 
координате; ix L ih  , 0,...,i n ;  ,k

i i kc c x t ,  i id d x  и  ,k
i i kq q x t . 

Используются следующие конечно-разностные операторы на основе 
определения дробной производной Грюнвальда — Летникова:  
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где       , 1jg j j          и       , 1lg l l          — 
нормированные веса Грюнвальда — Летникова.  

Значение концентрации k
ic  является функцией  ,k

ic    , где ,     , 

,     . Решение исходной задачи в каждый k -й момент времени можно 

представить в виде прямого произведения интервалов: 0 0,k k kC c c     

1 1, ... ,k k k k
n nc c c c         , где  

,
min , ,k k

i ic c
 

  
    

,
max , ,k k

i ic c
 

  
   0,...,i n . 

В алгоритме адаптивной интерполяции построение  1 ,k
  P  

осуществляется путем интерполяции функции  1 ,k
  f , заданной в 

соответствии с неявной схемой, которая имеет порядок аппроксимации 
 O h   при условии  0 0F x   и   0LF t  : 
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где 1,..., 1i n  ,    1
0 1,k

L kf F t  
  и    1

1,k
n R kf F t  

 . 
В качестве примера выполним решение следующей задачи: 

       , ,
,

c x t c x t
d x q x t

t x

 

 

 
 

 
, 0 1x  , 0 1t  ,  

   2 2 2 1.3( , ) 3 2.3 ,q x t x t x t           1.7 1.3 3d x x   , 
 ,0 0c x  ,  0, 0c t  ,   21,c t t ,  

где  1.2,1.8 ,  0.2,0.8  .  
Параметры схемы аппроксимации: 0.05h   и 0.05  . 
На рис. 11 представлены полученные интервальные значения 

концентраций в различные моменты времени. 

 
Рис. 11. Интервальная оценка решения задачи в различные моменты времени. 

Интервальные значения порядков производных привели к тому, что 
концентрация в каждой точке, за исключением граничных, стала тоже 
интервальной.  

Далее решим задачу идентификации интервального порядка производной 
по времени  . В качестве экспериментальных данных используются 
квазиэкспериментальные: решается прямая задача с  0.6,0.9  , и из 
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найденных интервальных оценок концентраций в моменты времени 0.1kt k , 
1,...,10k   выбираются случайные подынтервалы, которые далее используются 

в качестве экспериментальных данных. Начальное приближение в методе 
градиентного спуска  0 0.2   и  0

0.3  . На рис. 12 проиллюстрирован 
процесс параметрической идентификации. Светло-серым цветом показаны 
модельные решения, темно-серым цветом — экспериментальные данные.  

 
Рис. 12. Иллюстрация процесса параметрической идентификации. 

В процессе минимизации целевой функции модельное решение стремится 
покрыть экспериментальные данные, о чем свидетельствует уменьшение 
разницы между ними. На 26-й итерации метод градиентного спуска завершает 
свою работу, так как достигнут минимум целевой функции, который равен 0. 
Полученная интервальная оценка    27 0.6,0.9   совпадает с исходной, что 
демонстрирует работоспособность и эффективность разработанного подхода.   

В заключении сформулированы основные положения диссертационной 
работы, выносимые на защиту. 

Основные положения, выносимые на защиту 
1. Предложен интерполяционный подход к моделированию динамических 

систем с интервальными параметрами, который в сочетании с адаптивным 
разбиением области неопределенности, позволяет получить 
параметрическое множество решений в явном виде с контролируемой 
точностью. 

2. Разработаны алгоритмы адаптивной интерполяции на основе разреженных 
сеток и тензорных поездов, которые с использованием древовидных 
структур данных позволяют преодолеть проклятие размерности при 
решении задач с большим количеством интервальных параметров. Данные 
алгоритмы за приемлемое время способны находить интервальную оценку 
решений с управляемой погрешностью, не подвержены эффекту 
обертывания и обладают высоким потенциалом распараллеливания. 
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3. Сформулированы и доказаны утверждения относительно сходимости и 
погрешности алгоритмов. Показано, что оценка глобальной погрешности 
прямо пропорциональна высоте полученных в вычислительном процессе 
деревьев. Предложен практический способ определения бифуркаций и 
хаоса в динамических системах с интервальными параметрами по 
нарастающей плотности адаптивной сетки. 

4. Предложен интервальный метод решения задач параметрической 
идентификации динамических систем. Метод основан на нахождении 
прообраза экспериментальных данных в пространстве параметров. 
Сформулированы и доказаны две теоремы: первая — о ширине 
получаемых интервальных оценок параметров, вторая — о переходе от 
интервальных экспериментальных данных к вершинам соответствующего 
бруса.  

5. Разработан алгоритм подвижного окна для параметрической 
идентификации динамических систем с прямоугольными и 
эллипсоидными областями неопределенности параметров,  который 
позволяет избежать разрастания границ решения.  

6. Создан программный комплекс, включающий в себя последовательную и 
параллельную реализации разработанных алгоритмов решения задач 
моделирования и параметрической идентификации динамических систем с 
интервальными параметрами на многоядерных CPU и графических 
процессорах. На основе сравнительного анализа с доступными 
библиотеками программ гарантированных вычислений AWA, VNODE-LP, 
COSY Infinity, RiOT, FlowStar, Verifyode (INTLAB) показана высокая 
эффективность разработанных программно-алгоритмических средств. 

7. Разработаны методы математического моделирования химических 
превращений с учётом неопределенности значений констант скоростей 
реакций. Выполнено совместное решение интервальных уравнений 
химической кинетики и газовой динамики. Показано, что 
неопределенности оказывают влияние на ключевые характеристики 
неравновесных смесей.  

8. Представлены интервальные модели элементов энергонезависимой памяти 
(мемристоров). По экспериментальным данным для мемристивных 
элементов на основе оксида гафния и ниобата лития выполнена 
интервальная параметрическая идентификация построенных моделей. 

9. Алгоритмы адаптивной интерполяции применены к решению дробно-
дифференциальных уравнений с интервальными параметрами в 
показателях производных, описывающих процессы аномальной диффузии. 
Разработан вычислительный алгоритм решения дробно-
дифференциального уравнения, являющийся комбинацией 
интерполяционного подхода c конечно-разностными схемами. Решена 
задача определения интервального показателя дробной производной по 
известному интервальному распределению концентрации. 
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Личный вклад автора в основных совместных публикациях. В работах 
[1–3, 5–9, 11, 12, 19, 21, 22] соискателю принадлежит разработка подходов и 
алгоритмов для решения задач моделирования и параметрической 
идентификации динамических систем с интервальными параметрами, 
формулировка и доказательство сопутствующих утверждений и теорем, 
проведение вычислительных экспериментов и анализ результатов, в работах 
[4, 14] — разработка и программная реализация параллельного алгоритма 
адаптивной интерполяции на графических процессорах. В работах [15, 16] 
соискатель выполнял применение разработанных им подходов и алгоритмов к 
решению прикладных задач микроэлектроники. 
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