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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Центральной проблемой, на которую нацелена диссертацион-
ная работа, является корректное распознавание по прецедентам. Исследуется множе-
ство объектов, которое может быть разбито на конечное число классов. О характере
этого разбиения можно судить только по обучающей выборке (конечному набору пре-
цедентов). Каждый объект может быть представлен в виде числового вектора, полу-
ченного в результате наблюдения или измерения определённых характеристик объекта.
Такие характеристики называются признаками. Требуется построить алгоритм распо-
знавания, который по предъявленному признаковому описанию объекта определяет,
к какому классу следует отнести этот объект. Алгоритм распознавания, безошибоч-
но классифицирующий прецеденты, называется корректным. Важным показателем ка-
чества корректного алгоритма распознавания является его обобщающая способность
(частота ошибок на объектах, не участвующих в обучении).

В случае целочисленных признаков задача корректного распознавания достаточно
эффективно решается методами логического подхода1. Базовым для этого подхода яв-
ляется понятие элементарного классификатора (эл.кл.) — элементарной конъюнкции,
заданной на признаковых описаниях объектов. Говорят, что эл.кл. выделяет некоторый
объект, если он принимает значение 1 на признаковом описании этого объекта. Тради-
ционно при построении логических алгоритмов распознавания используются коррект-
ные эл.кл. Эл.кл. называется корректным для некоторого класса, если совокупность
выделяемых им прецедентов является подмножеством либо этого класса, либо объ-
единения остальных классов. Если все прецеденты, выделяемые корректным эл.кл.,
принадлежат одному классу, то такой эл.кл. называется представительным набором.
Известно, что алгоритмы голосования по представительным наборам наиболее успеш-
но применяются для задач распознавания с признаками небольшой значности (под
значностью признака понимается число его допустимых значений). В этом случае,
как правило, удаётся найти достаточное количество информативных представительных
наборов.

Проблемными для классических логических алгоритмов распознавания являются
задачи с вещественными признаками и целочисленными признаками большой знач-
ности. Для повышения эффективности решения таких задач применяются следующие
методики: 1) ищутся логические закономерности (понятие логической закономерности
обобщает понятие эл.кл. на случай вещественных признаков)2; 2) вещественные при-
знаки трактуются как целочисленные высокой значности и выполняется корректная

1Журавлев Ю. И., Дмитриев А. Н., Кренделев Ф. П. О математических принципах классификации предметов и явле-
ний // Дискретный анализ, Сб. научн. тр. Т. 7. Ин-т математики СО АН СССР Новосибирск, 1966. С. 3—15 ; Вайнцвайг
М. Н. Алгоритм обучения распознаванию образов «Кора». М.: Советское радио, 1973. С. 110—116 ; Дюкова Е. В., Песков
Н. В. Поиск информативных фрагментов описаний объектов в дискретных процедурах распознавания // ЖВМ и МФ.
2002. Т. 42, № 5. С. 741—753.

2Ковшов Н. В., Моисеев В. Л., Рязанов В. В. Алгоритмы поиска логических закономерностей в задачах распознавания //
ЖВМ и МФ. 2008. Т. 48, № 2. С. 329—344.
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перекодировка признаков с целью понижения их значности3; 3) строятся корректные
алгоритмы распознавания на базе произвольных, не обязательно корректных эл.кл.
(алгебро-логический подход)4.

В основе алгебро-логического синтеза распознающих алгоритмов лежат понятия и
методы двух подходов: логического и алгебраического. Алгебраический подход, раз-
виваемый школой Ю.И. Журавлёва5, применяется, когда требуется скорректировать
работу нескольких различных алгоритмов, каждый из которых безошибочно класси-
фицирует лишь часть обучающих объектов. Цель коррекции — сделать так, чтобы
ошибки одних алгоритмов были скомпенсированы другими, и качество результирую-
щего алгоритма оказалось лучше, чем каждого из базовых алгоритмов в отдельности.

В работе Е. В. Дюковой, Ю.И. Журавлёва, К. В. Рудакова вводится понятие кор-
ректного набора эл.кл., которое впоследствии становится основным для алгебро-
логического подхода6. Алгоритмы распознавания, основанные на голосовании по кор-
ректным наборам эл.кл., называются логическими корректорами. Фактически эл.кл.
выступают в роли базовых распознающих алгоритмов и корректируются булевыми
функциями. Основной задачей этапа обучения логических корректоров является поиск
корректных наборов эл.кл. с хорошей распознающей способностью. Каждый коррект-
ный набор эл.кл. однозначно соответствует покрытию булевой матрицы, построенной
специальным образом по обучающей выборке. При большой значности признаков при-
ходится обрабатывать матрицы, размер которых экспоненциально зависит от объема
обучающей информации. Поэтому возникает проблема применения логических коррек-
торов на практике.

В работе Е. В. Дюковой, Ю.И. Журавлёва, Р.М. Сотнезова разработаны первые
практические модели логических корректоров7. Для снижения вычислительных затрат
предложено использовать эл.кл. ранга 1 и поиск корректных наборов эл.кл. с распозна-
ющей способностью, близкой к максимальной, осуществлять генетическим алгоритмом.
Установлено, что логические корректоры с монотонными корректирующими функциями
(монотонные логические корректоры) имеют более высокую обобщающую способность,
чем с произвольными.

Проведённые в работе М.М. Любимцевой эксперименты показывают, что на при-
кладных задачах с большой значностью признаков монотонные логические корректоры
опережают классические логические алгоритмы распознавания8. В случае небольшой
значности признаков ситуация обратная. По-видимому, ограничение, налагаемое на

3Обработка вещественнозначной информации логическими процедурами распознавания / Е. В. Дюкова [и др.] // Иску-
ственный интеллект. НАН Украины. 2004. № 2. С. 80—85.

4Дюкова Е. В., Журавлев Ю. И., Рудаков К. В. Об алгебро-логическом синтезе корректных процедур распознавания на
базе элементарных алгоритмов // ЖВМ и МФ. 1996. Т. 36, № 8. С. 216—223.

5Журавлёв Ю. И. Об алгебраическом подходе к решению задач распознавания или классификации // Проблемы кибер-
нетики. 1978. Т. 33. С. 5—68.

6Дюкова Е. В., Журавлев Ю. И., Рудаков К. В. Указ. соч.
7Djukova E. V., Zhuravlev Y. I., Sotnezov R. M. Construction of an ensemble of logical correctors on the basis of elementary

classifiers // Pattern Recognition and Image Analysis. 2011. Т. 21, № 4. С. 599—605.
8Любимцева М. М. Логические корректоры в задачах распознавания // Сборник тезисов лучших дипломных работ

факультета ВМК МГУ 2014 года — M: МАКС ПРЕСС. 2014. С. 47—49.
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ранг эл.кл., не позволяет построить в последнем случае логические корректоры с хоро-
шей обобщающей способностью.

Актуальной задачей является расширение границ применимости алгебро-
логического подхода за счёт построения и исследования новых, более совершенных
моделей логических корректоров. Перспективным направлением является использова-
ние других семейств корректирующих функций, отличных от семейства монотонных
булевых функций и множества всех булевых функций. Также необходимо разработать
методику обучения логических корректоров, позволяющую с небольшими вычислитель-
ными затратами получать высокое качество распознавания.

Трудности вычислительного характера, возникающие при реализации как классиче-
ских логических алгоритмов распознавания, так и логических корректоров, связаны с
необходимостью решать известные своей сложностью дискретные задачи. Среди этих
задач главной считается дуализация. Это задача перечисления неприводимых покрытий
булевой матрицы. Говорят, что алгоритм дуализации имеет полиномиальную задерж-
ку, если каждый его шаг (построение очередного решения) осуществляется за время,
полиномиально зависящее от размера входа9. Вопрос о полиномиальной разрешимости
дуализации поставлен более 40 лет назад, однако до сих пор ответ на этот вопрос
не найден. В зарубежной литературе наибольшее распространение получил инкремен-
тальный принцип построения алгоритмов дуализации, и в этом направлении лучшим
теоретическим результатом считается построение инкрементальных алгоритмов, ква-
зиполиномиальная сложность которых обоснована «в худшем» случае10. Однако на
реальных задачах наилучшие результаты показывают так называемые асимптотически
оптимальные алгоритмы дуализации, имеющие теоретическое обоснование эффектив-
ности «в среднем»11.

Цель данной работы — развитие методов алгебро-логического подхода к коррект-
ному распознаванию по прецедентам, а именно построение логического корректора
общего вида, позволяющего в определенной степени повысить качество распознавания
и снизить вычислительные затраты этапа обучения; разработка конструкций асимпто-
тически оптимальных алгоритмов дуализации для решения задач большого размера.

Решена следующая группа задач.

1. Обобщено понятие корректного набора эл.кл. Описана схема логического коррек-
тора общего вида. Выявлено место классических логических алгоритмов распо-
знавания и ранее построенных логических корректоров в этой схеме.

2. Разработана и исследована более совершенная модель логического корректора с
корректирующими функциями из семейства, отличного от семейства монотонных
булевых функций и множества всех булевых функций.

9Johnson D., Yannakakis M., Papadimitriou C. On generating all maximal independent sets // Information Processing Letters.
1988. Т. 27, № 3. С. 119—123.

10Fredman M. L., Khachiyan L. On the complexity of dualization of monotone disjunctive normal forms // Journal of Algorithms.
1996. Т. 21, № 3. С. 618—628.

11Дюкова Е. В. Об асимптотически оптимальном алгоритме построения тупиковых тестов // ДАН СССР. 1997. Т. 233,
№ 4. С. 527—530 ; Дюкова Е. В. О сложности реализации дискретных (логических) процедур распознавания // Журнал
вычислительной математики и математической физики. 2004. Т. 44, № 3. С. 562—572.

5



3. Разработана методика повышения качества распознавания и скорости обучения
логических корректоров. Проведено экспериментальное обоснование эффективно-
сти предложенной методики.

4. Модифицированы конструкции ряда асимптотически оптимальных алгоритмов ду-
ализации с целью снижения времени их работы. Экспериментально показано пре-
восходство построенных алгоритмов дуализации по сравнению с другими извест-
ными алгоритмами дуализации.

Методы исследования. Применялись методы дискретной математики, алгебры, ма-
тематической логики, анализа алгоритмов и вычислительной сложности. Экспери-
ментальное исследование проводилось с использованием программно-алгоритмического
комплекса, разработанного автором.

Научная новизна. В работе строится логический корректор общего вида, для описа-
ния которого используется язык предикатов. Вводятся понятия корректного и предста-
вительного предиката. Каждый предикат однозначно определяется некоторым набором
эл.кл. и корректирующей функцией этого набора.

Впервые решается важная методологическая задача обобщения логического и
алгебро-логического синтеза корректных алгоритмов распознавания. Предложенная в
работе схема синтеза корректных алгоритмов распознавания может быть использова-
на для описания как классических логических распознающих алгоритмов, так и ранее
построенных логических корректоров.

В рамках общей схемы построена новая модель практического логического коррек-
тора POLAR, голосующего по предикатам специального вида и имеющего поляризуе-
мую корректирующую функцию. Булева функция называется поляризуемой, если она
по каждой переменной либо монотонно не возрастает, либо монотонно не убывает. Се-
мейство монотонных булевых функций содержится в семействе поляризуемых булевых
функций. Ранее поляризуемые функции общего вида в качестве корректирующих не
использовались.

Предложена новая методика снижения вычислительных затрат и повышения каче-
ства распознавания логических корректоров. На этапе обучения логического корректора
семейства голосующих предикатов формируются итеративно по принципу бустинга12.
Снято ограничение на ранг эл.кл., и поиск корректных наборов эл.кл. осуществляется
в рамках локальных базисов классов — предварительно построенных корректных на-
боров, состоящих из информативных эл.кл. Разработаны итеративные алгоритмы фор-
мирования «хороших» локальных базисов. Вообще говоря, идея применения локальных
базисов в алгебраическом подходе впервые встречается в работах К. В. Воронцова13.

В диссертационной работе построен ряд новых асимптотически оптимальных ал-
горитмов дуализации, в основе которых лежит следующий подход. Исходная пере-
числительная задача 𝑍 заменяется на более «простую» перечислительную задачу 𝑍1,

12Boosting the margin: a new explanation for the effectiveness of voting methods / R. E. Schapire [и др.] // Annals of Statistics.
1998. Т. 26, № 5. С. 1651—1686.

13Воронцов К. В. О проблемно-ориентированной оптимизации базисов задач распознавания // ЖВМ и МФ. 1998. Т. 38,
№ 5. С. 870—880.
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имеющую тот же вход и решаемую с полиномиальной задержкой. При этом, во-первых,
множество решений задачи 𝑍1 содержит множество решений задачи 𝑍, и во-вторых,
почти всегда с ростом размера входа число решений задачи 𝑍1 асимптотически равно
числу решений задачи 𝑍. Теоретическое обоснование данного подхода базируется на
получении асимптотик для типичного числа решений каждой из задач 𝑍 и 𝑍1.

Таким образом, в отличие от «точного» алгоритма с полиномиальной задержкой
асимптотически оптимальному алгоритму разрешено делать «лишние» полиномиаль-
ные шаги. Лишний шаг — это построение такого решения задачи 𝑍1, которое либо
было найдено ранее, либо построено впервые, но не является решением задачи 𝑍.
Проверка того, является ли выполненный шаг лишним должна осуществляться за по-
линомиальное время от размера задачи.

Работу асимптотически оптимального алгоритма дуализации 𝐴 на входной матри-
це 𝐿 наглядно можно представить в виде обхода в глубину дерева решений 𝑇𝐴(𝐿).
Корнем дерева 𝑇𝐴(𝐿) является пустой набор, остальным вершинам соответствуют на-
боры столбцов матрицы 𝐿. Построение висячей вершины связано либо с получением
неприводимого покрытия матрицы 𝐿, либо с завершением «лишнего» шага алгоритма.
Если вершина 𝐻 не является висячей, то каждая её дочерняя вершина образуется
добавлением к 𝐻 в точности одного столбца.

Построенные в работе асимптотически оптимальные алгоритмы дуализации являют-
ся лидерами по скорости счёта. Снижение вычислительных затрат достигается за счёт
сокращения общего числа вершин дерева решений. Ранее при построении асимптотиче-
ски оптимальных алгоритмов основные усилия по уменьшению времени счёта направ-
лялись на сокращение числа висячих вершин дерева решений (числа лишних шагов).
При этом, как правило, усложнялся шаг алгоритма.

Теоретическая значимость. Построена общая схема алгебро-логического синтеза
корректных алгоритмов распознавания, основанной на голосовании по предикатам,
каждый из которых является композицией некоторого корректного набора эл.кл. и
его корректирующей функции. Предложен метод построения предикатов специального
вида. Исследованы свойства этих предикатов.

Получены теоретические оценки скорости сходимости бустинг-алгоритма формиро-
вания семейств голосующих предикатов. На каждой итерации ищется предикат, наи-
лучшим образом компенсирующий ошибки ранее построенных предикатов. Качество
добавляемого предиката оценивается функционалом «взвешенной» информативности.
Поиск предиката c максимальной информативностью сведён к специальной задаче
дискретной оптимизации, обобщающей ряд известных задач14. Решение поставленной
задачи в общем случае представляет теоретический и практический интерес.

На значительном объеме тестовых данных, включающих разнотипные модельные и
прикладные задачи, проведено сравнение новых и ранее построенных асимптотически
оптимальных алгоритмов дуализации с другими известными алгоритмами. Подобное

14Peleg D. Approximation algorithms for the label-cover max and red-blue set cover problems // Journal of Discrete Algorithms.
2007. Т. 5, № 1. С. 55—64 ; Miettinen P. On the positive–negative partial set cover problem // Information Processing Letters.
2008. Т. 108, № 4. С. 219—221.
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экспериментальное обоснование асимптотически оптимального подхода до сих пор не
проводилось.

Рассмотрена задача поиска ветви дерева решений 𝑇𝐴(𝐿), началом которой явля-
ется некоторая фиксированная внутренняя вершина, а концом — висячая вершина,
соответствующая решению дуализации. Доказано, что эта задача NP-полна. Данный
результат объясняет, почему не увенчались успехом предпринимаемые ранее попытки
избавиться от лишних шагов в асимптотически оптимальных алгоритмах дуализации,
основанных на обходе в глубину дерева решений 𝑇𝐴(𝐿).

Практическая значимость. Разработанные распознающие алгоритмы позволяют ре-
шать широкий класс прикладных задач, в которых объекты могут быть представлены
целочисленными признаковыми описаниями. К таким задачам относятся компьютер-
ный анализ речи, распознавание изображений, медицинская диагностика и пр. Как уже
отмечалось, дуализация является одной из центральных дискретных перечислительных
задач. К дуализации могут быть сведены многие задачи, возникающие при логическом
анализе данных, к числу которых, помимо распознавания по прецедентам, относятся
кластерный анализ, построение ассоциативных правил, составление расписаний и пр.
Построенные в работе алгоритмы дуализации, согласно экспериментам, позволяют за
приемлемое время решать достаточно большие прикладные задачи.

На защиту выносятся следующие результаты.

1. Создание общей схемы синтеза логических корректоров, которая может быть
использована для описания классических логических алгоритмов распознавания и
ранее построенных логических корректоров.

2. Построение практического логического корректора POLAR с поляризуемой кор-
ректирующей функцией.

3. Разработка методики повышения качества распознавания и скорости обучения
логических корректоров, в основе которой лежат построение локальных базисов
классов и формирование семейств голосующих предикатов по принципу бустинга.

4. Построение асимптотически оптимальных алгоритмов дуализации АО1M,
АО1К, АО2М, АО2К, RUNC, RUNC-M, PUNC и экспериментальное иссле-
дование границ применимости этих алгоритмов в зависимости от типа и размера
входа.

Достоверность полученных результатов подтверждается доказательствами сформу-
лированных утверждений и теорем, а также результатами экспериментов, проведённых
автором.

Апробация работы. Основные положения и результаты диссертации доклады-
вались на конференциях «Электронные библиотеки: Перспективные Методы и Тех-
нологии, Электронные коллекции (RCDL-2011)» (г. Воронеж, 2011 г.), «Матема-
тические методы распознавания образов (ММРО-15)» (г. Петрозаводск, 2011 г.),
«Интеллектуализация обработки информации (ИОИ-9)» (Черногория, г. Будва,
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2012 г.), «Pattern Recognition and Image Analysis: New Information Technologies (PRIA-
11-2013)» (г. Самара, 2013 г.), «Математические методы распознавания образов
(ММРО-16)» (г. Казань, 2013 г.), «Интеллектуализация обработки информации
(ИОИ-10)» (Греция, о. Крит, 2014 г.), «Математические методы распознавания обра-
зов (ММРО-17)» (г. Светлогорск, 2015 г.) и на семинаре отдела Интеллектуальных
систем ВЦ РАН им. А.А. Дородницына в июне 2015 г.

Публикации. По тематике исследований опубликовано 15 научных работ, в том
числе 5 статей в журналах, рекомендованных ВАК.

Структура работы Работа состоит из введения, трёх глав, заключения и списка
литературы из 83 наименований. Материал изложен на 100 страницах.

КРАТКОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обосновывается актуальность исследований в области алгебро-
логического синтеза алгоритмов распознавания и алгоритмов решения дискретных пе-
речислительных задач. Формулируются цель, задачи работы, положения, выносимые
на защиту, указываются научная новизна, теоретическая и практическая значимость
результатов, приводятся сведения о структуре диссертации и апробации полученных
результатов.

Глава 1. Корректное распознавание по прецедентам

В данной главе даётся обзор основных подходов к построению корректных логиче-
ских алгоритмов распознавания, а именно, логического, оптимизационного, алгебраи-
ческого и алгебро-логического. Обобщается понятие корректного набора эл.кл., явля-
ющееся базовым для алгебро-логического подхода. Описывается общая схема синтеза
логических корректоров. Строится новый практический логический корректор POLAR
с поляризуемой корректирующей функцией.

1.1. Основные подходы к решению задачи корректного распознавания по
прецедентам

Рассматривается стандартная постановка задачи распознавания по прецедентам.
Исследуется множество объектов 𝑀 , которое может быть представлено в виде объ-
единения непересекающихся подмножеств 𝐾1, ..., 𝐾𝑙, называемых классами. Объек-
ты из 𝑀 описываются системой целочисленных признаков (𝑥1, . . . , 𝑥𝑛), то есть каж-
дый объект 𝑆 может быть представлен вектором (𝑥1(𝑆), . . . , 𝑥𝑛(𝑆)), в котором 𝑗-я
координата равна значению признака 𝑥𝑗 для объекта 𝑆. Задано множество объектов
𝑇 = {𝑆1, . . . , 𝑆𝑚} из 𝑀 , и для каждого объекта 𝑆𝑖 ∈ 𝑇 известен номер класса, ко-
торому он принадлежит. Объекты из 𝑇 называются прецедентами или обучающими
объектами. Требуется по обучающей выборке 𝑇 построить алгоритм распознавания,
то есть алгоритмически реализовать отображение 𝐴𝑇 : 𝑀 → {0, 1, . . . , 𝑙}, ставящее
в соответствие каждому объекту из 𝑀 номер класса или принимающее значение 0
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в случае отказа от распознавания. Алгоритм распознавания называется корректным,
если он не ошибается на обучающих объектах. Качество работы 𝐴𝑇 на объектах, не
входящих в 𝑇 , характеризует обобщающую способность 𝐴𝑇 . Представляет интерес
синтез корректных алгоритмом распознавания с хорошей обобщающей способностью.

1.2. Общая схема построения логического корректора

Определяются понятия корректного и представительного предиката класса. С ис-
пользованием этих понятий описывается общая схема алгебро-логического синтеза
корректных процедур распознавания. В рамках предложенной схемы рассматривают-
ся классические логические распознающие алгоритмы и ранее построенные логические
корректоры.

1.2.1. Понятия корректного предиката как обобщение понятия корректного набора
элементарных классификаторов

Пусть 𝐻 = (𝑥𝑗1, . . . , 𝑥𝑗𝑟) — набор различных признаков и 𝜎 = (𝜎1, . . . , 𝜎𝑟) —
набор, в котором 𝜎𝑞 — допустимое значение признака 𝑥𝑗𝑞 , 𝑞 ∈ {1, . . . , 𝑟}. Пара (𝐻, 𝜎)
определяет эл.кл. ранга 𝑟. Эл.кл. (𝐻, 𝜎) выделяет объект 𝑆, если признаковое подопи-
сание 𝐻(𝑆) = (𝑥𝑗1(𝑆), . . . , 𝑥𝑗𝑟(𝑆)) совпадает с вектором 𝜎.

Пусть имеется набор эл.кл. 𝑈 =
(︀
(𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)

)︀
. Объекту 𝑆 из 𝑀 ставит-

ся в соответствие вектор 𝑈(𝑆) длины 𝑑, 𝑗-я координата которого равна 1, если эл.кл.
(𝐻𝑗, 𝜎𝑗) выделяет объект 𝑆, иначе — 0. Вектор 𝑈(𝑆) называется откликом набора
эл.кл. 𝑈 на объекте 𝑆.

Набор эл.кл. 𝑈 =
(︀
(𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)

)︀
называется корректным для класса 𝐾,

если существует булева функция 𝐹 (𝑡1, . . . , 𝑡𝑑) такая, что 𝐹 (𝑈(𝑆𝑖)) ̸= 𝐹 (𝑈(𝑆𝑡)) для
любой пары прецедентов 𝑆𝑖 ∈ 𝐾 и 𝑆𝑡 /∈ 𝐾. Корректный для 𝐾 набор эл.кл. 𝑈
называется монотонным, если существует монотонная булева функция 𝐹 такая, что
𝐹 (𝑈(𝑆𝑖)) > 𝐹 (𝑈(𝑆𝑡)) для любой пары прецедентов 𝑆𝑖 ∈ 𝐾 и 𝑆𝑡 /∈ 𝐾.

Предикат 𝐵 : 𝑀 → {0, 1} называется корректным для 𝐾, 𝐾 ∈ {𝐾1, . . . , 𝐾𝑙},
если множество прецедентов, на которых 𝐵 равен 1, является подмножеством либо 𝐾,
либо 𝐾 (здесь и далее для 𝐾 ⊆ 𝑀 через 𝐾 обозначается 𝑀 ∖𝐾). Корректный для
класса 𝐾 предикат 𝐵 называется представительным для 𝐾, если существует хотя бы
один прецедент 𝑆𝑖 ∈ 𝐾 такой, что 𝐵(𝑆𝑖) = 1.

Пусть 𝑈 =
(︀
(𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)

)︀
— набор эл.кл. и 𝐹 — булева функция от 𝑑 пе-

ременных. Через 𝐹 (𝑈) обозначается предикат, значение которого на 𝑆 ∈ 𝑀 рав-
но 𝐹 (𝑈(𝑆)). Набор эл.кл. 𝑈 называется корректным (представительным) для 𝐾 с
корректирующей функцией 𝐹 , если предикат 𝐹 (𝑈) является корректным (представи-
тельным) для 𝐾.
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1.2.2. Алгоритм голосования по корректным предикатам

На этапе обучения для каждого класса 𝐾 строятся два семейства 𝑍𝐾 и 𝑍𝐾 пре-
дикатов вида 𝐹 (𝑈), где 𝑈 — набор эл.кл., 𝐹 — булева функция. Предикаты из
𝑍𝐾 являются представительными для 𝐾. Предикаты из 𝑍𝐾 корректны для 𝐾, но
не являются представительными для 𝐾. Предикату 𝐵 приписывается вес 𝛼𝐵 > 0.
Распознавание осуществляется взвешенным голосованием по корректным предикатам,
построенным на этапе обучения. При распознавании объекта 𝑆 для каждого класса 𝐾
вычисляется оценка Γ(𝑆,𝐾) принадлежности объекта 𝑆 классу 𝐾,

Γ(𝑆,𝐾) =
∑︁
𝐵∈𝑍𝐾

𝛼𝐵𝐵(𝑆)−
∑︁
𝐵∈𝑍𝐾

𝛼𝐵𝐵(𝑆). (1)

Объект 𝑆 относится к тому классу 𝐾, для которого оценка Γ(𝑆,𝐾) имеет наи-
большее значение. Если таких классов несколько, то алгоритм отказывается от рас-
познавания и возвращает 0. Корректность алгоритма распознавания обеспечивается за
счёт корректности каждого предиката, участвующего в голосовании (утверждение 1.1
в тексте диссертации).

1.2.3. Классические логические алгоритмы распознавания и ранее построенные
логические корректоры в рамках схемы голосования по корректным предикатам

Показано, что предложенная в 1.2.2 схема может быть использована для описания
как классических логические алгоритмов распознавания, основанных на голосовании
по корректным эл.кл., так и ранее построенных логических корректоров. Понятия, на
которых базируются эти алгоритмы, определяются на языке предикатов.

Эл.кл. (𝐻, 𝜎) называется корректным для класса 𝐾, если множество прецедентов,
выделяемых эл.кл. (𝐻, 𝜎) является подмножеством либо 𝐾, либо 𝐾. Корректный
эл.кл. (𝐻, 𝜎) называется представительным набором класса 𝐾, если он выделяет хотя
бы один прецедент из 𝐾. Набор признаков 𝐻 называется тестом, если для любого
класса 𝐾 и любого прецедента 𝑆𝑖 ∈ 𝐾 эл.кл. (𝐻,𝐻(𝑆𝑖)), является представительным
набором класса 𝐾.
Утверждение 1.2. Эл.кл. (𝐻, 𝜎) корректен (является представительным набором)
для класса 𝐾 тогда и только тогда, когда предикат [𝐻(𝑆) = 𝜎] является коррект-
ным (представительным) для 𝐾 (здесь и далее через [𝑝] обозначается предикат,
принимающий значение 1 в случае, когда выражение 𝑝 истинно, и 0 — в против-
ном случае). При этом корректирующей функцией для набора эл.кл. 𝑈 =

(︀
(𝐻, 𝜎)

)︀
относительно класса 𝐾 является функция 𝐹 (𝑡1) = 𝑡1.

В утверждении 1.2, фактически, даются определения корректного эл.кл. и предста-
вительного набора на языке предикатов.
Утверждение 1.4. Пусть 𝐻 — тест. Тогда для любого класса 𝐾 существует моно-
тонный корректный для 𝐾 набор эл.кл. 𝑈 такой, что для любого прецедента 𝑆𝑖 ∈ 𝐾
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выполняется тождество [𝐻(𝑆𝑖) = 𝐻(𝑆)] ≡ [𝑈(𝑆𝑖) 4 𝑈(𝑆)], ∀𝑆 ∈ 𝑀 (здесь и далее
(𝛼1, . . . , 𝛼𝑑) 4 (𝛽1, . . . , 𝛽𝑑) означает, что 𝛼𝑖 6 𝛽𝑖,∀𝑖 ∈ {1, . . . , 𝑑} ).

Утверждение 1.4 показывает, что алгоритм голосования по тестам является логиче-
ским корректором специального вида с монотонной корректирующей функцией.
Утверждение 1.5. Пусть 𝑈 — монотонный корректный для класса 𝐾 набор эл.кл.
Тогда для любого прецедента 𝑆𝑖 ∈ 𝐾 существует представительный для 𝐾 набор
(𝐻, 𝜎) такой, что выполняется тождество [𝐻(𝑆) = 𝜎] ≡ [𝑈(𝑆𝑖) 4 𝑈(𝑆)], ∀𝑆 ∈ 𝑀 .

Утверждение 1.5 показывает, что монотонный логический корректор является ал-
горитмом голосования по специального вида семействам представительных наборов.
Поэтому для задач с небольшой значностью признаков не удаётся построить моно-
тонный логический корректор, превосходящий по качеству классические алгоритмы
голосования по представительным наборам.

1.3. Логический корректор POLAR с поляризуемой коректирующей функцией

Предлагается новый практический логический корректор POLAR, имеющий в ка-
честве корректирующей поляризуемую булеву функцию. В данном корректоре в роли
голосующих предикатов выступают так называемые поляризуемые предикаты. По-
строение этих предикатов сводится к поиску покрытий специальной булевой матрицы.
Рассматривается задача поиска голосующих предикатов с наибольшей информативно-
стью.

1.3.1. Поляризуемые предикаты

Пусть 𝑅 = (𝑟1, . . . , 𝑟𝑑) — набор бинарных отношений на множестве {0, 1} (на-
пример, 𝑟1(𝑥, 𝑦) = [𝑥 6 𝑦], 𝑟2(𝑥, 𝑦) = [𝑥 = 𝑦], 𝑟3(𝑥, 𝑦) = [𝑥 > 𝑦] и т.д.),
𝑈 =

(︀
(𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)

)︀
— набор эл.кл. и 𝐺, 𝐺 ⊆ 𝑇 , — набор прецедентов.

Для бинарных векторов 𝛼 = (𝛼1, . . . , 𝛼𝑑) и 𝛽 = (𝛽1, . . . , 𝛽𝑑) вводится обозначение
𝑅(𝛼, 𝛽)=𝑟1(𝛼1, 𝛽1) ∧ . . . ∧ 𝑟𝑑(𝛼𝑑, 𝛽𝑑). Исследуются предикаты вида

𝐵(𝑈,𝑅,𝐺)(𝑆) =
⋁︁
𝑆𝑖∈𝐺

𝑅(𝑈(𝑆𝑖), 𝑈(𝑆)). (2)

Формулируются условия, при которых предикат 𝐵(𝑈,𝑅,𝐺) является представитель-
ным для 𝐾 и набор эл.кл. 𝑈 имеет поляризуемую корректирующую функцию (утвер-
ждения 1.7–1.10 в тексте диссертации). Представительные для 𝐾 предикаты вида (2),
удовлетворяющие указанным условиям, называются поляризуемыми. Через 𝒫𝐾 обозна-
чается множество поляризуемых предикатов, представительных для класса 𝐾.

1.3.2. Алгоритм голосования по поляризуемым предикатам

Строится логический корректор POLAR, основанный на голосовании по поляризу-
емым предикатам. На этапе обучения для каждого класса 𝐾 формируются два семей-
ства 𝑍𝐾 и 𝑍𝐾 корректных для 𝐾 поляризуемых предикатов, 𝑍𝐾 ⊂ 𝒫𝐾 , 𝑍𝐾 ⊂ 𝒫𝐾 .
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Предикату 𝐵 приписывается вес 𝛼𝐵 > 0. Распознавание осуществляется взвешенным
голосованием по предикатам, построенным на этапе обучения. Возможны два режима
распознавания: базовый и аддитивный.

1. В базовом режиме оценка Γ(𝑆,𝐾) принадлежности объекта 𝑆 классу 𝐾 вычис-
ляется по формуле (1).

2. В аддитивном режиме для распознаваемого объекта 𝑆 и каждого построенного
предиката 𝐵(𝑈,𝑅,𝐺) вычисляется

𝛾(𝑆,𝐵(𝑈,𝑅,𝐺)) =
1

|𝐺|
∑︁
𝑆𝑖∈𝐺

𝑅(𝑈(𝑆𝑖), 𝑈(𝑆)).

Затем для каждого класса 𝐾 вычисляется оценка Γ(𝑆,𝐾) принадлежности объ-
екта 𝑆 классу 𝐾, имеющая вид

Γ(𝑆,𝐾) =
∑︁
𝐵∈𝑍𝐾

𝛼𝐵𝛾(𝑆,𝐵)−
∑︁
𝐵∈𝑍𝐾

𝛼𝐵𝛾(𝑆,𝐵).

1.3.3. Сведение задачи построения поляризуемых предикатов к поиску покрытий
булевой матрицы

Основная задача этапа обучения логического корректора POLAR — поиск ин-
формативных предикатов из 𝒫𝐾 . Эта задача сводится к поиску покрытий булевой
матрицы. Покрытием булевой матрицы 𝐿 называется набор её столбцов 𝐽 такой, что
в подматрице, составленной из столбцов набора 𝐽 , в каждой строке есть хотя бы один
единичный элемент. Через 𝐿(𝑅,𝐶) обозначается подматрица матрицы 𝐿, составленная
из её строк 𝑅 и столбцов 𝐶.

Множество троек (𝐻, 𝜎, 𝑟), где (𝐻, 𝜎) — эл.кл. и 𝑟 — бинарное отноше-
ние на {0, 1}, обозначается через 𝒱*. Строится булева матрица 𝐿𝑇 по следующе-
му правилу. Каждой строке матрицы 𝐿𝑇 сопоставляется пара обучающих объек-
тов (𝑆𝑖, 𝑆𝑡) ∈ 𝑇 × 𝑇 . Столбцы матрицы 𝐿𝑇 имеют один из двух типов. Каж-
дому столбцу первого типа соответствует тройка (𝐻, 𝜎, 𝑟) ∈ 𝒱*. Элемент матри-
цы 𝐿𝑇 , расположенный на пересечении строки (𝑆𝑖, 𝑆𝑡) и столбца (𝐻, 𝜎, 𝑟), равен
1 − 𝑟 ([𝐻(𝑆𝑖) = 𝜎], [𝐻(𝑆𝑡) = 𝜎]) . Каждому столбцу второго типа соответствует пре-
цедент 𝑆𝑗 ∈ 𝑇 . Элемент матрицы 𝐿𝑇 , расположенный на пересечении строки (𝑆𝑖, 𝑆𝑡) и
столбца 𝑆𝑗, равен [𝑖 = 𝑗]. Матрицу, построенную по указанному правилу, принято на-
зывать матрицей сравнения. Через 𝐿𝐾 , 𝐾 ∈ {𝐾1, . . . , 𝐾𝑙, 𝐾1, . . . , 𝐾 𝑙}, обозначается
подматрица 𝐿𝑇

(︀
(𝑇 ∩𝐾)× (𝑇 ∖𝐾),𝒱* ∪ (𝑇 ∩𝐾)

)︀
. Доказывается

Утверждение 1.11. Пусть 𝑈=((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑)) — набор эл.кл.,
𝑅=(𝑟1, . . . , 𝑟𝑑) — набор бинарных отношений из {[𝑥 6 𝑦], [𝑥 > 𝑦]} и 𝐺 —
набор прецедентов класса 𝐾.

Предикат 𝐵(𝑈,𝑅,𝐺) является корректным для 𝐾 тогда и только тогда, когда набор
столбцов 𝐽 = {(𝐻1, 𝜎1, 𝑟1), . . . , (𝐻𝑑, 𝜎𝑑, 𝑟𝑑)} ∪ ((𝑇 ∩ 𝐾) ∖ 𝐺) является покрытием
матрицы 𝐿𝐾 .
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1.3.4. Поиск поляризуемых предикатов с наибольшей информативностью

Вводятся функционалы информативности голосующих предикатов. Ставится задача
поиска поляризуемых предикатов с наибольшей информативностью, которая сводится
к решению специальных дискретных оптимизационных задач.

С каждым прецедентом 𝑆𝑖 связывается неотрицательный вес 𝑤𝑖, характе-
ризующий цену ошибки на объекте 𝑆𝑖. В базовом режиме работы логиче-
ского корректора POLAR информативность предиката 𝐵 относительно класса
𝐾 оценивается значением функционала 𝐼(𝐵,𝐾) = 𝑃 (𝐵,𝐾) − 𝑁(𝐵,𝐾), где
𝑃 (𝐵,𝐾) =

∑︀
𝑆𝑖∈𝐾 𝑤𝑖𝐵(𝑆𝑖), 𝑁(𝐵,𝐾) =

∑︀
𝑆𝑖 /∈𝐾 𝑤𝑖𝐵(𝑆𝑖). В аддитивном режи-

ме используется функционал 𝐼(𝐵(𝑈,𝑅,𝐺), 𝐾) = 𝑃 (𝐵(𝑈,𝑅,𝐺), 𝐾) − 𝑁̂(𝐵(𝑈,𝑅,𝐺), 𝐾), где
𝑃 (𝐵(𝑈,𝑅,𝐺), 𝐾) =

∑︀
𝑆∈𝐺 𝑃 (𝐵(𝑈,𝑅,{𝑆}), 𝐾) и 𝑁̂(𝐵(𝑈,𝑅,𝐺), 𝐾) =

∑︀
𝑆∈𝐺𝑁(𝐵(𝑈,𝑅,{𝑆}), 𝐾).

Пусть 𝐺+ — набор прецедентов класса 𝐾 и 𝐺− — набор прецедентов из 𝐾.
Обозначим через 𝒫𝐾(𝐺

+, 𝐺−) семейство поляризуемых предикатов таких, что 𝐺⊆𝐺+

и не существует двух объектов 𝑆𝑖 ∈ 𝐺 и 𝑆𝑡 ∈ 𝐺−, для которых выполняется равенство
𝑅(𝑈(𝑆𝑖), 𝑈(𝑆𝑡)) = 1.
Задача 1.3. Пусть даны булевы матрицы 𝐿0, 𝐿1, . . . , 𝐿𝑑 и ненулевые веса 𝛼1, . . . , 𝛼𝑑.
Каждая матрица имеет 𝑛 столбцов. Требуется найти (неприводимое) покрытие 𝐽
матрицы 𝐿0 такой, что сумма весов матриц, не покрытых набором 𝐽 , максимальна.

Задача 1.4. Пусть даны две булевы матрица 𝐿0 и 𝐿′ с 𝑛 столбцами. Для каждой
строки 𝑖 матрицы 𝐿′ задан ненулевой вес 𝛽𝑖. Требуется найти (неприводимое) по-
крытие 𝐽 матрицы 𝐿0 такое, что сумма весов строк матрицы 𝐿′, не покрытых
набором 𝐽 , максимальна.

Поиск предиката 𝐵 из 𝒫𝐾(𝐺
+, 𝐺−), обладающего максимальной информативно-

стью 𝐼(𝐵,𝐾), сводится к решению дискретной оптимизационной задачи 1.3. При
использовании функционала 𝐼(𝐵,𝐾) решается задача 1.4.

Заметим, что ряде работ рассматриваются задачи, являющиеся частными случаями
задачи 1.4, например, Red-Blue Set Cover Problem15 и Positive–Negative Partial Set
Cover Problem16. Исследование задач 1.3 и 1.4 в приведённых постановках автору не
известны. В настоящей работе для их решения используется метод ветвей и границ на
базе алгоритмов дуализации из третьей главы.

Глава 2. Методы повышения эффективности логических корректоров

Во данной главе разрабатывается методика повышения скорости обучения и каче-
ства распознавания логических корректоров. Семейства голосующих предикатов стро-
ятся итеративно по принципу бустинга. Поиск голосующих предикатов осуществляется

15Peleg D. Approximation algorithms for the label-cover max and red-blue set cover problems // Journal of Discrete Algorithms.
2007. Т. 5, № 1. С. 55—64 ; On the red-blue set cover problem / R. D. Carr [и др.] // in: Proc. 11th ACM-SIAM Symp.
on Discrete Algorithms. 2000. С. 345—353.

16Miettinen P. On the positive–negative partial set cover problem // Information Processing Letters. 2008. Т. 108, № 4.
С. 219—221.
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в рамках локальных базисов классов — предварительно формируемых корректных на-
боров, состоящих из информативных эл.кл. Эффективность предложенной методики
тестируется на реальных данных.

2.1. Итеративное формирование семейств голосующих предикатов по принципу
бустинга

Строится бустинг-алгоритм обучения логического корректора POLAR, работающего
в базовом режиме распознавания.

Пусть 𝑆𝑖 ∈ 𝑇 , 𝑦𝑖 — номер класса, которому принадлежит 𝑆𝑖, 𝐾 — класс, 𝐴𝑡 —
логический корректор, голосующий по предикатам, построенным за 𝑡, 𝑡 > 0, итераций.
Через Γ𝑡(𝑆𝑖, 𝐾) обозначается оценка за отнесение объекта 𝑆𝑖 к классу 𝐾, вычисля-
емая логическим корректором 𝐴𝑡, через 𝑄(𝐴𝑡) обозначается число ошибок и отказов
алгоритма 𝐴𝑡 на обучающей выборке. Рассматривается функционал

𝑄̂(𝐴𝑡)=
𝑙∑︁

𝑦=1

∑︁
𝑆𝑖 /∈𝐾𝑦

exp(−𝑀𝑡(𝑆𝑖, 𝐾𝑦)), где 𝑀𝑡(𝑆𝑖, 𝐾𝑦) = Γ𝑡(𝑆𝑖, 𝐾𝑦𝑖)− Γ𝑡(𝑆𝑖, 𝐾𝑦).

Известно, что для любого 𝑡 > 0 выполняется неравенство 𝑄(𝐴𝑡) 6 𝑄̂(𝐴𝑡). Преди-
кат, добавляемый в семейство голосующих предикатов логического корректора 𝐴𝑡 на
итерации 𝑡+ 1, минимизирует значение 𝑄̂(𝐴𝑡+1).

Бустинг-алгоритм обучения логического корректора POLAR.
Параметры: 𝑡𝑚𝑎𝑥 — число итераций, 𝛿 > 0 — параметр выбора пространства поиска

предикатов.
При инициализации взять 𝑍𝐾1

= . . . = 𝑍𝐾𝑙
= 𝑍𝐾1

= . . . = 𝑍𝐾𝑙
= ∅.

Пусть произведено 𝑡, 𝑡 > 0, итераций. На итерации 𝑡+ 1 выполняется следующее.

1. Для каждого класса 𝐾 и каждого прецедента 𝑆𝑖 вычислить вес

𝑤𝑡(𝑆𝑖, 𝐾) =
1

𝑄̂(𝐴𝑡)

{︃∑︀
𝐾𝑦 ̸=𝐾 exp(−𝑀𝑡(𝑆𝑖, 𝐾𝑦)), 𝑆𝑖 ∈ 𝐾,

exp(−𝑀𝑡(𝑆𝑖, 𝐾)), 𝑆𝑖 /∈ 𝐾

(если прецедент 𝑆𝑖 принадлежит классу 𝐾, то вес 𝑤𝑡(𝑆𝑖, 𝐾) характеризует «труд-
ность отделения» объекта 𝑆𝑖 от прецедентов из 𝐾 логическим корректором 𝐴𝑡,
иначе вес 𝑤𝑡(𝑆𝑖, 𝐾) указывает насколько «трудно» прецедент 𝑆𝑖 отличить от
прецедентов класса 𝐾).

2. Выбрать класс 𝐾 и семейство поляризуемых предикатов 𝑃𝒦(𝐺
+, 𝐺−) такие,

что в 𝑃𝒦(𝐺
+, 𝐺−) существует предикат 𝐵, для которого 𝐽*

𝑡 (𝐵,𝐾) > 𝛿,
где 𝐽*

𝑡 (𝐵,𝐾)=
√︀
𝑃𝑡(𝐵,𝐾) −

√︀
𝑁 *

𝑡 (𝐵,𝐾), 𝑃𝑡(𝐵,𝐾) =
∑︀

𝑆𝑖∈𝐾 𝑤𝑡(𝑆𝑖, 𝐾)𝐵(𝑆𝑖),
𝑁𝑡(𝐵,𝐾) =

∑︀
𝑆𝑖 /∈𝐾 𝑤𝑡(𝑆𝑖, 𝐾)𝐵(𝑆𝑖) и

𝑁 *
𝑡 (𝐵,𝐾) =

{︃
𝑁𝑡(𝐵,𝐾), 𝑁𝑡(𝐵,𝐾) > 0,
1
2𝑚 , иначе.
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3. Найти в 𝒫𝐾(𝐺
+, 𝐺−) предикат 𝐵 с наибольшей информативностью

𝐼𝑡(𝐵,𝐾)=𝑃𝑡(𝐵,𝐾)−𝑁𝑡(𝐵,𝐾).

4. Добавить предикат 𝐵 в семейство 𝑍𝐾 с весом

𝛼𝐵 =
1

2
ln

𝑃𝑡(𝐵,𝐾)

𝑁 *
𝑡 (𝐵,𝐾)

.

5. Если 𝑡+ 1 ̸= 𝑡𝑚𝑎𝑥, то перейти к следующей итерации. �

Теорема 2.3. Пусть бустинг-алгоритм обучения логического корректора POLAR за-
пускается с параметрами

𝑡𝑚𝑎𝑥 >
ln(𝑚(𝑙 − 1))

𝛿2
и 𝛿 <

1√
𝑙
− 1√

2𝑚
.

Тогда в результате его работы строит корректный распознающий алгоритм.

Использование описанного бустинг-алгоритма позволяет повысить качество распо-
знавания за счёт 1) настройки весов предикатов, по которым осуществляется голосова-
ние, и 2) построения семейств, состоящих из существенно различающихся предикатов.
Кроме этого, повышает скорость обучения, так как для поиска голосующих предикатов
используется не вся матрица сравнения, а лишь её небольшая подматрица.

2.2. Локальные базисы классов

Поиск голосующих предикатов осуществляется в рамках локальных базисов клас-
сов — предварительно формируемых корректных наборов, состоящих из информатив-
ных эл.кл. Локальный базис определяет состав столбцов матрицы сравнения, стро-
ящейся для поиска поляризуемых предикатов. Предлагается алгоритм формирования
«хороших» локальных базисов из эл.кл. произвольного ранга.

Набор 𝒱𝐾 = {(𝐻1, 𝜎1, 𝑟1), . . . , (𝐻𝑑, 𝜎𝑑, 𝑟𝑑)} троек из 𝒱* называется локальным
базисом класса 𝐾, если не существует двух прецедентов 𝑆𝑖 ∈ 𝐾 и 𝑆𝑡 /∈ 𝐾, для
которых выполняется равенство 𝑅(𝑈(𝑆𝑖), 𝑈(𝑆𝑡)) = 1, где 𝑈 = ((𝐻1, 𝜎1), . . . , (𝐻𝑑, 𝜎𝑑))
и 𝑅 = (𝑟1, . . . , 𝑟𝑑). Ясно, что 𝒱𝐾 является локальным базисом класса 𝐾 тогда и только
тогда, когда подматрица, составленная из столбцов 𝒱𝐾 матрицы 𝐿𝐾 , не имеет нулевых
строк, то есть для этой подматрицы существует покрытие.

Набор 𝒱 ⊆ 𝒱*, являющийся локальным базисом для каждого из классов
𝐾1, . . . , 𝐾𝑙, называется локальным базисом задачи. Например, набор 𝒱1, состоящий
из троек (𝐻, 𝜎, 𝑟) ∈ 𝒱* таких, что (𝐻, 𝜎) имеет ранг 1 и отношение 𝑟 принадлежит
{[𝑥 6 𝑦], [𝑥 > 𝑦]}, является локальным базисом задачи.

Предлагается универсальный метод построения локального базиса класса, состоя-
щего из эл.кл. произвольного ранга. Рассматривается задача распознавания с двумя
классами 𝐾 и 𝐾. Строится семейство эл.кл. 𝐶𝐾 и каждому эл.кл. (𝐻, 𝜎) ∈ 𝐶𝐾

присваивается ненулевой вес 𝛼(𝐻,𝜎). В результате получается распознающий алгоритм

𝐴𝐾
𝑇 (𝑆) = sign

∑︁
(𝐻,𝜎)∈𝐶𝐾

𝛼(𝐻,𝜎)[𝐻(𝑆) = 𝜎],
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где sign(𝑥) — функция «знак», возвращающая 1, при 𝑥 > 0, −1, при 𝑥 < 0, и 0, при
𝑥 = 0. Алгоритм 𝐴𝐾

𝑇 считается корректным в случае, когда 𝐴𝐾
𝑇 (𝑆𝑖) = 1, ∀𝑆𝑖 ∈ 𝐾,

и 𝐴𝐾
𝑇 (𝑆𝑖) = −1, ∀𝑆𝑖 /∈ 𝐾. По взвешенному семейству 𝐶𝐾 строится набор 𝒱𝐾 такой,

что каждому эл.кл. (𝐻, 𝜎) из 𝐶𝐾 однозначно соответствует тройка (𝐻, 𝜎, 𝑟) ∈ 𝒱𝐾 ,
в которой 𝑟 = [𝑥 6 𝑦], при 𝛼(𝐻,𝜎) > 0, и 𝑟 = [𝑥 > 𝑦], при 𝛼(𝐻,𝜎) < 0. Метод
обосновывается справедливостью следующего утверждения.
Утверждение 2.4. Если распознающий алгоритм 𝐴𝐾

𝑇 корректен, то набор 𝒱𝐾 , по-
строенный по взвешенному семейству эл.кл. 𝐶𝐾 является локальным базисом клас-
са 𝐾. Причём упорядоченный набор, составленный из эл.кл. семейства 𝐶𝐾 , является
корректным для 𝐾 и имеет поляризуемую корректирующую функцию.

2.3. Реализация и экспериментальное исследование логических корректоров
POLAR

Реализованы 4 модификации логического корректора POLAR, формирующие се-
мейства голосующих предикатов бустингом и отличающиеся стратегией формирования
локальных базисов классов:

— POLAR-1 использует локальный базис задачи 𝒱1;

— POLAR-2 строит локальный базис задачи бустингом над эл.кл.;

— POLAR-3 на каждой итерации строит или обновляет локальный базис класса
алгоритмом голосования по представительным наборам;

— POLAR-4 на каждой итерации строит или обновляет локальный базис класса
бустингом над эл.кл.

Логические корректоры POLAR-1 – POLAR-4 тестируются на прикладных за-
дачах из репозитория UCI. Результаты тестирования говорят о практической приме-
нимости новых логических корректоров, которые опережают по качеству распознава-
ния ранее построенные логические корректоры и классические логические алгоритмы
распознавания почти на всех тестовых задачах. При этом за приемлемое время осу-
ществляется обучение на больших объёмах данных с большой значностью признаков.
Наиболее быстрыми являются POLAR-3 и POLAR-4.

Глава 3. Новые асимптотически оптимальные алгоритмы дуализации
В данной главе рассматривается одна из центральных дискретных перечислитель-

ных задач — дуализация. Даётся обзор основных подходов её решения, среди которых
выделяется подход к построению асимптотически оптимальных алгоритмов. Алгорит-
мы, построенные в рамках этого подхода классифицируются на два типа. Строятся
новые асимптотически оптимальные алгоритмы первого типа АО1К, AO1M, АО2К
и АО2М, и второго типа RUNC, RUNC-M и PUNC. Новые и ранее построенные
асимптотически оптимальные алгоритмы дуализации экспериментально исследуются
на большом объеме разнотипных данных.
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3.1. Задача дуализации и подходы к ее решению

Пусть 𝐿 = ‖𝑎𝑖𝑗‖ — булева матрица размера 𝑚× 𝑛. Набор столбцов 𝐻 матрицы 𝐿
называется покрытием, если подматрица 𝐿𝐻 матрицы 𝐿, образованная столбцами на-
бора 𝐻, не содержит строки вида (0, 0, . . . , 0). Покрытие матрицы 𝐿 называется
неприводимым, если любое его собственное подмножество не является покрытием 𝐿.
Через 𝒫(𝐿) обозначается множество неприводимых покрытий 𝐿. Требуется построить
(перечислить) множество 𝒫(𝐿).

В основе асимптотически оптимальных алгоритмов дуализации лежит
Критерий USM unit submatrix. Набор 𝐻 из 𝑟 столбцов матрицы 𝐿 является непри-
водимым покрытием тогда и только тогда, когда выполняются следующие два усло-
вия: 1) подматрица 𝐿𝐻 матрицы 𝐿, образованная столбцами набора 𝐻, не содер-
жит строки вида (0, 0, . . . , 0); 2) подматрица 𝐿𝐻 содержит каждую из строк вида
(1, 0, 0, . . . , 0, 0), (0, 1, 0, . . . , 0, 0), . . . , (0, 0, 0, . . . , 0, 1), то есть с точностью до пере-
становки строк содержит единичную подматрицу 𝑄 порядка 𝑟.

При выполнении условия 1) единичная подматрица 𝑄 является максимальной, в
том смысле, что она не содержится в других единичных подматрицах. Набор столб-
цов, удовлетворяющий условию 2), называется совместимым. Максимальная единич-
ная подматрица порождает максимальный совместимый набор столбцов, то есть такой
совместимый набор, который не содержится ни в каком другом совместимом наборе.

Асимптотически оптимальные алгоритмы дуализации классифицируются на два ти-
па. Алгоритм первого типа перечисляет подмножество множества максимальных еди-
ничных подматриц матрицы 𝐿 и может совершать лишние шаги, связанные с повтор-
ным построением решений. Примерами алгоритмов первого типа служат алгоритмы
АО1 и АО217. Алгоритм второго типа перечисляет без повторений подмножество
множества максимальных совместимых наборов столбцов. Примерами алгоритмов вто-
рого типа является алгоритм ОПТ18, и алгоритмы MMCS, RS19.

Алгоритмы дуализации MMCS и RS появились в сравнительно недавних публи-
кациях K. Murakami и T. Uno. Авторы на значительном объёме разнотипных данных
протестировали разработанные ими алгоритмы, а также алгоритмы, имеющие иную
конструкцию. Алгоритмы MMCS и RS показали наилучшие результаты.

В указанных публикациях утверждается, что в основе алгоритмов MMCS и RS
лежит изобретённый авторами новый принцип построения алгоритмов дуализации, на-
зываемый условием «crit». Однако это условие, сформулированное с помощью понятий
теории гиперграфов, эквивалентно критерию USM. Таким образом, принципиальная
схема работы алгоритмов, использующих условие «crit», не отличается от схемы рабо-

17Дюкова Е. В. Об асимптотически оптимальном алгоритме построения тупиковых тестов // ДАН СССР. 1997. Т. 233,
№ 4. С. 527—530 ; Дюкова Е. В. О сложности реализации дискретных (логических) процедур распознавания // Журнал
вычислительной математики и математической физики. 2004. Т. 44, № 3. С. 562—572.

18Дюкова Е. В., Инякин А. С. Асимптотически оптимальное построение тупиковых покрытий целочисленной матрицы //
Математические вопросы кибернетики. 2008. Т. 17. С. 235—246.

19Murakami K., Uno T. Efficient algorithms for dualizing large-scale hypergraphs // Discrete Applied Mathematics. 2014.
Т. 170. С. 83—94.
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ты отечественных асимптотически оптимальных алгоритмов без повторяющихся шагов,
построенных значительно раньше в работах Е. В. Дюковой и её учеников.

Проведённое нами дополнительное тестирование показало, что алгоритмы MMCS и
RS опережают алгоритмы ОПТ и АО2, поскольку почти всегда строят деревья реше-
ний из меньшего числа вершин, чем отечественные алгоритмы. Следовательно, одним
из способов сокращения времени работы асимптотически оптимального алгоритма ду-
ализации является «оптимизация структуры» строящегося им дерева решений.

3.2. Асимптотически оптимальные алгоритмы дуализации первого типа

Приводится схема работы асимптотически оптимального алгоритма первого типа. В
рамках этой схемы описываются алгоритмы АО1, АО2 и строятся их модификации
АО1К, АО1М, АО2К, АО2М, в которых сокращаются вычислительные затраты за
счёт уменьшения общего числа вершин дерева решений.

Говорят, что столбец 𝑗 покрывает строку 𝑖 матрицы 𝐿, если 𝑎𝑖𝑗 = 1. Пусть 𝐻 —
набор столбцов матрицы 𝐿. Говорить, что набор 𝐻 покрывает строку 𝑖, если суще-
ствует столбец 𝑗 ∈ 𝐻, покрывающий строку 𝑖.

Через 𝐸(𝐿) обозначается {(𝑖, 𝑗) : 𝑎𝑖𝑗 = 1, 𝑖 ∈ {1, . . . ,𝑚} , 𝑗 ∈ {1, . . . , 𝑛}}. Два
элемента (𝑖, 𝑗) и (𝑡, 𝑙) из 𝐸(𝐿) называются совместимыми, если 𝑎𝑖𝑙 = 0, 𝑎𝑡𝑗 = 0.
Набор 𝑄 элементов из 𝐸(𝐿) называется совместимым, если любые два различных
элемента (𝑖, 𝑗) и (𝑡, 𝑙) из 𝑄 совместимы. Совместимый набор 𝑄 называется макси-
мальным, если 𝑄 не является подмножеством другого совместимого набора элемен-
тов из 𝐸(𝐿).

Пусть 𝑄 — совместимый набор элементов из 𝐸(𝐿). Cтолбец 𝑙 называется запре-
щённым для 𝑄, если существует элемент (𝑖, 𝑗) ∈ 𝑄 такой, что столбец 𝑙 покрывает
строку 𝑖. В противном случае говорят, что столбец 𝑙 совместим с набором 𝑄.

Набор 𝐵, 𝐵 ⊆ 𝐸(𝐿), порождает набор столбцов 𝐻(𝐵) = {𝑗 : ∃(𝑖, 𝑗) ∈ 𝐵}. Го-
ворят, что строка 𝑖 матрицы 𝐿 покрыта набором 𝐵 элементов из 𝐸(𝐿), если набор
столбцов 𝐻(𝐵) покрывает строку 𝑖. Совместимый набор 𝑄 называется покрывающим,
если все строки матрицы 𝐿 покрыты набором 𝑄. Набор столбцов 𝐻 является непри-
водимым покрытием матрицы 𝐿 тогда и только тогда, когда найдётся покрывающий
набор 𝑄, для которого 𝐻(𝑄) = 𝐻 .

Покрывающий набор 𝑄 = {(𝑖1, 𝑗1), . . . , (𝑖𝑟, 𝑗𝑟)} называется верхним, если для лю-
бого покрывающего набора 𝑄′ = {(𝑡1, 𝑗1), . . . , (𝑡𝑟, 𝑗𝑟)} верны неравенства 𝑡𝑢 > 𝑖𝑢,
𝑢 ∈ {1, . . . , 𝑟}. Для любого неприводимого покрытия 𝐻 существует единственный
верхний набор 𝑄, такой, что 𝐻(𝑄) = 𝐻 . Таким образом, задача построения 𝒫(𝐿)
сводится к перечислению верхних наборов элементов из 𝐸(𝐿).

Задача 3.1. Вход: 𝐿 — булева матрица, 𝑄 — совместимый набор элементов из 𝐸(𝐿).
Выход: 1, если существует верхний набор 𝑄′ : 𝑄 ⊆ 𝑄′, и 0 — иначе.

Теорема 3.3. Задача 3.1 является NP-полной.
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Теорема 3.3 показывается, что при P ̸= NP не существует асимптотически оп-
тимального алгоритма первого типа, не делающего лишних шагов и перечисляющего
неприводимые покрытия без повторений с полиномиальной задержкой.

3.3. Асимптотически оптимальные алгоритмы дуализации второго типа

Даётся схема асимптотически оптимального алгоритма дуализации второго типа. В
рамках схемы описываются ранее построенные алгоритмы ОПТ, RS и MMCS, а также
новые алгоритмы RUNC, RUNC-M и PUNC. Для этого вводятся дополнительные
понятия и обозначения.

Пусть 𝐻 — набор столбцов матрицы 𝐿. Строка 𝑖 матрицы 𝐿 называется опорной
для пары (𝐻, 𝑗), 𝑗 ∈ 𝐻, если 𝑎𝑖𝑗 = 1 и 𝑎𝑖𝑙 = 0, 𝑙 ̸= 𝑗, 𝑙 ∈ 𝐻 . Множество опорных
строк для (𝐻, 𝑗) обозначается через 𝑆(𝐻, 𝑗). Набор 𝐻 является совместимым тогда и
только тогда, когда для каждого (𝐻, 𝑗), 𝑗 ∈ 𝐻, множество 𝑆(𝐻, 𝑗) не пусто.

Столбец 𝑗 матрицы 𝐿 называется запрещённым для набора столбцов 𝐻, если суще-
ствует столбец 𝑙 ∈ 𝐻 такой, что столбец 𝑗 покрывает все опорные для (𝐻, 𝑙) строки.
В противном случае говорят, что столбец 𝑗 совместим с набором 𝐻 .

Пусть 𝐿(𝑅,𝐶) — подматрица матрицы 𝐿. Число 𝑣𝑗(𝑅) =
∑︀

𝑖∈𝑅 𝑎𝑖𝑗, 𝑗 ∈ 𝐶, на-
зывается весом столбца 𝑗 в подматрице 𝐿(𝑅,𝐶). Число 𝑤𝑖(𝐶) =

∑︀
𝑗∈𝐶 𝑎𝑖𝑗, 𝑖 ∈ 𝑅,

называется весом строки 𝑖 в подматрице 𝐿(𝑅,𝐶). При 𝑤𝑖(𝐶) = 0 (𝑣𝑗(𝑅) = 0) строка
𝑖 ∈ 𝑅 (столбец 𝑗 ∈ 𝐶) называется нулевой (нулевым) в 𝐿(𝑅,𝐶).

Для обозначения связи некоторого объекта 𝑋 с текущей вершиной 𝐻 дерева реше-
ний используется запись 𝑋[𝐻].

Алгоритмы RUNC и RUNC-M. На шаге 1 на итерации 1 выбирается строка 𝑖
матрицы 𝐿 (в алгоритме RUNC 𝑖 = 1; алгоритм RUNC-M ищет строку 𝑖 с мини-
мальным весом в матрице 𝐿), строится набор столбцов 𝐶[∅], покрывающих строку 𝑖, и
строится подматрица 𝐿(𝑅[∅], 𝐷[∅]) путем последовательного удаления из матрицы 𝐿
охватывающих строк и нулевых столбцов. Далее корень становится текущей вершиной,
и происходит переход к следующей итерации.

Пусть на шаге 𝑠, 𝑠 > 1, на итерации 𝑡, 𝑡 > 1, текущей стала вершина 𝐻 . Тогда на
итерации 𝑡+ 1 выполняется следующее.

1. Если 𝐶[𝐻] = ∅, то происходит переход к следующему шагу. В противном случае
берётся первый по порядку столбец 𝑗 ∈ 𝐶[𝐻], столбец 𝑗 удаляется из 𝐶[𝐻] и из
𝐷[𝐻]. Cтроится вершина 𝐻 ′ = 𝐻 ∪ {𝑗}.

2. Если столбец 𝑗 покрывает все строки, не покрытые набором 𝐻, то результатом
шага становится неприводимое покрытие 𝐻 ′, и происходит переход к следующему
шагу.

3. В противном случае в подматрице 𝐿(𝑅[𝐻], 𝐷[𝐻]) выбирается строка 𝑖, не по-
крытая столбцом 𝑗 (алгоритм RUNC использует строку с наименьшим номером,
алгоритм RUNC-M ищет строку 𝑖 с наименьшим весом 𝑤𝑖(𝐷[𝐻])).
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4. Формируется набор 𝐶[𝐻 ′] покрывающих строку 𝑖 столбцов подматрицы
𝐿(𝑅[𝐻], 𝐷[𝐻]), и строится подматрица 𝐿(𝑅[𝐻 ′], 𝐷[𝐻 ′]) путем удаления из под-
матрицы 𝐿(𝑅[𝐻], 𝐷[𝐻]) покрытых столбцом 𝑗 строк и запрещённых для 𝐻 ′

столбцов.

5. Текущей вершиной становится 𝐻 ′, и происходит переход к следующей итерации.

Пусть результатом шага 𝑠, 𝑠 > 1, является набор 𝐻 . Тогда на шаге 𝑠 + 1 на
итерации 1 среди вершин ветки дерева, соединяющей корень с вершиной 𝐻, ищется
ближайшая к 𝐻 вершина 𝐻 ′ такая, что 𝐶[𝐻 ′] ̸= ∅. Если вершина 𝐻 ′ найдена, то
она становится текущей вершиной, и происходит переход к следующей итерации. В
противном случае алгоритм завершает работу. �

Сложность шага алгоритма RUNC (RUNC-M) равна 𝒪(𝑚𝑛𝑞), 𝑞 = min{𝑚,𝑛}.
Для работы алгоритма дополнительно требуется 𝒪(𝑚 + 𝑛) памяти. Фактически, ал-
горитмы RUNC и RUNC-M различаются способом выбора строки 𝑖, определяющей
состав дочерних вершин в дереве решений для новой построенной вершины 𝐻 . Экспе-
риментально установлено, что в большинстве случаев RUNC-M является эффективнее
RUNC, поскольку его дерево решений имеет существенно меньше вершин, что ком-
пенсирует вычислительные затраты поиска строки с минимальным весом. Алгоритм
RUNC-M можно назвать «жадным» алгоритмом, пытающимся минимизировать число
внутренних вершин дерева решений.

3.4. Экспериментальное исследование асимптотически оптимальных алгоритмов
дуализации

Для тестирования эффективности предложенных в работе алгоритмов проведе-
на серия экспериментов на случайных булевых матрицах, формируемых по ра-
нее предложенной методике20, а также на других модельных данных и приклад-
ных задачах21. Алгоритмы АО1, АО1К, АО1М, АО2, АО2К, АО2М, ОПТ,
RUNC, RUNC-M и PUNC реализованы на языке С++ и доступны в Ин-
тернет по адресу http://sourceforge.net/p/logicalanalyze/code/HEAD/tree/

trunk/dualization/. Исходные коды программ алгоритмов MMCS и RS взяты из
http://research.nii.ac.jp/~uno/dualization.html.

Результаты счёта показывают, что среди задач есть такие, на которых лидируют
ранее построенные алгоритмы RS, MMCS, ОПТ, АО1 а также задачи, где лидируют
новые алгоритмы АО1М, RUNC, RUNC-M и PUNC. Тестирование на прикладных
задачах показывает, что лучшим является алгоритм RUNC-M, преимущество которого
особенно очевидно на входных матрицах большого размера.

20Дюкова Е. В., Инякин А. С. Указ. соч.
21Murakami K., Uno T. Указ. соч.
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ЗАКЛЮЧЕНИЕ
1. Предложена общая схема синтеза логических корректоров, голосующих по кор-

ректным предикатам. Показано, что схема логического корректора общего вида
может быть использована для описания классических логических алгоритмов рас-
познавания и ранее построенных логических корректоров.

2. Построен практический логический корректор POLAR с поляризуемой корректи-
рующей функцией.

3. Разработана методика повышения качества распознавания и скорости обучения
логических корректоров, основанная на построении локальных базисов классов
и итеративном формировании семейств голосующих предикатов по принципу бу-
стинга.

4. Построены новые асимптотически оптимальные алгоритмы дуализации АО1M,
АО1К, АО2М, АО2К, RUNC, RUNC-M, PUNC, в которых снижение времени
счёта достигается за счёт уменьшения общего числа вершин дерева решений.
Показано, что построенные алгоритмы достаточно быстро обрабатывают булевы
матрицы большого размера.

Одним из дальнейших направлений исследований видится обобщение методов
алгебро-логической коррекции на случай, когда в задаче распознавания на множествах
значений признаков определены отношения частичного порядка. Практический интерес
представляют частичные порядки, являющиеся цепями, антицепями, полурешётками,
решётками или лесами. При выполнении коррекции потребуются эффективные пере-
числительные алгоритмы, для решения задач, обобщающих дуализацию.
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