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Общая характеристика работы

Актуальность темы Задача статистического моделирования языка состоит в определе-
нии вероятностного распределения над цепочками слов в некотором языке. Данная задача
естественным образом возникает в таких практических областях как распознавание речи,
оптическое распознавание символов (OCR), распознавание рукописного текста, машинный
перевод, проверка орфографии, предикативный ввод и других.

За минувшие 25 лет спрос на программные решения, связанные с обработкой текста,
уже неоднократно переживал периоды роста, связанные сначала с появлением персональных
компьютеров, затем со стремительным развитием интернета, и, наконец, с одновременным
взрывным ростом социальных сетей и рынка мобильных устройств. При этом естественный
язык остается важнейшим способом коммуникации, будь то ввод поискового запроса на ми-
ниатюрном экране мобильного телефона, подсказки автомобильного навигатора или бизнес-
переписка. Практически во всех таких приложениях так или иначе используется языковая
модель. Так, для удобного ввода текстов на мобильном телефоне, необходимо использовать
системы предиктивного ввода, что практически сводится к прямому применению языковой
модели; языковая модель — неотъемлемая часть систем распознавания речи, в том числе и в
голосовом поиске; языковые модели используются в системах машинного перевода, качество
которых на настоящий момент еще далеко от идеального, но все же неуклонно растет.

Историю языкового моделирования принято возводить к работам Шеннона, однако на-
стоящая популярность статистических методов обработки текста началась лишь в 1980-е,
с первыми успехами, полученными инженерами компании IBM. За сравнительно недолгую
историю существования проблемы статистического моделирования языка было предложено
большое количество различных подходов к ее решению, главным из которых по сей день
остается подход, основанный на сглаженных n-граммных моделях. Было экспериментально
продемонстрировано, что преимущества более сложных моделей в целом исчезают с ростом
обучающей выборки. С начала 2010-х стал стремительно развиваться подход, основанный
на рекуррентных нейронных сетях, описанный Т.Миколовым. В его работах было продемон-
стрировано, что с ростом объема обучающего корпуса преимущества предложенной им ней-
росетевой модели только увеличиваются. Рекуррентные модели за прошедшие годы нашли
применение в различных областях от диалоговых систем до генерации текста по изображе-
нию.

Попытка прямолинейного применения модели Миколова к флективным языкам сталки-
вается с проблемой разреженности данных и большой вычислительной сложности в связи
со свободным порядком слов и большим количеством грамматических форм, свойственным
флективным языкам, в частности русскому. Одним из решений данной проблемы являет-
ся раздельное предсказание начальных форм слова (лемм) и их морфологических форм.
Данный подход позволил бы существенно снизить вычислительные затраты для обучения
статистической модели русского языка.
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Целью данной работы является построение эффективной статистической модели рус-
ского языка.

Для достижения поставленной цели необходимо было решить следующие задачи:

1. Аналитический обзор состояния проблемы и систематизация подходов к статистиче-
скому моделированию языка;

2. Экспериментальная оценка качества существующих языковых моделей для русского
языка, выявление их недостатков и способов их устранения;

3. Разработка и теоретическое описание новых модификаций языковых моделей, устра-
няющих выявленные недостатки;

4. Разработка алгоритмов и программная реализация полученных моделей, а также экс-
периментальная проверка их эффективности.

Основные положения, выносимые на защиту:

1. Использование рекуррентной нейронной сети для статистического моделирования рус-
ского языка для предсказания начальных форм слова (лемм) более эффективно, чем
n-граммная языковая модель, как с вычислительной точки зрения, так и с точки зрения
качества предсказания слов (уменьшения перплексии тестовых данных);

2. Предсказание словоформ с помощью рекуррентной нейронной сети является неэффек-
тивным с вычислительной точки зрения;

3. Языковая модель, использующая отдельные классификаторы для предсказания лемм
и морфологических признаков, требует значительно меньших вычислительных затрат
при той же перплексии;

4. Расширение рекуррентной модели на леммах за счет добавления признаков, получен-
ных путем отображения левого контекста текущего слова в вектор действительных
чисел, приводит к улучшению показателя перплексии новой модели по сравнению с
исходной;

5. Предсказание морфологической формы, реализованное с помощью сверточной нейрон-
ной сети, задействующей морфологическую и лексическую информацию, снижает про-
цент пословной ошибки при распознавании речи.

Научная новизна:

1. Впервые предложена статистическая языковая модель с раздельным предсказанием
лемм и морфологических признаков, основанная на применении рекуррентной и свер-
точной нейронных сетей, позволяющая учитывать более длинный левый контекст для
предсказания;
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2. Разработана и реализована гибридная статистическая языковая модель на рекуррент-
ной нейронной сети и тематическом разложении левого контекста, повышающая каче-
ство на более длинных текстах;

3. Впервые предложен, обоснован и экспериментально исследован метод расширения сло-
варя языковой модели на рекуррентной нейронной сети за счет отдельной модели пред-
сказания морфологической формы русских слов, основанной на сверточной нейронной
сети.

В диссертации показана возможность построения статистической языковой модели, ос-
нованной на нейросетевом подходе, обеспечивающей эффективное предсказание морфологи-
ческих форм и способной к учету дальних контекстных зависимостей между словами. Это
определяет теоретическую ценность работы.

Использование предложенной модели в системах распознавания речи и текстового ввода
позволяет улучшить качество данных систем. Этим определяется практическая ценность

работы. Работы автора нашли практическое применение в технологиях компании «Самсунг
Электроникс Ко., Лтд». В частности, автором был получен патент на изобретение «Голосовая
связь на естественном языке между человеком и устройством» (RU 2583150).

Степень достоверности полученных результатов обеспечивается сходимостью теоре-
тических оценок и экспериментальными результатами.

Работа проходила апробацию Основные результаты работы докладывались на: конфе-
ренциях «Диалог–2014» (Бекасово, 2014), «Диалог–2015» (Москва, 2015), «SPECOM-2015»
(Афины, 2015); семинаре Вычислительного центра им. Дородницына ФИЦ ИУ РАН.

Все теоретические и экспериментальные результаты получены автором лично.
Публикации. По тематике исследований опубликовано 7 научных работ, в том числе 5

статей в журналах, рекомендованных ВАК.

Содержание работы

Во введении обоснована актуальность работы, ее научная и практическая ценность,
кратко сформулированы основные цели и задачи работы, представлены основные положения,
выносимые на защиту.

Первая глава посвящена обзору методов статистического моделирования языка.
Основными метриками качества в оценке языковых моделей являются перплексия и уро-

вень пословной ошибки (для распознавания речи). Ни один из этих показателей не является
исчерпывающим: недостатком перплексии является предположение о полной и истинной ин-
формации о левом контексте, что не соответствует действительности для задачи распозна-
вания речи. Снижение уровня пословной ошибки, в свою очередь, зависит от изначальной
конфигурации системы распознавания, что делает результаты, полученные разными иссле-
довательскими группами, несравнимыми.
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Сглаженная n-граммная модель работает достаточно хорошо, причем с ростом объ-
ема обучающей выборки перплексия, как и уровень пословной ошибки, падают.

Применение модели, допускающей перестановки, не является оправданным даже для
флективных языков, так как возможность перестановки слов в языках со свободным поряд-
ком слов все же довольно ограничена.

Среди моделей, не использующих векторное представление словаря, наиболее эффектив-
ными являются модели с кэшированием, однако применение кэширования для распозна-
вания речи затруднено ввиду проблемы «закрепления ошибки», когда неверное распозна-
вания одного слова, существенно влияет на качество распознавания последующих слов. То
же верно для модели максимальной энтропии в случае, когда используются признаки,
основанные на триггерных словах.

Более сложные модели оказываются полезны прежде всего для борьбы с разреженно-
стью данных. С ростом объема обучающей выборки для большинства техник наблюдается
постепенное уменьшение разности в перплексии сглаженных n-граммных моделей и их ин-
терполяции с моделями, использующими дополнительную информацию.

Факторная модель по сути представляет собой унифицированный способ использова-
ния различной статистической информации в рамках общей генеративной модели. В этом
смысле факторная модель наследует как преимущества, так и недостатки всех моделей, ко-
торые она включает в себя.

Эффективными оказываются модели, основанные на распределенном представлении

словаря, т.е. те модели, в которых каждая словоформа отображается в n-мерный вектор. К
таким моделям относятся языковые модели, основанные на латентном семантическом ана-
лизе, латентном размещении Дирихле, нейронных сетях и тематических моделях.

Использование специальных лингвистических данных оправданно для языков с бога-
той морфологией и при сравнительно небольших объемах обучающих данных, когда невоз-
можно обеспечить корректное обучение для словаря объемом почти в 10 раз большего, чем
в случае английского языка.

Наилучшие результаты были достигнуты при помощи моделей, использующих реку-

рентные нейронные сети. Важнейшим преимуществом таких моделей является распре-
деленное представление словаря, однако обучение нейронных сетей представляет собой от-
дельную достаточно сложную задачу.

Комбинации наиболее эффективных моделей дают результаты, как минимум не хуже,
чем каждая из техник в отдельности. Эффективный способ комбинирования является важ-
ной отдельной задачей.

В отсутствие больших обучающих корпусов представляется логичным комбинирова-

ние некоторой сложной модели, основанной на применении лингвистической информации
и векторных представлениях, полученных применением тематических моделей и нейронных
сетей.
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Рисунок 1: Общий вид рекурренной сети Элмана. 𝑥𝑡 — входной слой на шаге 𝑡; ℎ𝑡 —
скрытый слой; 𝑦𝑡 — выходной слой.

Во второй главе рассматриваются вопросы, связанные с применением рекуррентных
нейронных сетей для построения языковых моделей.

В частности, рассмотрен метод векторного представления слов при помощи нейронных се-
тей. Отображение осуществляется путем умножения матрицы вложения 𝑈 на вектор 𝑥 = 𝛿𝑤𝑖

,
содержащий единственную (ненулевую) единичную координату с индексом 𝑖, соответствую-
щим индексу слова в словаре:

𝐶(𝑤𝑖) = 𝑈 · 𝑥.

Данный метод лежит в основе большинства нейросетевых алгоритмов для работы с есте-
ственным языком. В частности, рекуррентной нейронной сети (рис.1). Ее основной отличи-
тельной чертой является то, что в вычислении выхода сети на шаге 𝑡 используется предыду-
щее значение скрытого слоя с задержкой на один такт. Таким образом, каждый элемент на
шаге 𝑡 связан с каждым элементом скрытого слоя на шаге 𝑡− 1. Пусть даны два зависимых
временных ряда 𝑥(𝑡), 𝑦(𝑡). Тогда рекуррентная нейронная сеть есть функция, аппроксими-
рующая условное распределение P(𝑦(𝑡)|𝑥(𝑡)) согласно формулам:

ℎ𝑡 = 𝑓(𝑊 · ℎ𝑡−1 + 𝑈 · 𝑥𝑡 + 𝑏)

𝑦𝑡 = 𝑔(𝑉 · ℎ𝑡 + 𝑑),

где 𝑊 ,𝑈 ,𝑉 — матрицы весов, 𝑏, 𝑑 — смещения, 𝑥 ∈ U — элемент предикторной последова-
тельности на шаге 𝑡, 𝑦 ∈ T — распределение вероятностей элементов неизвестной последо-
вательности на том же шаге 𝑡, ℎ ∈ H — скрытый слой сети, 𝑓 и 𝑔 — функции активации.
В задаче языкового моделирования в качестве распределения 𝑦𝑡 выбирается P(𝑤𝑡|𝑤𝑡 . . . 𝑤1).
Входной элемент 𝑥𝑡 представляется единичным вектором 𝛿𝑤𝑖

, как описано выше.
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Рисунок 2: Схема вычислений в алгоритме распространения ошибки обратно по времени. 𝑦𝑘
— выходной слой на шаге 𝑡; 𝑥𝑡 входной слой; ℎ𝑡 — скрытый слой. Стрелка указывает

направление распространения ошибки. Развертка сети по времени производится на 2 шага.

Для обучения рекуррентной модели используется алгоритм распространения ошибки об-
ратно по времени (backpropagation through time, BPTT). Уравнения для алгоритма распро-
странения ошибки обратно по времени получаются в явном виде при использовании гради-
ентного спуска. В конечной формулировке алгоритм фактически представляет собой алго-
ритм обратного распространения ошибки для сети «развернутой» во времени (рис.2).

Данный алгоритм обладает рядом ограничений. Доказано, что данная архитектура под-
вержена проблеме затухания или всплеска градиента. В зависимости от максимального
собственного значения матрицы весов скрытого слоя 𝑊 , норма градиента активации скры-
того слоя в момент 𝑡 как функции от активации в момент 𝑘 либо экспоненциально растет,
либо экспоненциально затухает с ростом 𝑡− 𝑘:

𝜕ℎ𝑡

𝜕ℎ𝑘

=
∏︁

𝑘<𝑖≤𝑡

𝑊 𝑇 · 𝑑𝑖𝑎𝑔(𝑓 ′(ℎ𝑖−1)) (1)

В оригинальных работах по языковому моделированию при помощи рекуррентных ней-
ронных сетей не предпринималось попыток каким-либо образом уменьшить эффект зату-
хания градиента. Предполагалось, что в алгоритме распространения ошибки обратно по
времени оптимальной глубиной развертки является 6 шагов, после чего прирост качества
не наблюдался. Однако достаточно легко найти пример фразы, успешное предсказание слов
которой может быть осуществлено лишь с учетом более длинных зависимостей:
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Рисунок 3: Рекуррентная нейронная сеть с внешним классификатором. 𝑚𝑡 — конкатенация
бинарных векторов с ненулевой координатой, соответствующей номеру вхождения

грамматической пометки в списке допустимых пометок (словаре) 𝐺𝐿; 𝑧𝑡 — вектор длины
|𝐺𝐿| — оценка распределения грамматических форм для слова 𝑤𝑡

Студент московского ордена Ленина, ордена Октябрьской революции и ордена Трудового
Красного знамени государственного университета им. М. В. Ломоносова получил красный
диплом.

Данная проблема особенно актуальна для русского языка ввиду необходимости учиты-
вать согласование слов в предложении.

При наличии словаря существенного объема статистическое моделирование флективных
языков составляет дополнительную техническую проблему для нейросетевого подхода. Боль-
шое количество различных словоформ приводит к пропорционально большему размеру вы-
ходного слоя, причем сложность алгоритма обучения линейна по объему выходного слоя.

Чтобы обойти эту проблему, можно было бы использовать схему на рис.3. Каждое вход-
ное слово предварительно лемматизуется внешним морфологическим анализатором. Леммы
используются для предсказания последующих лемм. Далее для предсказанной леммы запус-
кается линейный классификатор (например, логистическая регрессия), предсказывающий
словоформу по лемме и морфологическим признакам контекста. Данный подход позволяет
миновать проблему разрастания словаря. Другой состоит в том, чтобы разделить выходной
слой на два вектора — словарный (леммы) и морфологический (морфологические признаки).
Ошибка предсказания в данном случае получается суммированием ошибок на двух векторах.

Основным результатом второй главы является экспериментальное подтверждение гипоте-
зы о том, что языковая модель на рекуррентной нейронной сети для моделирования русско-
го языка без учета морфологии оказывается более эффективной в смысле перплексии, чем
5-граммная модель со сглаживанием Кнесера-Нея на аналогичном лемматизованном корпу-
се. Эксперименты по перплексии были поставлены на лемматизованном корпусе новостных
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заметок Lenta.ru объемом около 2 млн. словоупотреблений. Гипотезы распознавания в экспе-
рименте по ранжированию были сгенерированы закрытой коммерческой системой распозна-
вания речи на русском языке. Эксперимент демонстрирует, что проблема свободного порядка
слов не является существенной для данной модели. Рекуррентная модель оказывается более
эффективной, чем 5-граммная модель со сглаживанием Кнесера-Нея. Преимущество наблю-
дается как в эксперименте по измерению перплексии, так и в эксперименте по ранжированию
гипотез распознавания.

Таким образом, рекуррентные нейронные сети являются перспективным инструментом
для моделирования флективных языков. Тем не менее, исходная архитектура должна быть
модифицирована для обеспечения поддержки большого словаря и учета длинного контекста.

В третьей главе предлагается оригинальная языковая модель, основанная на признаках,
полученных из рекуррентной нейронной сети и тематического разложения левого контекста
текущего слова.

Различные подходы к векторному представлению слов и контекстов приобрели популяр-
ность среди исследователей в связи с появлением модели word2vec и ее программной реали-
зацией, выпущенной компанией Google.

Другим способом получения векторного представления контекста является вероятност-
ное тематическое моделирование (PLSA). Данный подход основан на разложении матрицы
частот слов в документах (матрица «термин-документ») 𝑊 = ΦΘ с дополнительным ограни-
чением: матрицы Φ и Θ должны быть стохастическими, а их столбцы должны представлять
дискретные вероятностные распределения 𝜃𝑡,𝑑 = 𝑝(𝑡|𝑑), 𝜑𝑤,𝑡 = 𝑝(𝑤|𝑡). Преимуществом веро-
ятностного тематического моделирования является возможность учета различных факторов
и наложения на модель специфических ограничений в зависимости от решаемой задачи.

Поиск матриц Φ и Θ сводится к минимизации расстояния Кульбака-Лейблера между
эмпирическими оценками вероятностей 𝑝(𝑤|𝑑) = 𝐶(𝑤,𝑑)∑︀

𝑤 𝐶(𝑤,𝑑)
и вероятностью в текущей тема-

тической модели 𝑝(𝑤,𝑑) =
∑︀

𝑡∈𝑇 𝑝(𝑤|𝑡)𝑝(𝑡|𝑑):

∑︁
𝑑∈𝐷

𝐶(𝑑)𝐾𝐿(
𝐶(𝑤,𝑑)

𝐶(𝑑)
||𝜑𝑤,𝑡𝜃𝑡,𝑑) → 𝑚𝑖𝑛,

где 𝐶(𝑤,𝑑) — количество вхождений слова 𝑤 в документ 𝑑, 𝐶(𝑑) =
∑︀

𝑤 𝐶(𝑤,𝑑).
Обучение модели производится с помощью EM-алгоритма. EM-алгоритм также исполь-

зуется при разложении нового документа с помощью существующей модели. Осуществлять
разложение нового документа необходимо, поскольку по мере обработки входного текста
статистическая языковая модель должна вычислять новые вложения левого контекста в
пространство тем, т.е. осуществлять тематическое разложение левого контекста.

Неотрицательное (стохастическое) матричное разложение ΦΘ не является единственным
и определено с точностью до невырожденного преобразования:

ΦΘ = (Φ𝑆)(𝑆−1Θ)
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при условии, что матрицы Φ′ = Φ𝑆 и Θ′ = 𝑆−1Θ также стохастические.
Таким образом, задача является некорректно поставленной. Общий подход к решению

некорректно поставленных задач заключается во введении некоторых дополнительных огра-
ничений —регуляризаторов — на параметры Φ, Θ, сужая тем самым множество решений.
Использование аддитивной регуляризации позволяет перейти к задаче многокритериальной
оптимизации и таким образом получить модель, обладающую дополнительными свойства-
ми — разреженностью распределений 𝜑𝑖 и 𝜃𝑗, контрастностью тем, а также устойчивостью
модели к выбросам.

Основными регуляризаторами, используемыми для разработки предлагаемой языковой
модели, являются сглаживающий, разреживающий и декоррелирующий регуляризаторы.

Сглаживающий регуляризатор минимизирует дивергенцию Кульбака-Лейблера между
неизвестным распределением 𝜑𝑤𝑡 или 𝜃𝑡𝑑 и некоторым априорным распределением 𝛽𝑤 или
𝛼𝑡.

Cогласно гипотезе разреженности, каждый документ и каждый термин принадлежат
небольшому числу тем. С практической точки зрения также предпочтительными являют-
ся модели с сильно разреженными матрицами Φ и Θ, в которых доля нулевых значений
превышает 90%. Разреживания можно добиться использованием энтропийного регуляриза-
тора, максимизирующего KL-дивергенцию между равномерными распределениями 𝛽𝑤 и 𝛼𝑡

и распределениями 𝜑𝑡 и 𝜃𝑑.
Повышение смыслового различия тем обеспечивается использованием декоррелирующего

регуляризатора, минимизирующего ковариацию распределений 𝜑.
Для повышения устойчивости тематической модели некоторые из тестируемых модифи-

каций были расширены за счет шумовой и фоновой тем, определяемых соответственно как
тема, содержащая слова общей лексики, и тема, содержащая редко встречающиеся слова.
Выделение этих тем производилось автоматически с помощью аддитивной регуляризации.

Для выделения фоновой темы использовались: 1) сглаживающий регуляризатор, при-
ближающий распределение слов в фоновой теме к распределению слов в коллекции 𝛽𝑤; 2)
сглаживающий регуляризатор, приближающий распределение фоновой темы по документам
к равномерому; 3) декоррелирующий регуляризатор, понижающий вероятности предметных
тематических слов в фоновой теме.

Для получения шумовой темы использовались: 1) сглаживающий регуляризатор, при-
ближающий распределение слов в фоновой теме к некоторому распределению 𝛽′

𝑤, в котором
вероятность слова 𝑤 обратно пропорциональна частоте по коллекции; 2)сглаживающий ре-
гуляризатор, приближающий распределение шумовой темы по документам к равномерому.

Предлагаемая статистическая языковая модель (рис.4) предполагает отдельное обучение
рекуррентной модели с последующим объединением признаков, полученных из скрытого
слоя сети на шаге 𝑡 с тематическим профилем контекста на шаге 𝑡 в рамках модели макси-
мальной энтропии.
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Рисунок 4: Схема работы предлагаемой модели. Рекуррентная нейронная сеть генерирует
последовательность векторов скрытых состояний ℎ𝑡, тематическая модель генерирует

последовательность тематических разложений левого контекста 𝑡3

𝑝(𝑤𝑡+1|ℎ𝑡, 𝑑𝑡) =
𝑒−𝑣𝑤·ℎ𝑡−𝑓𝑤·𝑑𝑡∑︀
𝑤′ 𝑒−𝑣𝑤′ ·ℎ𝑡+𝑓𝑤′ ·𝑑𝑡

,

где 𝑣𝑤 — вектор весов слова 𝑤 для элементов вектора скрытого состояния ℎ𝑡, 𝑓𝑤 — вектора
весов слова 𝑤 для вектора тематического разложения левого контекста 𝑑𝑡.

Как и в случае с нейронной сетью, процедура обучения модели максимальной энтро-
пии может быть весьма длительной, поскольку задействует большое количество матричных
операций. По этой причине как рекуррентная нейронная сеть, так и модель максимальной
энтропии были реализованы на GPU.

Тематическая модель была обучена на новостном корпусе Lenta.ru (апрель 2014 — март
2015).

Для экспериментов было обучено три тематических модели:

1. Модель с комбинацией сглаживающих, разреживающих и декоррелирующего регуляри-
заторов и дополнительными предположениями о шумовой и фоновой темах (srPLSA);

2. Модель из предыдущего пункта, но без шумовой и фоновой тем (sPLSA);

3. Модель только со сглаживающим регуляризатором (аналог LDA).

Модель на рекуррентной нейронной сети и модель максимальной энтропии были натрени-
рованы на подкорпусе корпуса Lenta.ru объемом приблизительно в 2 · 106 токенов. Примерно
10% данных было выделено для валидации. Каждый текст был обработан морфологическим
анализатором/лемматизатором для русского языка со встроенным словарем примерно в 2·106

словоформ. Выходом анализатора являлся текст, в котором все известные словоформы были
заменены соответствующими леммами, а неизвестные — специальным токеном "UNK". Для
получения разложения левого контекста использовалось скользящее контекстное окно. Те-
стировались различные варианты шага вычисления разложения и длины контекстного окна.
Размер скрытого слоя был установлен равным 500.
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Для каждой из моделей измерялась перплексия на тестовой выборке. Результаты в виде
зависимости перплексии данных от длины окна конеткста показаны на рис.5.

Рисунок 5: Зависимость качества языковой модели на основе тематического разложения от
длины контекстного окна. Во всех случаях вложения вычислены с шагом 𝐹𝑒 = 25.

После уменьшения шага вложения с 25 до 5 наилучший результат, достигнутый в экспе-
риментах с длиной окна 𝐿 = 25, был улучшен на 4.2%. Таким образом, перплексия достигла
отметки 254.23 . Улучшение относительно исходной модели составило 10.56%, относительно
дообученной модели — соответственно 7.04%. Можно предложить как минимум две причины
улучшения качества относительно модели с большим шагом вложения. Первая из них состо-
ит в том, что тема, действительно, меняется достаточно быстро и вычисление необходимо
производить чаще. Вторая причина может состоять в том, что с уменьшением шага вложе-
ния увеличивается количество различных тематических векторов в обучающей выборке, что
приводит к лучшей обобщающей способности модели.

Наиболее эффективными для языкового моделирования являются признаки, полученные
на основе модели LDA. Тем не менее, вероятностная тематическая модель с разреживани-
ем позволяет добиться почти такого же уровня перплексии. Использование резреженности
может быть важным фактором для хранения моделей большого размера.

Четвертая глава посвящена предсказанию морфологических характеристик леммы. По-
скольку предсказание морфологических характеристик является более простой задачей в
смысле перплексии, а зависимости между элементами цепочки более короткими, использо-
вание рекуррентной архитектуры на данном этапе не является необходимым. В то же время
более сильная зависимость между соседними элементами в последовательности морфологи-
ческих пометок указывает на целесообразность использования сверточных слоев.

В главе приводятся данные эксперимента с рекуррентной сетью, осуществляющей одно-
временное предсказание лемм и морфологических характеристик. Эксперимент показал, что
обучение данной архитектуры затруднено, и результатов, сопоставимых с показателями пер-
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Рисунок 6: Зависимость перплексии по леммам от размера скрытого слоя для различных
архитектур. Одно деление на оси абсцисс соответствует 100 элементам на скрытом слое

плексии для сглаженных n-граммных моделей, достичь не удалось. Более простая модель с
входным слоем, содержащим морфологические характеристики, но осуществляющая пред-
сказание только лемм, также дала худший результат в сравнении с моделью без морфологии.
Как и в предыдущих главах, для эксперимента использовался корпус новостей Lenta.ru.

Принимая во внимание этот результат, можно сформулировать дальнейшую задачу
как предсказание морфологических признаков леммы по известному левому контексту:
P(𝑚𝑡|𝑙1 . . . 𝑙𝑡,𝑚1 . . .𝑚𝑡−1), где лемма 𝑙𝑡 предсказывается рекуррентной нейронной сетью, опи-
санной в главе 2.

Важным отличием задачи определения морфологических признаков от предсказания лем-
мы является большое различие в количестве классов ( 15000 для лемм и не более 200 для
морфологических признаков) и характер зависимостей в последовательности: зависимость
между морфологическими признаками слов в предложении действует на более коротких
расстояниях. Это позволяет отказаться от использования рекуррентной архитектуры, однако
приводит к необходимости отбора и конструирования сложных признаков. Дизайн признаков
в свою очередь является достаточно трудоемкой задачей, требующей принятия априорных
предположений о том, какие из морфологических характеристик могут влиять друг на друга.

Использование глубоких нейронных сетей позволяет избежать ручного дизайна призна-
ков. Это оправдывает использование глубокого обучения для задачи предсказания морфо-
логических характеристик.

Подход к решению задачи предсказания морфологических характеристик на основе свер-
точных нейронных сетей описан ниже.

Рассмотрим цепочку слов 𝑤1 . . . 𝑤𝑁 . Обозначим за 𝑣(𝑤𝑖) 𝑑-мерный вектор, однозначно
соответствующий данному слову. Метод отображения V → R𝑑 вообще говоря не важен. N-
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грамме 𝑤1 . . . 𝑤𝑁 можно поставить в соответствие матрицу размера 𝑁 × 𝑑:

𝑆 =

⎡⎢⎢⎢⎢⎢⎣
𝑣(𝑤1)

𝑇

𝑣(𝑤2)
𝑇

...
𝑣(𝑤𝑁)𝑇

⎤⎥⎥⎥⎥⎥⎦
Тогда двумерная свертка с коэффициентами фильтра размера 𝑟× 𝑑 и последующим при-

менением нелинейной функции активации 𝑓 задает для каждой r-граммы последовательно-
сти 𝑤1 . . . 𝑤𝑁 отклик на эту r-грамму. Задав 𝐾 фильтров, получим отображение всей после-
довательности в новое признаковое пространство согласно формуле:

𝑐𝑘,𝑖 = 𝑓(
𝑟∑︁

𝑟′=1

𝑑∑︁
𝑗=1

𝑎𝑟𝑗𝑘𝑣(𝑤𝑖+𝑟′−1)𝑗),

где 𝑎𝑟𝑗𝑘 — параметры модели, 𝑓 — нелинейная функция.
Данный подход является стандартным при обработке изображений в сверточных нейрон-

ных сетях.
Модель предсказания морфологии с помощью сверточной нейронной сети опирается на

архитектуру нейронной сети с одним сверточным и несколькими полносвязными слоями.
Последний слой осуществляет классификацию на 𝑁 классов, где 𝑁 — количество возможных
морфологических тегов для данной части речи.

Каждый элемент n-граммы на шаге 𝑡 можно представить в виде вектора 𝑚(𝑘) ∈ {0,1}|𝐺|,
𝑡− 𝑛 + 2 < 𝑘 < 𝑡 + 1, где G — множество грамматических помет. Элемент 𝑚𝑖(𝑘) = 1 тогда и
только тогда, когда тег на шаге 𝑡 содержит 𝑖-ю морфологическую метку.

Добавление семантических признаков обеспечивается за счет расширения вектора 𝑚(𝑘)

двумя векторами 𝑣(𝑘) и 𝑣(𝑡+1), полученными в отдельно обученной word2vec-модели для рус-
ских словоформ (корпус LibRuSec). 𝑣(𝑘) представляет собой векторное представление леммы
на шаге 𝑘, вектор 𝑣(𝑡 + 1) — соответственно, векторное представление известной леммы на
шаге 𝑡 + 1, морфологический тег которой необходимо предсказать. Таким образом, размер-
ность представления каждого элемента в n-грамме составляет 2𝑑+ |𝐺|, где 𝑑 — размерность
векторного представления лемм.

Входом классификатора является матрица 𝑆𝑛×(2𝑑+|𝐺|), причем ∀𝑖𝑆𝑖,1:𝑑 = 𝑣(𝑡 + 1). Данное
решение позволяет отразить в сверточной архитектуре факт взаимосвязи каждого элемента
n-граммы с целевым словом.

Поскольку лемма и часть речи предполагаются известными, можно обучить отдельный
классификатор для каждой части речи, что позволит полностью исключить возможность
предсказания невозможных тегов для входной части речи. Очевидно, что в этой ситуации
размер выходного слоя и количество классов различны, что сказывается на значении кросс-
энтропии.
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Рисунок 7: Схема сверточной нейронной сети для предскзания морфологии в библиотеке
Caffe

Таблица 1: Кросс-энтропия на тестовой выборке при предсказании точных форм для
изменяемых частей речи

Часть речи (пометка) Количество классов Кросс-энтропия
Существительное (S) 113 0.718
Глагол (V) 118 0.938
Наречие (ADV) 3 0.037
Прилагательное (A) 32 1.067
Числительное (NUM) 48 1.025

Эксперименты со сверточными сетями проводились при помощи пакета Caffe. Схема слоев
сети в программе Caffe приведена на рис.7.

Как и в предыдущих экспериментах, для обучения и тестирования использовался но-
востной корпус сайта Lenta.ru за 2014 год. Объем корпуса составил 3211256 токенов. Корпус
был обработан морфологическим анализатором и состоял из последовательностей пар вида
«лемма:тег».

Результаты тренировки морфологических классификаторов для изменяемых частей ре-
чи приведены в таблице 1. Стоит отметить, что на момент остановки процедуры обучения
снижение перплексии на валидационной выборке все еще продолжалось, и в дальнейших
экспериментах результат может быть улучшен.

Для проверки результатов модели в эксперименте по распознаванию речи использовалась
свободная библиотека Kaldi. Kaldi допускает использование переранжирования гипотез, по-
лученных с помощью первичной n-граммной модели.
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Рисунок 8: Схема процесса подготовки данных

Для экспериментов по распознаванию речи использовался речевой корпус на русском
языке со следующим составом дикторов: в том числе 127 мужчин и 110 женщин в возрасте
от 18 до 65 лет. Каждый диктор произносил по 70 предложений.

В качестве n-грамной модели для Kaldi была выбрана 3-граммная модель со сглаживани-
ем Кнесера-Нея, обученная на подмножестве статей архива русского раздела сайта «Вики-
педия». Объем обучающего корпуса составил около 20 млн. словоформ. Тренировка модели
осуществлялась с помощью пакета SRILM. Объем словника составил порядка 100 тыс. сло-
воформ.

Для получения транскрибированного словаря из словника была использована специально
написанная утилита для расстановки ударений и автоматический транскриптор, основанный
на скрытых марковских моделях.

Общая схема подготовки данных приведена на рис. 8.
Наилучшая базовая модель с трифонами, обученная с помощью Kaldi, показала WER

17.8%.
Результаты эксперимента по переранжрованию приведены в таблице 2.
В поставленном эксперименте рекуррентная модель на леммах не дала практически ни-

какого улучшения. Данный факт можно объяснить значительным различием размеров обу-
чающих выборок в случае 3-граммной и рекуррентной моделей: размер обучающего корпуса
отличался в 10 раз. Несмотря на то, что для тренировки модели использовалась реализация
на GPU, для обучения модели на корпусе сопоставимого размера по-прежнему требуется
время на порядок превосходящее время тренировки сглаженной n-граммной модели. Необ-
ходимо отметить, что в эксперименте не были задействованы более поздние модификации
модели, направленные на ускорение обучения, так как такие модификации приводят к сни-
жению качества по сравнению с канонической моделью.

Использование сверточной модели для предсказания морфологии приводит к улучшению
качества распознавания, при этом есть основания считать что с дообучением модели резуль-
тат может быть улучшен. Тем не менее, окончательный результат может быть получен только
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Таблица 2: Результаты эксперимента по переранжированию гипотез. CNN — сверточная
нейронная сеть для предсказания морфологии. 𝜆 — коэффициент при рекуррентной и

сверточной моделях в интерполяции, приводящий к наибольшему падению WER

Модель 𝜆 WER,%
3-gram 0 17.80
3-gram + CNN 0.2 17.2

при наличии рекуррентной модели для предсказания лексики с размером словаря и объе-
мом обучающей выборки, соответствующим размеру словаря и тематическому разнообразию
речевого корпуса. Данный эксперимент будет поставлен в будущем. В случае получения по-
ложительного результата в эксперименте с использованием рекуррентной модели на леммах,
станет возможным постановка эксперимента с моделью, использующей тематическое моде-
лирование.

Заключение

В работе было выполнено исследование возможностей построения вычислительно-
эффективной статистической модели русского языка с высокой точностью предсказаний
с целью использования в системах распознавания речи и текстового ввода на мобильном
устройстве. В соответствии с поставленной задачей в диссертационной работе получены сле-
дующие результаты:

1. Предложена языковая модель, предполагающая раздельное предсказание лемм и мор-
фологии на основе нейронных сетей с целью уменьшения количества классов, соответ-
ствующих словоформам.

2. Предложена и протестирована модель предсказания лемм на основе рекуррентной ней-
ронной сети для русского языка.

3. Впервые предложена и проанализирована гибридная языковая модель максимальной
энтропии, основанная на рекуррентной нейронной сети и вероятностном тематическом
моделировании.

4. Впервые предложена и проанализирована модель классификатора для предсказания
морфологии с помощью сверточной нейронной сети.

Результаты указывают на перспективность дальнейших исследований в данной области,
включая эксперименты с другими рекуррентными моделями и модификациями исходной
модели, направленными на улучшение быстродействия.

Результаты работы могут быть использованы в программных продуктах, задействующих
языковые модели, таких как распознавание речи, распознавание текста, проверка орфогра-
фии и предиктивный ввод.
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