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Актуальность темы исследования. Способы проверки подлинности

разного рода информации в обществе прошли долгий путь эволюционного раз­

вития от механических замков, ключей, систем печатей и кодовых фраз до

подходов автоматизированной и автоматической аутентификации. Жизнь со­

временного человека на регулярной основе включает разного рода верификации

тех или иных персональных данных: осуществление финансовых транзакций,

приобретение товаров и услуг, доступ к устройствам и сервисам, процедуры

идентификации личности при пересечении границ и др.

Наблюдающийся в последнее десятилетие прирост мощности вычислитель­

ных устройств, совершенствование систем регистрации и обработки цифровых

изображений, параллельное накопление значительных объёмов данных и раз­

витие систем компьютерного зрения, машинного и, в особенности, глубокого

обучения позволили совершить значительный рывок технологий биометриче­

ской идентификации. Ключом доступа в данном случае выступает уникаль­

ная биометрическая характеристика человека (БХЧ) или биометрическая мо­

дальность. К популярным модальностям часто относят: папиллярный рисунок

пальцев и ладони, изображение венозного русла кисти и ладони, особенности

голоса, почерка, походки, изображения радужной оболочки и сетчатки глаза,

изображения и форму лица.

Каждую из упомянутых БХЧ можно искусственно воспроизвести и предъ­

явить биометрической системе с целью получения доступа к личной информа­

ции путем обмана. Различные модальности обладают различной сложностью

подделывания, зависящей как от возможностей получения копии БХЧ, так и

от сложности её воссоздания в условии ограниченных ресурсов. Процедура под­

делывания биометрических систем называется спуфингом (spoofing), а задача

детектирования подлога — задачей определения живости или анти-спуфин­

гом.

Рост точности и производительности биометрических систем приводит к

расширению области применения технологий автоматического распознавания
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человека. Современные мобильные устройства предоставляют пользователю ши­

рокий спектр возможностей по хранению значительных массивов данных, веде­

нию личной и деловой переписки, осуществлению финансовых операций, досту­

пу к защищённым цифровым ресурсам и др. В последнее десятилетие произво­

дители начали внедрять в смартфоны методы биометрической аутентификации

как альтернативу паролям или цифровым кодам для ограничения доступа к

персональной информации и повышения удобства использования.

Помимо рынка мобильных устройств отмечается рост спроса к цифрови­

зации и персонификации бытовых услуг и сервисов, таких как «умные дома»

(Smart Home), виртуальные помощники (Smart Assistant и др.), модель «интер­

нета вещей» (Internet of Things). Подавляющее большинство этих приложений

требуют присутствия системы автоматической идентификации/аутентификации

личности.

Как следствие, расширение области применения технологий биометриче­

ской идентификации и аутентификации порождает множество актуальных за­

дач, среди которых можно выделить проблему определения живости участника

процедуры распознавания и обнаружения попыток взлома системы при помо­

щи искусственно созданных БХЧ (т.н. подделок), поскольку именно этот компо­

нент системы в первую очередь определяет уровень защиты, достигаемый при

её использовании.

Особенно актуальной эта задача является мобильных биометрических при­

ложений по ряду причин. Системы распознавания в мобильных устройствах и

приложениях требуют удобства и быстродействия для пользователя, а также

устойчивости к изменчивости окружения и самой БХЧ. В результате проис­

ходит ужесточение ограничений на средства регистрации изображений, при­

меняемые алгоритмы распознавания и противодействия подложным попыткам

входа. От мобильной биометрической системы требуется возможность работы

в режиме реального времени при низком количества ошибок ложного недопус­

ка (False Rejection Rate — FRR), даже для входных данных низкого качества.
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При этом сохраняется потребность в высоком уровне предоставляемой защи­

ты, в том числе и от взлома при помощи поддельных БХЧ, что соответствует

низкому количеству ошибок ложного допуска (False Accept Rate — FAR). Нако­

нец, реализация системы распознавания зачастую происходит на устройствах с

сильно ограниченными вычислительными ресурсами.

Наиболее уязвимыми с точки зрения возможности спуфинга модальностя­

ми для мобильных систем являются изображения радужной оболочки глаза и

видеообраза лица ввиду сравнительно небольшой сложности процедуры подде­

лывания. Поэтому актуальными направлениями развития области определения

живости в настоящее время являются: разработка высокопроизводительных ме­

тодов анти-спуфинга для видеообраза лица в условиях некооперативного рас­

познавания при помощи смартфона; разработка высокопроизводительных мето­

дов обнаружения подделок при помощи вспомогательных сенсоров, таких как

мобильная стереокамера; разработка новых методов противодействия новым

способам взлома мобильных систем распознавания по РОГ; разработка мето­

дов выделения границ радужки на изображениях как высокого, так и низкого

качества.

Цели и задачи диссертационной работы:

В работе были поставлены следующие цели:

∙ Создать методы и алгоритмы для автоматического определения живости

пользователя и обнаружения попыток взлома при помощи подделок в си­

стемах распознавания по видеообразу лица, оборудованных единственной

камерой для съёмки в видимом спектре излучения, способные обрабаты­

вать каждое изображение с частотой поступления кадров на мобильном

устройстве, удовлетворяющие критериям ошибок: уровень ложных недо­

пусков не более 3% при уровне ложного допуска не более 1%;

∙ Создать методы и алгоритмы выявления подделок лица при использова­

нии пары камер с малым стереобазисом, способные обеспечивать защиту
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от распространённых видов атак и имеющие достаточное для мобильных

приложений быстродействие;

∙ Разработать методы и алгоритмы поиска границ радужной оболочки гла­

за для входных данных как высокого, так и низкого качества, характер­

ного для мобильных биометрических систем;

∙ Создать методы и алгоритмы определения живости для мобильной си­

стемы распознавания по радужке, способные обеспечивать защиту, в том

числе, от ранее не исследованных видов взлома при помощи подделок.

Для достижения поставленных целей были решены следующие задачи:

∙ Исследование и разработка методов определения живости человека по ви­

деообразу лица, применимые в мобильном устройстве;

∙ Исследование и разработка методов обнаружения подделок лица челове­

ка с применением стереоинформации, извлекаемой при помощи камеры

мобильного устройства с малым стереобазисом;

∙ Исследование и разработка методов поиска области радужки на изобра­

жении низкого качества с возможностью применения для мобильной био­

метрической системы;

∙ Исследование и разработка методов противодействия подделкам изобра­

жений радужки для мобильных систем распознавания;

∙ Сбор и разметка баз данных, в которых представлены изображения и по­

следовательности изображений, реализующие приведенных выше задачи;

∙ Создание среды, программных средств и проведение вычислительных экс­

периментов по определению работоспособности перечисленных методов с

опорой на собранные базы данных;
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∙ Создание программных средств (библиотеки и тестовых приложений) для

апробации реализованных методов на мобильном устройстве.

Научная новизна.

∙ Предложен новый метод защиты от подделывания в системах распозна­

вания по видеообразу лица, имеющий многостадийную структуру и спо­

собный работать на мобильном устройстве с ограниченными вычислитель­

ными возможностями в режиме реального времени в сценариях изменяю­

щихся условий окружения;

∙ Предложен новый метод защиты от подделывания изображения лица для

мобильных систем, оборудованных стереокамерой с малым стереобазисом,

обеспечивающий противодействие распространённым видам атак;

∙ Предложен новый высокопроизводительный метод аппроксимации границ

радужки с применением методологии глубокого обучения, допускающий

применение для изображений как высокого, так и низкого качества;

∙ Разработан новый метод определения живости радужки на изображении

глаза, способный обнаруживать новые ранее не использовавшиеся виды

взлома системы распознавания при помощи подделокю

Методология и методы исследования. В работе использованы методы циф­

ровой обработки изображений, анализа данных и машинного обучения. Для

предобработки и подготовки данных использовались модели детектирования

лица и его ключевых точек и извлечения оптического потока. Для сбора дан­

ных и демонстрации результатов применялись методы разработки мобильных

приложений для операционной системы Android.

Теоретическая и практическая значимость. Результаты, изложен­

ные в диссертации, используются в мобильных устройствах, выпускаемых ком­

панией Samsung Electronics Co. Ltd. Среди устройств — флагманские моде­

ли, выпускаемые компанией в период с 2018 по 2021 гг.: смартфоны Samsung
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Galaxy S9/S9+, смартфон Samsung Galaxy Note9, планшет Samsung Galaxy Tab

S4, смартфоны Samsung Galaxy S10e/S10/S10+, смартфоны Samsung Galaxy

Note10/Note10 Ultra, смартфоны Samsung Galaxy S20/S20+/S20 Ultra, смарт­

фоны Samsung Galaxy Note20/Note20 Ultra, смартфоны Samsung Galaxy Fold/Z

Fold2/Z Fold3, смартфоны Samsung Galaxy S21/S21+/S21 Ultra.

Положения, выносимые на защиту:

∙ Выделены специфические качества методов определения живости видео­

образов лица и радужки в системах биометрического распознавания, ис­

пользуемых в мобильных устройствах, описаны основные ограничения и

требования, предъявляемые к алгоритмам определения живости и защи­

ты от подделок;

∙ Разработан и внедрён многостадийный метод определения живости по

видеообразу лица для пользователей смартфонов, оборудованных един­

ственной фронтальной камерой; предложена методология сбора репрезен­

тативной базы данных и с её помощью получена база изображений лиц в

условиях, имитирующих применение системы распознавания человеком в

повседневной жизни, осуществлена программная реализация метода;

∙ Описаны и исследованы виды подделок лица, которые могут быть обнару­

жены при использовании мобильных стереокамер с малым базисом, пред­

ложена методология сбора и с её помощью получена собрана база сте­

реоизображений подлинных лиц и подделок, предложен метод защиты от

взлома с высокой обобщающей способностью, произведено тестирование

на открытой базе стереоизображений лиц;

∙ Выделена группа методов поиска границ радужки на изображении для

мобильных биометрических приложений, разработан и программно реа­

лизован нейросетевой метод решения задачи, произведена его оценка и

сравнение с описанными в литературе решениями;
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∙ Описаны и исследованы новые способы изготовления подделок радужки,

собрана база данных изображений подлинных и искусственных образцов,

разработан метод распознавания живости глаза, устойчивый к новым ви­

дам подделок глаз, произведено его сравнение с аналогами из литературы

по качеству решения задачи и производительности.

Степень достоверности и апробация результатов. Достоверность ре­

зультатов обеспечивается обширным анализом работ в области исследования,

описанием проведённых экспериментов, их воспроизводимостью, апробацией

результатов на практике. Основные результаты диссертации докладывались

на следующих конференциях: 64-я Всероссийская научная конференция МФ­

ТИ, Москва, 2021; 20-я Всероссийская конференция с международным участи­

ем «Математические методы распознавания образов» (ММРО-2021), Москва,

2021; International Conference on Pattern Recognition and Artificial Intelligence,

Montreal, Canada, 2018; 19-я Всероссийская конференция с международным уча­

стием «Математические методы распознавания образов» (ММРО-2019), Москва,

2019; Intelligent Data Processing Conference, Gaeta, Italy 2018; Intelligent Data

Processing Conference, Barcelona, Spain, 2016; XXI Международная научно-тех­

ническая конференция студентов, аспирантов и молодых учёных «Научная сес­

сия ТУСУР», Томск, 2016.

Публикации. Материалы диссертации опубликованы в 17 печатных ра­

ботах, из них 6 в журналах из списка ВАК и индексируемых в WoS, Scopus.

Личный вклад автора. Содержание диссертации и основные положе­

ния, выносимые на защиту, отражают персональный вклад автора в опубли­

кованные работы. Подготовка к публикации полученных результатов проводи­

лась совместно с соавторами, причём вклад диссертанта был определяющим.

Все представленные в диссертации результаты получены лично автором.

Структура и объём диссертации. Диссертация состоит из введения,

5 глав, заключения и библиографии. Общий объём диссертации 136 страниц,
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из них 115 страниц текста, включая 27 рисунков. Библиография включает 156

наименований на 18 страницах.

Содержание работы

Во введении дан обзор литературы, обоснована актуальность диссерта­

ционной работы, сформулирована цели и методы исследований, поставлены ос­

новные задачи, обоснована их научная новизна, показана теоретическая и прак­

тическая значимость полученных результатов.

В первой главе приводится обзор подходов биометрической идентифи­

кации, даётся определение биометрической характеристики человека (БХЧ),

приводится классификация БХЧ, описаны основные области применения и на­

правления развития биометрических методов. Рассматриваются базовые опера­

ции, осуществляемые биометрической системой, в том числе проверка подлин­

ности или живости для используемых данных БХЧ. Описаны группы подходов

к построению подсистем детектирования подделок. Рассмотрены характерные

особенности биометрического распознавания человека с мобильного устройства

и специфика решения задачи определения живости для БХЧ, наиболее часто

используемых в системах такого типа. Выделены основные требования, предъ­

являемые к методам обнаружения подделок в мобильных биометрических при­

ложениях:

• некооперативность применяемых решений;

• переиспользование доступных аппаратных средств без внедрения допол­

нительных сенсоров;

• устойчивость к высокоизменчивым входным данным;

• низкая вычислительная сложность используемых алгоритмов.
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Рис. 1. Блок-схема алгоритма определения живости БХЧ.

Во второй главе предлагается метод определения подлинности лиц для

мобильных биометрических систем, оборудованных фронтальной камерой. Опи­

саны особенности и ограничения таких систем идентификации, а также воз­

можность построения устойчивого алгоритма противодействия попыткам взло­

ма. Произведена классификация способов подделывания по типам физических

артефактов, уровню квалификации взломщика и доступности биометрической

информации для создания искусственного шаблона. Дан обзор общих подходов

к защите от подделывания для биометрических модальностей, использующих

изображение или видеообраз лица. Вводятся основные показатели, применяе­

мые для оценки производительности систем определения живости БХЧ.

Предложена многостадийная структура алгоритма для некооперативного

детектирования попыток взлома, построенная с использованием промежуточ­

ных блоков оценки характеристик входного растра для раннего отказа от рас­
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Меры качества,% Основной алгоритм + Поиск границ + Лицевые атрибуты + Оценка размытия
К

ад
ры FAR 1.54 1.03 0.98 0.51

FRR 4.33 4.91 5.10 5.32

В
ид

ео FAR, 1.42 0.89 0.83 0.92

FRR 2.04 2.55 2.64 2.84

Таблица 1. Производительность многостадийного алгоритма детектирования подделок.

познавания. Составные компоненты метода (Рис. 1) можно отнести к одной из

двух групп. Операции первой из них составлены из вычислительно простых

проверок и оценок характеристик регионов входного растра и региона лица, ре­

ализованных в виде компактных нейросетей с низким уровнем ошибок ложного

недопуска в систему. На этом этапе также извлекается дополнительная инфор­

мация об окружении: оценка степени освещённости сцены с помощью встро­

енных датчиков освещения и информации о текущих параметрах экспозиции

сенсора камеры. Методы второй группы обладают большей вычислительной

сложностью и реализованы в виде свёрточных нейронных сетей для решения

бинарной классификации на два класса «живое лицо» и «подделка», предска­

зания которых затем комбинируются с учётом результатов оценки состояния

окружения и применения алгоритмов первой группы.

Описан сбор обучающей и тестовой выборок с учётом сценариев повседнев­

ного применения мобильного устройства. Приведены методы синтеза новых дан­

ных, эффективно увеличивающие размер и вариативность выборки для обуче­

ния, а также способы обучения нейросетевых моделей детектирования подделок

в режиме самоконтролируемого обучения (self-supervised learning), не требую­

щего затратной экспертной разметки данных.

Результаты представлены в Таб. 1 для двух режимов применения: покад­

рово и в виде видеопоследовательностей. Результаты по скорости обработки

данных показали возможность использования метода на мобильном устройстве.

Третья глава посвящена особенностям построения систем обнаружения

подделок для стереоизображения лица, получаемого при помощи мобильного
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а б

Рис. 2. Карты принадлежности пикселей переднему плану: (а) настоящего лица; (б) поддел­

ки.

устройства и встроенной камеры с малым стереобазисом, с учётом сценари­

ев применения биометрической системы пользователем, допускающих значи­

тельную изменчивость условий съёмки. Приведена классификация способов ре­

шения задачи определения живости лица, в том числе с использованием сте­

реоизображений, обзор существующих методов, рассмотрены их достоинства и

ограничения. Обоснована актуальность использования мобильных стереокамер

для повышения уровня безопасности встроенных систем распознавания по ли­

цу. С учётом допустимой изменчивости характеристик окружения при помощи

мобильного устройства собрана и обработана база данных изображений (более

90000).

Разработан и протестирован новый алгоритм детектирования подделок

для стереоизображений лиц, использующий методологию глубокого обучения.

Предложена новая функция потерь для обучения классификатора на основе

свёрточной нейронной сети, учитывающая информацию о глубине кадра при

помощи бинарной карты принадлежности пикселей к переднему плану, Рис. 2.

В процедуре обучения вводится дополнительное слагаемое помимо перекрест­

ной кросс-энтропии для бинарных меток «живой» и «подделка», призванное

обусловить внутренние представления нейронной сети на глубину сцены и тем

самым повысить обобщаемость и регуляризовать нейросетевой классификатор.

В архитектуру модели добавлен вспомогательная декодирующая подсеть, ис­
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Рис. 3. Архитектура нейросетевого решения

пользующая внутренние представления основной сети и позволяющая предска­

зывать бинарную маску переднего плана сцены, соразмерную входному стерео­

изображению. Добавленный компонент используется только в процедуре обуче­

ния при помощи описанной вспомогательной функции потерь и не применяется

на этапе валидации, что позволяет снизить общую вычислительную сложность

прямого прохода входных данных в модели, Рис. 3. При тестировании выход­

ными данными модели являются лишь вероятности принадлежности входной

пары растров к классам «настоящее лицо» или «подделка».

При построении нейросетевого решения рассмотрены модификации моде­

ли, такие как: применение единственного изображений из пары (base); исполь­

зование пары растров (stereo); использование вспомогательной подсети с пред­

сказанием карты признаков (aux); регуляризация путём случайного добавле­

ния пар совпадающих изображений с целевой меткой класса «подделка» (zero);

использование для предсказания метки класса только лицевой области путём

пулинга региона интереса промежуточных представлений нейронной сети (roi).
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Модель
Значения мер, %

APCER BPCER EER

base 0.12 41.31 12.54

base+roi 0.58 15.06 4.82

stereo 2.35 13.02 4.95

stereo+aux 0.89 2.9 1.89

stereo+aux+roi 0.57 3.01 1.45

stereo+aux+roi+zero 0.23 5.24 1.24

Таблица 2. Качество решения для модификаций модели на валидационной выборке.

Для оценки качества были выбраны следующие показатели:

• APCER (attack presentation classification error rate) — доля изображений

подделок, ошибочно классифицированных как подлинные примеры;

• BPCER (bona fide presentation classification error rate) — доля изображе­

ний настоящих образцов, ошибочно классифицированных как поддель­

ные;

• EER (equal error rate) — уровень равной ошибки.

В Таб. 2 приведено сравнение результатов тестирования модификаций пред­

ложенного метода, демонстрирующее необходимость применения их комбина­

ции для повышения производительности. Для оценки обобщающей способности

полученной наилучшей модели модификации stereo+aux+roi+zero была изме­

рена точность определения живости для отложенной тестовой выборки стерео­

изображений подлинных лиц из открытой базы Holopix50k. Результат измере­

ния составил 92.2%.

Пространственный размер входных стереоизображений был подобран с

учётом ограничений вычислительной сложности модели и необходимого для ре­

шения задачи разрешения карты глубины, теоретически извлекаемой в случае
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Слой Размер входного тензора

Свертка 3× 3 1× 80× 80

MCB(16, 2) 16× 78× 78

MCB(32, 1) 16× 38× 38

MCB(32, 2) 32× 36× 36

MCB(64, 1) 32× 18× 18

MCB(64, 2) 64× 16× 16

MCB(64, 1) 64× 7× 7

MCB(64, 1) 64× 5× 5

Global Average Pooling 64× 3× 3

Лин. классиф.для 𝑥/𝑦/𝑑 64

Softmax для 𝑥/𝑦/𝑑 80

Таблица 3. Строение нейронной сети для поиска границ радужки

малого стереобазиса и характеристик сенсоров используемой мобильной пары

камер. Для предложенного метода на мобильном устройстве произведено изме­

рение скорости обработки данных нейронной сетью. Полное медианное время

для стереоизображения на одном ядре мобильного процессора Snapdragon 888

составило 23 мс.

Результаты третьей главы опубликованы в работе [1].

В четвёртой главе рассмотрена специфика поиска границ радужной обо­

лочки глаза на изображениях при помощи нейронных сетей, с учётом примени­

мости в мобильной биометрической системе с высокой степенью изменчивости

условий окружения. Дан обзор и классификация известных алгоритмов выде­

ления искомой, отмечены их основные достоинства и недостатки.

Описаны новые методы, построенные с использованием подходов глубоко­

го обучения, обозначены их главные преимущества, учтены перспективы раз­

вития и практического применения [4]. Для решения задачи аппроксимации

границ радужки двумя окружностями предложена, протестирована и внедрена
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Слой Размер ядра Шаг

Depth-wise свертка 3× 3 s

Batch normalization - -

Активация ReLu - -

Свертка 1× 1 1

Batch normalization - -

Активация ReLu - -

Таблица 4. Строение блока 𝑀𝑜𝑏𝑖𝑙𝑒𝐶𝑜𝑛𝑣𝐵𝑙𝑜𝑐𝑘(𝑀, 𝑠)

архитектура, Таб. 3, свёрточной нейронной сети, основанная на применении ба­

зовых блоков семейства MobileNets, Таб. 4. Оценка параметров осуществляется

последовательно при помощи двух моделей IrisNet и PupilNet: в первую очередь

определяется внешняя граница радужки, затем внутренняя.

При обучении сетей предсказания параметров внешней и внутренней гра­

ниц радужки задача регрессии целевых переменных сводится к задаче клас­

сификации с количеством классов, соответствующим требуемой точности ре­

шения и ограничениям разрешения входного изображения. Метод позволяет

давать приблизительную оценку положений границ радужки и допускает после­

дующее уточнение с меньшими временными затратами за счёт предсказанного

первого приближения.

Результатом работы описанного метода являются параметры аппроксими­

рующих границы радужной оболочки окружностей:

• 𝑥𝑖, 𝑦𝑖, 𝑑𝑖 — внешняя граница, «радужка-склера»;

• 𝑥𝑝, 𝑦𝑝, 𝑑𝑝 — внутренняя граница, «радужка-зрачок».

Считается, что параметры окружностей были определены корректно, если

абсолютная ошибка детектирования не превышает 𝛼 = 5% истинного диаметра
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IrisNet+PupilNet Уточнение

База данных 𝑄𝑝 𝑄𝑖 𝑄𝑟
𝑝 𝑄𝑟

𝑖

%

Raspberry DB 95.5 98.3 97.9 98.9

CASIA Mobile 97.9 98.5 98.7 99.0

UBIRIS v.1 85.8 95.3 92.7 98.9

ICE 97.6 95.8 98.6 95.8

MMU 88.3 98.5 92.3 99.2

Таблица 5. Результаты применения комбинации моделей

радужки на изображении:

|𝑥𝑖 −𝑋𝑖| < 𝛼𝐷𝑖, |𝑥𝑝 −𝑋𝑝| < 𝛼𝐷𝑖,

|𝑦𝑖 − 𝑌𝑖| < 𝛼𝐷𝑖, |𝑦𝑝 − 𝑌𝑝| < 𝛼𝐷𝑖,

|𝑑𝑖 −𝐷𝑖| < 𝛼𝐷𝑖, |𝑑𝑝 −𝐷𝑝| < 𝛼𝐷𝑖.

(1)

Для оценки качества применён анализ распределения относительных оши­

бок детектирования параметров окружности:

𝑄(𝛼) =
1

𝑁

⃒⃒⃒⃒{︂
𝑘 :

𝑙𝑘

𝐷𝑘
< 𝛼, 𝑘 ∈ 1, 𝑁

}︂⃒⃒⃒⃒
, (2)

где 𝑙𝑘 = |𝑥𝑘 − 𝑋𝑘| + |𝑦𝑘 − 𝑌 𝑘| + |𝑑𝑘 − 𝐷𝑘|, 𝑁 — размер тестовой выборки.

Для простоты величина ошибки предсказания параметров внешней границы

радужки обозначается как 𝑄𝑖 = 𝑄𝑖(0.05), внутренней — 𝑄𝑝 = 𝑄𝑝(0.05). Те

же значения при предсказании моделью с последующим уточнением методом

Даугмана приведены с дополнительным верхним индексом 𝑟 (refined).

Для тестирования использованы данные открытых баз изображений ра­

дужки, полученных в ближнем инфракрасном (БИК) диапазоне излучения. С

целью проверки обобщающей способности метода были выбраны растры, ха­

рактерные как для полноразмерных, так и для мобильных биометрических си­

стем. Первому сценарию соответствуют базы ICE, MMU, UBIRIS v.1, содержа­

щие изображения глаз разных оттенков в высоком разрешении. Растры низкого
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Мера качества Метод детектирования

Дугман Мазек Ма Ганькин CNN Уточнение

𝜀𝑐 2.61 4.98 3.92 0.97 1.4 1.3

𝜀𝑟 4.39 5.15 5.39 1.13 1.9 1.7

𝑡𝑐+𝑟 (ms) 523.14 97.52 363.64 106.60 8 10

Таблица 6. Результаты сравнения с существующими методами

разрешения и качества, получаемые при помощи мобильных БИК камер, бы­

ли выбраны из наборов данных CASIA Mobile и Raspberry DB. Последняя из

упомянутых баз собрана вручную при помощи одноименного микрокомпьюте­

ра, оборудованного совместимой инфракрасной камерой с активной подсвет­

кой. Результаты применения как самих нейросетевых методов к данным базам

изображений, так и последующего уточнения методом Даугмана приведены в

Табл. 5.

Предлагаемый подход к аппроксимации радужной оболочки также срав­

нён с иными методами на выборке базы изображений MMU при помощи следу­

ющих мер качества:

• относительная ошибка детектирования центров:

𝜖𝑐 =
1

𝑁

𝑁∑︁
𝑘=1

√︁
(𝑦𝑘 − 𝑌 𝑘)2 + (𝑥𝑘 −𝑋𝑘)2;

• относительная ошибка детектирования радиусов:

𝜖𝑟 =
1

𝑁

𝑁∑︁
𝑘=1

|𝑟𝑘 −𝑅𝑘|.

Помимо точности детектирования в сравнение было включено медианное время

выполнения (𝑡𝑐+𝑟) на одном ядре процессора Qualcomm Snapdragon 845, Табл.

6.

Результаты четвёртой главы опубликованы в работе [2].
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В пятой главе рассмотрены особенности построения систем определе­

ния живости для изображения радужной оболочки глаза при идентификации

на мобильном устройстве. С учётом описанного в открытых источниках опыта

групп взломщиков-экспертов воспроизведены способы подделывания для дан­

ной БХЧ. Дана классификация способов решения задачи защиты от взлома,

обзор существующих методов, в контексте их достоинств и недостатков. Рас­

смотрены виды подделок, для которых ранее не производились исследования в

области определения живости:

• распечатка изображения глаза на матовой белой бумаге с нанесённым в

область радужной оболочки прозрачным клеем;

• распечатка изображения глаза на матовой белой бумаге с наложением

прозрачных контактных линз на окружность радужной оболочки.

С учётом допустимой изменчивости условий окружения при помощи мобильно­

го устройства собрана и обработана база данных изображений (более 40000),

включающая новые способы подделывания. Разработан, протестирован и внед­

рён новый алгоритм противодействия спуфингу, использующий методологии

глубокого обучения, в частности, построения свёрточных нейронных сетей. Схе­

ма исполнения дана на Рис. 4.

В качестве входных данных применяется пара растров региона глаза, по­

лученных из общего исходного изображения: IER — квадратная область, цен­

трированная относительно внешней окружности радужки; INI — нормализо­

ванное в прямоугольную область представление кольца внутренней текстуры

радужной оболочки. Оба изображения обрабатываются свёрточными блоками

𝐶𝑁𝑁𝐵𝐸𝑅 и 𝐶𝑁𝑁𝐵𝑁𝐼 соответственно с последующим объединением признако­

вой информации путём конкатенации. Основными структурными элементами

блоков являются базовые блоки архитектуры MobileNet, Табл. 4, обозначенные

как 𝑀𝐶𝐵𝐼 . Вероятности принадлежности входных растров к классам «живой»

или «подделка» оцениваются при помощи softmax классификатора.
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Рис. 4. Общая схема алгоритма защиты от подделывания радужки

С целью сравнения рассмотрены известные подходы к решению задачи де­

тектирования подделок радужки, демонстрирующие наивысшую точность клас­

сификации для наборов данных изображений, полученных в ближнем инфра­

красном диапазоне. Среди них: методы, основанные на применении частотного

анализа (He-2008 и Czajka-2013); метод, построенные с использованием оценоч­

ных характеристик качества изображения (Sequeira-2014); методы, построенные

не текстурных дескрипторах LBP (Gupta-2014) и BSIF (Raghavendra-2015).

Для оценки качества рассматриваемых решений были выбраны показате­

ли, описанные ранее в третьей главе. В Таб. 7 приведено сравнение результатов

тестирования предложенного методов и известных из литературы.

Для предложенного метода на мобильном устройстве при использовании

одного ядра процессора Qualcomm Snapdragon 835 (2.45 GHz) произведено из­

мерение производительности сети. Полное медианное время обработки пары

изображений составило 5 миллисекунд.
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Метод
Значения мер, %

BPCER APCER Точность

He-2008 37.0 73.9 44.2

Czajka-2013 50.5 20.7 66.1

Sequeira-2014 32.0 29.3 69.4

Gupta-2014 29.4 25.1 74.9

Raghavendra-2015 7.6 12.8 89.7

Предложенные метод 3.8 3.4 96.9

Таблица 7. Сравнительный анализ точности детектирования подделок радужки

Результаты пятой главы опубликованы в работе [3].

В Заключении представлены основные результаты работы:

1. Исследованы особенности построения алгоритмов противодействия взло­

му при помощи подделок для методов биометрического распознавания по

видеообразу лица в приложениях мобильных устройств. Исследованы за­

висимости и причины изменения видимого образа лица с учётом специфи­

ки поведения пользователя устройства и характерных нестандартных и

изменчивых условий окружения, присущих сценариям регистрации изоб­

ражений объектов в мобильных приложениях. Разработан, предложен и

внедрён метод детектирования подделок, допускающий применение в ре­

жиме реального времени в мобильных устройствах.

2. Исследованы методы и алгоритмы извлечения характеристик изображе­

ния лица применительно к решению задачи детектирования подделок.

Разработан и внедрён метод раннего обнаружения спуфинг-атак для мо­

бильных приложений, позволяющий до применения вычислительно слож­

ных алгоритмов обнаруживать неестественные артефакты и атрибуты,

присущие попыткам взлома, учитывать и использовать данные экспози­

ции камеры и вспомогательных сенсоров устройства с целью получения

дополнительной информации об окружении.

3. Исследованы особенности обнаружения попыток подделывания лица при
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распознавании с мобильного устройства, оборудованного стереокамерой с

малым стереобазисом. Разработан и протестирован новый метод опреде­

ления живости лица при помощи классификатора в виде свёрточной ней­

ронной сети. Предложенное решение показало высокую точность и быст­

родействие детектирования подделок, в том числе тестировании на отло­

женной выборке данных открытой базы мобильных стереофотографий,

содержащей изображения лиц, полученных в широком диапазоне условий

окружения.

4. Разработаны, исследованы и внедрены алгоритмы аппроксимации окруж­

ностями границ радужной оболочки на изображении глаза основанные

на применении методологии глубокого обучения. Предложенные подходы

позволяют осуществлять оценку положений границ радужки в режиме

реального времени для растров как высокого, так и низкого качества.

5. Изучена специфика построения систем обнаружения попыток взлома мо­

бильных систем распознавания по радужке и новые способы подделыва­

ния этой БХЧ. Разработан, протестирован и внедрен новый метод опреде­

ления живости в виде классификатора в виде свёрточной нейронной сети.

Предложенное решение показало высокий уровень производительности и

быстродействия при детектировании подделок, значительно превышаю­

щий таковой для описанных в литературе аналогичных методов.

6. Собраны, обработаны и размечены следующие базы данных: наборы изоб­

ражений сниженного качества для подлинных лиц и распространенных

типов подделок, содержащих более 1000 уникальных личностей и извле­

ченных при помощи мобильного устройства с имитацией реальных сцена­

риев повседневного использования в изменчивых условиях окружения и

применения, набор данных стереоизображений лица (более 90000), набор

данных изображений подлинных и поддельных радужек, содержащий как
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известные, так и новые виды атак (более 160000).

7. Созданы программные средства для проведения вычислительных экспе­

риментов по оценке качества разработанных алгоритмов.

8. Созданы библиотека и тестовые приложения для апробации реализован­

ных методов и алгоритмов на мобильном устройстве.
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