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Биометрия представляет собой совокупность поведенческих, анатомиче-

ских и физиологических характеристик, используемых для решения задачи

идентификации человека. Этим термином также иногда называют и сам ал-

горитм решения задачи, и систему, в составе которой он находится. В основе

технологий лежит свойство уникальности биометрической характеристики че-

ловека (индивидуума). В результате большого количества исследований сфор-

мировался список разнообразных типов таких характеристик, которые также

называются биометрическими модальностями: изображения лица, радужной

оболочки глаза (РОГ), рисунки папиллярных линий пальца, вен сетчатки глаза,

особенности походки, голоса и др [66]. Упомянутый список постоянно пополня-

ется, поскольку исследования в данной области в настоящий момент вызыва-

ют большой интерес как в индустриальных отраслях, так и в государственных

структурах.

Задача подтверждения личности человека или задача аутентификации —

бесспорно является актуальной для многих исследовательских групп по всему

миру, как академических, так и индустриальных. Современные разработки в

области автоматизации и цифровизации такой процедуры находят применение

в различных системах контроля доступа, к которым можно отнести паспорт-

ные столы, контрольно-пропускные пункты и т.п. В подобных сценариях также

возникает потребность в решении задачи идентификации, то есть определения

личности человека путём поиска среди соответствий в объёмной базе данных.

За последние два десятилетия произошёл ряд существенных прорывов в обла-

стях цифровой обработки и анализа изображений вкупе со значительным увели-

чением производительности вычислительных средств и систем компьютерного

зрения [49, 71, 79, 132]. Столь заметный прогресс сыграл важную роль в про-

цессе развития методов автоматического выделения и распознавания сложной

биометрической информации о живых существах, которая является крайне из-
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менчивой, слабо формализуемой и плохо моделируемой; позволил ставить и эф-

фективно решать соответствующие задачи. Суммарный вклад исследователей в

данной области формирует одну из молодых областей прикладной математики,

биометрическую идентификацию [6].

Изображение РОГ, видеообраз лица и папиллярный узор пальца относят-

ся к списку биометрических характеристик, стандартизованных ICAO для при-

менения в международных электронных паспортах [65]. Помимо этого, первые

две упомянутые модальностей применяются для осуществления автоматическо-

го паспортного контроля в ряде крупных аэропортов западных стран, таких

как США, Канада, Великобритания и Нидерланды. Радужная оболочка гла-

за получила широкое внедрение в системах безопасности ОАЭ [61]: сообщается

о 62 триллионах сравнений биометрических шаблонов, полученных в течение

последних 10 лет. Более 1 млрд жителей Индии предоставили государствен-

ным органам миграционного контроля изображения своих лиц, РОГ и отпечат-

ков пальцев рук в рамках программы UIDAI [133]. Аналитического агентство

Business Wire сообщает, что объём рынка систем распознавания лиц составил

$5.1 млрд. в 2021 году, а к 2028 году увеличится более чем в 2 раза —– до $12.6

млрд. [39]. Рост интереса к биометрическим способам идентификации также

наблюдается в связи с недавней пандемией вируса COVID-19 и потребности в

уменьшении числа личных контактов.

С распространением технологий распознавания личности стала проявлять-

ся необходимость устойчивой защиты систем от попыток подлога и взлома чу-

жими биометрическими шаблонами, которые в современной литературе назы-

ваются спуфингом (spoofing). Подавляющее большинство применяемых систем

позволяет решать задачу идентификации с высокой точностью, но является

уязвимым к попыткам обмана системы подделками. Для распространенных мо-

дальностей изображений лица и РОГ попытки подлога осуществляются в основ-

ном при помощи физических артефактов с изображением жертвы, таких как

бумажные распечатки фотографий, записи с экранов или объемных объектов,
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повторяющих трехмерное строение лицевой или периокулярной областей жерт-

вы. Для повышения надежности биометрических систем необходима разработка

дополнительных модулей, осуществляющих проверку подлинности пользовате-

ля на входном изображении. Подходы к решению данной задачи называются

методами определения живости или анти-спуфингом.

Удобство биометрических методов аутентификации по сравнению с ПИН-

кодами, паролями, смарт-картами и иными способами защиты информации со-

здает потребность в их применении в составе современных мобильных устройств,

которые предоставляют универсальные возможности по совершению банков-

ских операций, личной переписки и обмена личными данными. Значительная

часть появившихся на рынке в последнее десятилетие смартфонов оборудована

компактными сенсорами распознавания. С каждым годом повышаются требо-

вания к безопасности пользовательских данных. Растет доля устройств, приме-

няющих биометрическую аутентификацию. Эти факторы создают потребность

в исследовании способов обмана систем распознавания методом подлога и раз-

работке устойчивых и масштабируемых методов определения живости для мо-

бильных систем.

�>FG4?PABEFP F9@O <EE?98B64A<S. Способы проверки подлинности

разного рода информации в обществе прошли долгий путь эволюционного раз-

вития от механических замков, ключей, систем печатей и кодовых фраз до

подходов автоматизированной и автоматической аутентификации. Жизнь со-

временного человека на регулярной основе включает разного рода верификации

тех или иных персональных данных: осуществление финансовых транзакций,

приобретение товаров и услуг, доступ к устройствам и сервисам, процедуры

идентификации личности при пересечении границ и др.

Наблюдающийся в последнее десятилетие прирост мощности вычислитель-

ных устройств, совершенствование систем регистрации и обработки цифровых

изображений, параллельное накопление значительных объёмов данных и раз-

витие систем компьютерного зрения, машинного и, в особенности, глубокого
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обучения позволили совершить значительный рывок технологий биометриче-

ской идентификации. Ключом доступа в данном случае выступает уникаль-

ная биометрическая характеристика человека (БХЧ) или биометрическая мо-

дальность. К популярным модальностям часто относят: папиллярный рисунок

пальцев и ладони, изображение венозного русла кисти и ладони, особенности

голоса, почерка, походки, изображения радужной оболочки и сетчатки глаза,

изображения и форму лица.

Практически каждую из упомянутых БХЧ можно искусственно воспроиз-

вести и предъявить биометрической системе с целью получения доступа к лич-

ной информации путем обмана. Различные модальности обладают различной

сложностью подделывания, зависящей как от возможностей получения копии

БХЧ, так и от сложности её воссоздания в условии ограниченных ресурсов. Про-

цедура подделывания биометрических систем называется спуфингом (spoofing),

а задача детектирования подлога — задачей определения живости или анти-

спуфингом.

Рост точности и производительности биометрических систем приводит к

расширению области применения технологий автоматического распознавания

человека. Современные мобильные устройства предоставляют пользователю ши-

рокий спектр возможностей по хранению значительных массивов данных, веде-

нию личной и деловой переписки, осуществлению финансовых операций, досту-

пу к защищённым цифровым ресурсам и др. В последнее десятилетие произво-

дители начали внедрять в смартфоны методы биометрической аутентификации

как альтернативу паролям или цифровым кодам для ограничения доступа к

персональной информации и повышения удобства использования [13, 51],

До событий 2020 года, связанных с пандемией COVID-19 и вызванным

экономическим кризисом, наблюдались высокие темпы роста безналичных пла-

тежных транзакций согласно World Payments Records 2021 [135]. Суммарное их

количество составило порядка 785 млрд. в 2020 году, и эксперты уверены в ско-

ром возвращении прежней скорости их прироста в связи с адаптацией общества
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к новым реалиям и постепенному возврату к нормальной жизни. Реалии пан-

демии COVID-19 подстегнули интерес к безналичным расчетам, в том числе со-

вершаемым при помощи повсеместно распространённых мобильных устройств.

По данным WPR в настоящий момент суммарная доля мобильных транзак-

ций в мире составляет 45%, а в период 2020-2025 гг. ожидается прирост их

доли в 21.5%. Платёжные системы в современных смартфонах требуют иденти-

фикации пользователя (при помощи ПИН-кода и др.), причём набирают попу-

лярность биометрические методы, предоставляемые со стороны коммерческих

банков [1].

Помимо рынка мобильных устройств отмечается рост спроса к цифровиза-

ции и персонификации бытовых услуг и сервисов. К таковым относятся концеп-

ции «умного дома» (Smart Home), виртуальных помощников (Smart Assistant и

др.), модель «интернета вещей» (Internet of Things) и многое другое. Практиче-

ское применение таких элементов быта не требует непосредственного участия

пользователя, подразумевая т.н. некооперативное распознавание. Подавляющее

большинство перечисленных выше приложений требуют присутствия системы

автоматической идентификации/аутентификации личности.

Как следствие, расширение области применения технологий биометриче-

ской идентификации и аутентификации порождает множество актуальных за-

дач, требующих решения в связи с растущими потребностями современного об-

щества в высоком уровне безопасности личных данных и удобстве применяемых

в быту услуг и сервисов. Среди таких задач выделяется проблема определения

живости участника процедуры распознавания и обнаружения попыток взлома

системы при помощи искусственно созданных БХЧ (т.н. подделок), поскольку

именно этот компонент системы в первую очередь определяет уровень защиты,

достигаемый при её использовании.

Особенно актуальной эта задача является мобильных биометрических при-

ложений по ряду причин. Системы некооперативного распознавания в мобиль-

ных устройствах и приложениях требуют удобства и быстродействия для поль-
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зователя, а также устойчивости к изменчивости окружения и самой БХЧ. В

результате происходит ужесточение ограничений на средства регистрации изоб-

ражений, применяемые алгоритмы распознавания и противодействия подлож-

ным попыткам входа. От мобильной биометрической системы требуется воз-

можность работы в режиме реального времени при низком количества ошибок

ложного недопуска (False Rejection Rate — FRR), даже для входных данных

низкого качества. При этом сохраняется потребность в высоком уровне предо-

ставляемой защиты, в том числе и от взлома при помощи поддельных БХЧ, что

соответствует низкому количеству ошибок ложного допуска (False Accept Rate

— FAR). Наконец, реализация системы распознавания зачастую происходит на

устройствах с сильно ограниченными вычислительными ресурсами.

Среди наиболее известных исследовательских групп: Cambridge University,

Великобритания (J. Daugman); Michigan State University, США (A. Ross, X. Liu);

, Warsaw University of Technology, Польша (A. Czajka), University of OULU (J.

Komulainen); Institute of Automation of the Chinese Academy of Sciences, КНР (T.

Tan), Idiap Research Institute, Швейцария (S. Matcela), в том числе и несколько

российских: Федеральный Исследовательский центр «Информатика и управле-

ние» РАН (д.т.н. И.А. Матвеев), МГУ им. Ломоносова (д.ф-м.н. А.С. Крылов),

Пензенский государственный университет (д.т.н. А.И. Иванов); НИИЦ БТ МГ-

ТУ им. Н. Э. Баумана; Институт систем обработки изображений РАН и др.

Область биометрического распознавания в настоящее время также привлека-

ет значительное количество коммерческих компаний, занимающихся как непо-

средственно созданием соответствующих технологий, так и вынужденных раз-

рабатывать собственные решения для растущих потребительских нужд в сфере

безопасности данных. В качестве примеров успешного внедрения получаемых

решения для первой группы можно привести российские компании NTechLabs

и VisionLabs, ко второй — крупные банки Сбербанк, ВТБ, Tinkoff.

Наиболее уязвимыми с точки зрения возможности спуфинга модальностя-

ми для мобильных систем являются изображения радужной оболочки глаза и
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видеообраза лица ввиду сравнительно небольшой сложности процедуры подде-

лывания. Поэтому актуальными направлениями развития области определения

живости в настоящее время являются: разработка высокопроизводительных ме-

тодов анти-спуфинга для видеообраза лица в условиях некооперативного рас-

познавания при помощи смартфона; разработка высокопроизводительных мето-

дов обнаружения подделок при помощи вспомогательных сенсоров, таких как

мобильная стереокамера; разработка новых методов противодействия новым

способам взлома мобильных систем распознавания по РОГ; разработка мето-

дов выделения границ радужки на изображениях как высокого, так и низкого

качества.

*9?< < ;484K< 8<EE9DF4J<BAAB= D45BFO:

В работе были поставлены следующие J9?<:

• Создать методы и алгоритмы для автоматического определения живости

пользователя и обнаружения попыток взлома при помощи подделок в си-

стемах распознавания по видеообразу лица, оборудованных единственной

камерой для съемки в видимом спектре излучения, способные обрабаты-

вать каждое изображение с частотой поступления кадров на мобильном

устройстве, удовлетворяющие критериям ошибок: уровень ложных недо-

пусков не более 3% при уровне ложного допуска не более 1%;

• Создать методы и алгоритмы выявления подделок лица при использова-

нии пары камер с малым стереобазисом, способные обеспечивать защиту

от распространённых видов атак и имеющие достаточное для мобильных

приложений быстродействие;

• Разработать методы и алгоритмы поиска границ радужной оболочки гла-

за для входных данных как высокого, так и низкого качества, характер-

ного для мобильных биометрических систем;

• Создать методы и алгоритмы определения живости для мобильной си-
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стемы распознавания по радужке, способные обеспечивать защиту, в том

числе, от ранее не исследованных видов взлома при помощи подделок.

Для достижения поставленных целей были решены следующие ;484K<:

• Исследование и разработка методов определения живости человека по ви-

деообразу лица, удовлетворяющих критериям, необходимым для обеспе-

чения возможности их применения в мобильном устройстве;

• Исследование и разработка методов обнаружения подделок лица челове-

ка с применением стереоинформации, извлекаемой при помощи камеры

мобильного устройства с малым стереобазисом;

• Исследование и разработка методов поиска области радужки на изобра-

жении низкого качества путем аппроксимации ее границ окружностями с

возможностью применения для растров, извлекаемых в условиях приме-

нения мобильной биометрической системы;

• Исследование и разработка методов противодействия подделкам изобра-

жений радужки для мобильных систем распознавания;

• Сбор и разметка баз данных, в которых представлены изображения и по-

следовательности изображений, реализующие приведенных выше задачи;

• Создание среды, программных средств и проведение вычислительных экс-

периментов по определению работоспособности перечисленных методов с

опорой на собранные базы данных;

• Создание программных средств (библиотеки и демо-приложений) для апро-

бации реализованных методов на мобильном устройстве.

!4GKA4S AB6<;A4.
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• Предложен новый эффективный метод защиты от подделывания в си-

стемах распознавания по видеообразу лица, обладающий многостадийной

структурой и способный работать на мобильном устройстве с ограничен-

ными вычислительными возможностями в режиме реального времени в

сценариях изменяющихся условий окружения;

• Предложен новый надёжный метод защиты от подделывания изображе-

ния лица для мобильных систем, оборудованных стереокамерой с малым

стереобазисом, обеспечивающий защиту от распространённых видов атак;

• Предложен новый высокопроизводительный метод аппроксимации границ

радужки с применением методологии глубокого обучения, допускающий

применение для изображений как высокого, так и низкого качества;

• Разработан новый надёжный метод определения живости радужки на

изображении глаза, способный обнаруживать новые ранее не использо-

вавшиеся виды взлома системы распознавания при помощи подделокю

&9BD9F<K9E>4S < CD4>F<K9E>4S ;A4K<@BEFP. Результаты, изложен-

ные в диссертации, используются в мобильных устройствах, выпускаемых ком-

панией Samsung Electronics Co. Ltd. Среди устройств — флагманские моде-

ли, выпускаемые компанией в период с 2018 по 2021 гг.: смартфоны Samsung

Galaxy S9/S9+, смартфон Samsung Galaxy Note9, планшет Samsung Galaxy Tab

S4, смартфоны Samsung Galaxy S10e/S10/S10+, смартфоны Samsung Galaxy

Note10/Note10 Ultra, смартфоны Samsung Galaxy S20/S20+/S20 Ultra, смарт-

фоны Samsung Galaxy Note20/Note20 Ultra, смартфоны Samsung Galaxy Fold/Z

Fold2/Z Fold3, смартфоны Samsung Galaxy S21/S21+/S21 Ultra.

#B?B:9A<S, 6OABE<@O9 A4 ;4M<FG:

• Выделены специфические качества методов определения живости видео-

образов лица и радужки в системах биометрического распознавания, ис-

пользуемых в мобильных устройствах, описаны основные ограничения и
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требования, предъявляемые к алгоритмам определения живости и защи-

ты от подделок;

• Разработан и внедрён многостадийный метод определения живости по

видеообразу лица для пользователей смартфонов, оборудованных един-

ственной фронтальной камерой; предложена методология сбора репрезен-

тативной базы данных и с ее помощью получена база изображений лиц в

условиях, имитирующих применение системы распознавания человеком в

повседневной жизни, осуществлена программная реализация метода;

• Описаны и исследованы виды подделок лица, которые могут быть обнару-

жены при использовании мобильных стереокамер с малым базисом, пред-

ложена методология сбора и с её помощью получена собрана база сте-

реоизображений подлинных лиц и подделок, предложен метод защиты от

взлома с высокой обобщающей способностью, произведено тестирование

на открытой базе стереоизображений лиц;

• Выделена группа методов поиска границ радужки на изображении для

мобильных биометрических приложений, разработан и программно реа-

лизован нейросетевой метод решения задачи, произведена его оценка и

сравнение с описанными в литературе решениями;

• Описаны и исследованы новые способы изготовления подделок радужки,

собрана база данных изображений подлинных и искусственных образцов,

разработаны метод распознавания живости глаза, устойчивый к новым ви-

дам подделок глаз, произведено его сравнение с аналогами из литературы

по качеству решения задачи и производительности.

%F9C9AP 8BEFB69DABEF< < 4CDB54J<S D9;G?PF4FB6. Достоверность ре-

зультатов обеспечивается обширным анализом работ в области исследования,

описанием проведённых экспериментов, их воспроизводимостью, апробацией ре-

зультатов на практике. Основные результаты диссертации докладывались на
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следующих конференциях: 20-я Всероссийская конференция с международным

участием «Математические методы распознавания образов» (ММРО-2021), Москва,

2021; 64-я Всероссийская научная конференция МФТИ, Москва, 2021; International

Conference on Pattern Recognition and Artificial Intelligence, Montreal, Canada,

2018; 19-я Всероссийская конференция с международным участием «Математи-

ческие методы распознавания образов» (ММРО-2019), Москва, 2019; Intelligent

Data Processing Conference, Gaeta, Italy 2018; Intelligent Data Processing Conference,

Barcelona, Spain, 2016; XXI Международная научно-техническая конференция

студентов, аспирантов и молодых учёных «Научная сессия ТУСУР», Томск,

2016.

#G5?<>4J<<. Материалы диссертации опубликованы в 17 печатных ра-

ботах, из них 6 в журналах из списка ВАК и индексируемых в WoS, Scopus.

�<KAO= 6>?48 46FBD4. Содержание диссертации и основные положе-

ния, выносимые на защиту, отражают персональный вклад автора в опубли-

кованные работы. Подготовка к публикации полученных результатов проводи-

лась совместно с соавторами, причём вклад диссертанта был определяющим.

Все представленные в диссертации результаты получены лично автором.

%FDG>FGD4 < B5N9@ 8<EE9DF4J<<. Диссертация состоит из введения,

5 глав, заключения и библиографии. Общий объём диссертации 136 страниц,

из них 115 страниц текста, включая 27 рисунков. Библиография включает 156

наименований на 18 страницах.
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1.1. "5;BD CB8IB8B6 5<B@9FD<K9E>B7B D4ECB;A464A<S

Биометрия (или биометрика) — область знаний, изучающая методы и

средства измерения и формализации поведенческих, анатомических и физио-

логических характеристик человека с целью их использования для решения

задач верификации или идентификации его личности. Этим термином называ-

ют как сам алгоритм решения таких задач, так и систему, в составе которой

он находится. Результаты измерения упомянутых характеристик называются

Биометрической характеристикой человека (БХЧ) или биометрической мо-

дальностью. Подразумевается, что процедура распознавания личности реали-

зуется путем сравнения полученной БХЧ с набором ранее зарегистрированных,

совокупность которых называют биометрическим эталоном или шаблоном.

Все БХЧ могут быть поделены на две группы: физиологические (статиче-

ские) и поведенческие (динамические) [9]. Биометрические модальности могут

быть отнесены к одной из двух групп: физиологические или поведенческие. Пер-

вая категория как правило содержит статические или малоизменяющиеся во

времени характеристики фенотипа человека, в то время как ко второй относят

динамические измерения, присущие индивидуумам. Принято считать наиболее

распространенными следующие БХЧ:

1. Физиологические БХЧ:

а. Видеообраз лица: овал, форма, размер отдельных деталей, геометри-

ческие параметры (расстояние между его определенными точками),

узор подкожных кровеносных сосудов и др.;

б. Структура радужной оболочки глаза;
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в. Структура кровеносных сосудов на сетчатке глаза;

г. Особенности папиллярного узора одного или нескольких пальцев,

ладони: параметры минуций (координаты, ориентация), параметры

пространственно-частотного спектра и др.;

д. Особенности строения ладони: геометрия (ширина, длина, высота

пальцев, расстояние между определенными точками), неровности скла-

док кожи, рисунок вен, папиллярный рисунок ладони и др.;

е. Особенности уха: форма (контур, наклон, козелок, противокозелок,

форма и прикрепление мочки), геометрические параметры уха (рас-

стояние между определенными точками) и др.;

2. Поведенческие БХЧ:

а. Голосовые характеристики: тембр, частотный спектр и др.;

б. Динамика походки;

в. Рукописный почерк и др.

В процессе распознавания участвует автоматизированный алгоритм при-

нятия решений, который также называют биометрической системой. Компонен-

ты модуля биометрического распознавания должны реализовывать следующие

операции [9]:

• регистрации выборки БХЧ от конкретного пользователя;

• формирование вектора биометрических данных из выборки БХЧ;

• формирование биометрического вектора признаков;

• сравнение биометрических векторов признаков с эталонами (шаблонами);

• принятие решения о соответствии сравниваемых БХЧ;

• формирование результата о достижении идентификации (верификации);
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• принятие решения о повторении, окончании или видоизменении процесса

идентификации (верификации).

Первоочередной задачей при проектировании биометрической системы счи-

тается определение источника БХЧ. Идеальная БХЧ должны быть всеобщной,

уникальной, постоянной и измеримой. Всеобщность требует присутствия био-

метрической характеристики у каждого человека. Уникальность подразумевает

невозможность существования двух индивидуумов с одинаковыми параметра-

ми БХЧ. Постоянство означает отсутствие зависимости черт биометрической

модальности от времени. Измеримость характеризует возможность извлечения

БХЧ для каждого человека при помощи некоторого устройства или сенсора.

Реальные БХЧ не идеальны и это ограничивает их применение. Тем не ме-

нее, к наиболее оптимальным для практического использования с учетом упо-

мянутых требований можно отнести видеообраз лица, изображение радужки,

отпечаток пальца [7].

1.2. �<B@9FD<K9E><9 CD<?B:9A<S

Повсеместно известными и привычными методам аутентификации являют-

ся: кодовые фразы и пароли в банковских системах, ПИН-коды пластиковых

карт и мобильных устройств, электронные ключи доступа и др. Альтернати-

вой таких подходам является применение биометрических технологий, которые

позволяют повысить безопасность доступа к конфиденциальным данным без

создания неудобств для пользователя.

В настоящее время биометрические методы применяются наиболее часто

в следующих целях:

• Автоматизированной проверки личности при пересечении границ госу-

дарств, при входе на охраняемый объект, предоставление доступа к лич-

ным устройствам, хранилищам данных, электронным ресурсам, банков-

ским ячейкам, вкладам и т.п.
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• Подтверждения и контроля финансовых операций: снятие наличных в

банкомате, онлайн-платежи и т.п.

неинвазивность биометрических технологий совместно с возможностью по-

вышения уровня безопасности при аутентификации личности создает спрос

на их внедрение в самые разные области современного быта. Наиболее актив-

ный интерес возникает со стороны сферы государственного контроля границ.

Характерными примерами являются обязательство сдачи биометрических дан-

ных при получении заграничного паспорта гражданами российской федерации

(изображения лица и текстура отпечатков пальцев) и внедрение универсальных

электронных карт за рубежом (ID). Не менее значительный спрос на биомет-

рические решения создает финансовая область. Так, крупные банки внедряют

дополнительные проверки личности, основанные на технологиях распознавания

лиц и голоса, а крупные производителей мобильных устройств и операционных

систем (Apple, Google, Samsung) создают и внедряют бесконтактные системы

оплаты при помощи смартфонов (Apple Pay, Android Pay, Samsung Pay), вы-

ступая в роли посредников. В настоящее время в развитых странах большин-

ство бытовых транзакций осуществляется при помощи мобильных устройств.

Во многом этому способствует внедрение бесконтактных систем оплаты, циф-

ровизация транспорта и рост популярности служб онлайн-заказов и доставки

товаров потребления в крупных городах.

1.3. "5M99 EFDB9A<9 5<B@9FD<K9E><I E<EF9@

Классические методы идентификации по биометрическим чертам имеют в

большинстве случаев общее строение, Рис. 1.1.

Первичный этап (блок 1) как правило соответствует регистрации цифрово-

го образа БХЧ, к примеру, изображения радужки или видеообраза лица. Далее

(блок 2) осуществляется оценка качества полученного цифрового слепка с точки

зрения его пригодности для выделения областей интереса и отсечения шумовой
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$<E. 1.1. "5B5M9AAB9 EFDB9A<9 @9FB8B6 5<B@9FD<K9E>B= <89AF<H<>4J<<.

информации, а также для формирования биометрического эталона. Подсистема

проверка живости БХЧ как правило считается компонентом данного модуля.

Эта часть системы может как состоять из нескольких смысловых этапов, так

и быть распределенной между иными компонентами. Последующий этап (блок

3) отвечает за исключение фоновой и шумовой информации из цифрового обра-

за БХЧ. К примеру, в случае с изображением радужки данные блок выделяет

область ее текстуры между зрачком и склерой, отсекая при этом побочную ин-

формацию в виде век, ресниц, бликов и т.п. Для видеообраза лица аналогичная

процедура выделяет искомую область и выполняет фронтализацию растра ли-

цевой области: приведение наблюдаемой позы головы к фронтальной. Затем,

после подавления побочной информации, осуществляется построение биомет-

рического эталона (блок 4). Наконец, в случае сценария регистрации, он зано-

сится в БД (блок 5), а в случае сценария верификации — сравнивается ранее

попавшими в БД эталонами (блок 6).
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1.4. #B889?O64A<9 5<B@9FD<<

Применимость биометрических систем идентификации на практике во мно-

гом определяется их возможностями по обнаружению предъявленных им под-

делок. Саму попытку такой фальсификации в литературе часто называют спу-

фингом или спуфинг-атакой (spoofing attack, presentation attack). Практически

любая БХЧ может быть имитирована искусственно с наперед заданным уров-

нем качества при наличии достаточных финансовых и временных ресурсов [91].

Основной сложностью при создании подделок является доступ к биомет-

рическим данным жертвы. которые требуется имитировать. В зависимости от

вида БХЧ, при извлечении информации о ней в системе может применяться как

доступные в быту сенсоры (камеры видимого диапазона света), так и узкоспе-

циализированное оборудование (дактилоскопические сенсоры, инфракрасные

камеры с активной подсветкой). К примеру, в случае с видеообразом лица для

создания подделки достаточно получить снимок жертвы в высоком разрешении

и при естественном равномерном освещении, что не составляет большого труда

в современных реалиях при большой распространенности социальных сетей и

медиа. При этом регистрация термограммы лицевой области требует не только

кооперации со стороны жертвы, но и специальной и как правило дорогостоящей

аппаратуры, характеристики сенсора которой должны быть близки к таковым

в атакуемой биометрической системе.

Значительные усилия исследователей сосредоточены на противодействии

так называемым «спуфинг-атакам» (spoofing attack, presentation attack). Задачу

детектирования подделок часто называют «анти-спуфингом» или определением

живости. При решении подобной задачи как правило строится логичное предпо-

ложение о том, что наблюдаемые при помощи сенсора биометрической системы

характеристики подделки будут отличаться от таковых у истинной попытки рас-

познавания вследствие различий их физических свойств. Такие характеристики

могут быть статическими, т.е. проявляющимися в каждый момент времени, и
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динамическими, т.е возникающими в процессе распознавания пользователя.

Стоит упомянуть, что существует два вида спуфинг-атак по их предна-

значению. К первой группе относятся попытки сокрытия личности участника

процесса распознавания за счет искусственного искажения наблюдаемых БХЧ.

Вторую группу формируют способы имперсонификации жертвы злоумышлен-

ником. В данной работе рассматриваются лишь методы второй группы, как

представляющие наибольшую опасность для бытового применения биометриче-

ских систем, в то время как первая группа спуфинг-атак вызывает большой

интерес исследователей в области судебной экспертизы и криминалистики [91].

Попытки подделывания как правило осуществляются при помощи статич-

ных объектов, в отличии от живого и как правило подвижного участника про-

цедуры распознавания. Решение задачи в таком случае естественным образом

упрощается, если допускается прямое взаимодействие с субъектом: при попыт-

ке идентификации или верификации требуется выполнить набор движений,

определяемых самой биометрической системой. Методы детектирования под-

делок, использующие упомянутую выше интуицию, называются кооперативны-

ми. Подобные подходы заметно повышают устойчивость системы к спуфинг-

атакам [3], но снижают применимость системы в целом, вследствие повышения

времени распознавания и возникновения дополнительных сложностей для поль-

зователей из-за необходимости взаимодействия.

Некоторые различия между подлинными и искусственными БХЧ могут

быть слабо определяемыми при формировании цифрового образа сенсорами

биометрической системы. В таком случае допускается добавление в нее допол-

нительного источника информации, а именно вспомогательного сенсора, позво-

ляющего наблюдать характерные для подделок артефакты, отличающие их от

живых субъектов. С аналогичной целью иногда осуществляется комбинирова-

ние модальностей внутри одной биометрической системы. К примеру, системы

распознавания по видеообразу лица могут быть дополнены камерой определе-

ния глубины сцены, которая позволяет использовать информацию о геометрии
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для достоверного недопуска плоских подделок вида распечаток или видеоповто-

ров на цифровых дисплеях. В то же время, сама геометрия лица может быть

рассмотрена как отдельная БХЧ. Подобные методы определения подделок при

помощи вспомогательной информации от дополнительных сенсоров формиру-

ют группу, которая в литературе называется «hardware-based». Существенным

недостатком таких подходов, однако, считается повышение стоимости биометри-

ческой системы в целом, что может быть критично для ее массового применения

в быту. Рост цены вызван не только расходами на дополнительную аппаратуру,

но и возрастающими издержками при интеграции компонентов системы в одно

целое и поддержке такой комбинированной структуры.

Сложность решения задачи определения спуфинг-атак связана в первую

очередь с тем, что невозможно заранее определить набор возможных способов

подделывания системы, учесть все возможные слабые места используемых под-

ходов и аппаратных средств. При разработке метода детектирования живости

исследователь ограничен доступными ресурсами и выборкой данных, в то время

как возможности злоумышленника при наличии длительного доступа к систе-

ме можно считать неограниченными, поскольку требуется найти единственную

уязвимость. Кроме того, имеющиеся в открытом доступе наборы данных для

тестирования методов детектирования спуфинга, как правило, предоставляют

скудный набор примеров подделок, а самостоятельный сбор объемной базы при-

меров истинных и искусственных БХЧ является крайне трудоемким и затрат-

ным процессом. Поставленную можно считать решаемой лишь при ограниче-

нии набора рассматриваемых способов подделывания. К примеру, допускается

рассмотрение лишь сравнительно недорогих спуфинг-атак, стоимость создания

которых сопоставима с ценностью информации, доступ к которой ограничивает-

ся при помощи биометрической системы. Так, с целью взлома возможно созда-

ние высококачественной подвижной маски-копии лица жертвы из материалов,

близких к живым тканям по характеристикам. Для системы распознавания по

видеообразу лица попытка распознавания подобной подделкой будет почти на-
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верняка успешной, но стоимость создания подобной искусственной БХЧ может

превышать несколько тысяч долларов США. Технологии создания столь каче-

ственных дубликатов лица не являются массовыми и практически недоступны

обывателю. Вероятность создания и применения столь затратной атаки являет-

ся практически нулевой для бытовых биометрических систем.

Таким образом, при создании методов определения живости для той или

иной БХЧ требуется учитывать сценарии использования системы и присущие

таковым ограничения удобства применимости, а также диапазон способов под-

делывания, противодействие которым будет целесообразно с точки зрения сто-

имости их создания и вероятности их возникновения.

1.5. #DBF<6B89=EF6<9 CB889?>4@ 6 @B5<?PAB= 5<B@9FD<<

В данной работе предлагается рассматривать методы детектирования под-

делок для БХЧ изображения радужки в ИК диапазоне и видеообраза лица че-

ловека. Эти модальности можно считать одними из наиболее распространенных

в мобильных биометрических приложениях и в то же время связанными общей

идеей наличия наблюдаемой при помощи некоторой камеры характеристики,

подверженной изменчивости в зависимости от условий окружения.

Среди представленных на рынке смартфонов, оборудованных биометри-

ческими системами, можно выделить несколько групп по частоте применения

той или иной БХЧ. К наиболее популярным можно отнести методы идентифика-

ции личности по видеообразу лица и отпечатку пальца. Первая из упомянутых

БХЧ естественным образом может быть получена при помощи фронтальной ка-

меры современного смартфона, широко распространенного элемента конструк-

ции ввиду развития социальных сетей. Ряд устройств с операционной системой

Google Android впервые получили возможность идентификации пользователя

по снимку лица в 2011 году [12]. Различные виды сенсоров для получения рисун-

ка папиллярных линий пальца человека также получили широкое распростра-
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нение начиная с 2014 года с релизом Apple iPhone 5s [14], несмотря на первые

попытки внедрения технологии в 2011 году [97].

К менее популярным биометрическим модальностям, применяемым в мо-

бильных устройствах, стоит отнести изображение радужки глаза в коротковол-

новом инфракрасном (ИК) диапазоне [41, 95, 116] и геометрию объема лица [13,

51]. Успешные попытки внедрения данных технологий произошли в 2015 и 2017

годах соответственно и были усовершенствованы в следующих поколениях вы-

пущенных устройств. Системы распознавания по геометрии лица и их вариа-

ции в зависимости от типа сенсора, применяемого для извлечения информации

о глубине сцены, имеют популярность у производителей крупных брендов, вы-

пускаются и поддерживаются по настоящее время.

К группе редких биометрических признаков, применяемых в современных

смартфонах, можно отнести системы распознавания по рисунку вен руки чело-

века. Единственная попытка коммерциализации подобного решения случилась

в 2019 году [81] и не получила широкого распространения.

Особенности взаимодействие и широта возможных сценариев применения

мобильного устройства формируют дополнительные требования к применяе-

мой в нем биометрической системе с подсистемой детектирования подделок

(Рис. 1.2). Постоянно изменяющиеся условия среды не должны существенно

влиять на точность решения задачи анти-спуфинга. Мобильное устройство мо-

жет применяться в солнечную погоду, в помещении, в полумраке с низким

уровнем освещения. Пользователь может быть предъявлен системе с носимыми

очками, головными уборами, медицинскими масками и иными перекрытиями

областей лица и глаз. Тряска рук, возможные изменения направления взгля-

да, моргания и иные особенности поведения пользователя устройства в повсе-

дневной жизни не должны влиять на удобство использования биометрической

системы [7]. Высокая точность решения задачи определения живости должна

достигаться в режиме реального времени на мобильном устройстве с существен-

ными ограничениями вычислительных ресурсов и доступной для использования
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памяти.

$<E. 1.2. "EAB6AO9 CDB5?9@O CD< BCD989?9A<< :<6BEF< �)+ E @B5<?PAB7B GEFDB=EF64

Описанные ограничения приводят к ухудшению качества изображений, ис-

пользуемых в подсистемах детектирования подделок. В результате набор на-

блюдаемых различий между искусственными и подлинными БХЧ сокращает-

ся, размывается граница между классами «живой» и «подделка». Требование

высокой производительности в условиях ограниченных вычислительных ресур-

сов сужает диапазон доступных для применения в мобильных биометрических

системах методов.

Как правило не допускается применение кооперативных подходов, основан-

ных на взаимодействии с пользователем, поскольку суммарное время отклика

системы при попытке распознавания превышает комфортное с точки зрения

удобства использования устройства (1-2 секунды).

Аналогично, встраивание вспомогательных сенсоров для определения жи-

вости БХЧ не столь широко распространено в мобильных биометрических си-

стемах ввиду возрастающей стоимости смартфона, которая во многом определя-

ет его конкурентоспособность и привлекательность для покупателей. Более то-

го, подобные вспомогательные технические элементы могут вызвать проблемы

компоновки корпуса устройства, что негативно влияет на дизайн, чрезвычайно

важную с точки зрения характеристику устройства.
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Таким образом, подсистема обнаружения попыток подделывания в мобиль-

ных биометрических приложениях требует разработки некооперативных мето-

дов, устойчивых к изменчивости условий окружения при съемке участника про-

цедуры распознавания. В большинстве случаев такие приложения не допускают

применения вспомогательных аппаратных решений для определения живости

человека, вынуждая исследователей полагаться на уже присущий мобильным

устройствам набор сенсоров для извлечения биометрической информации. Ис-

пользуемые алгоритмы должны обладать низкой вычислительной сложностью

для возможности внедрения в мобильные биометрические системы.

1.6. �O6B8O > C9D6B= 7?469

Произведен обзор наиболее распространенных биометрических характери-

стик и методов распознавания человека. Рассмотрены основные области при-

менения и перспективы развития биометрических решений. Приведена общая

схема биометрической идентификации и место подсистемы обнаружения под-

делок в ее составе. Описаны общие группы подходов к построению подсистем

детектирования подделок. Рассмотрены наиболее широко используемые БХЧ

для мобильных систем идентификации человека. Описана специфика решения

задачи определения живости с учетом особенностей и сценариев применения

современных мобильных устройств. Выделены основные требования, предъяв-

ляемые к методам обнаружения подделок в мобильных биометрических прило-

жениях:

• некооперативность применяемых решений;

• переиспользование доступных аппаратных средств без внедрения допол-

нительных сенсоров;

• устойчивость к высокоизменчивым входным данным;

• низкая вычислительная сложность используемых алгоритмов.
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Основанные на биометрии системы идентификации личности показали вы-

сокую надежность в решении соответствующих задач обеспечения безопасного

доступа в самых разных областях человеческой деятельности. Значительную

часть жизни современного человека занимает взаимодействие с личным мобиль-

ным устройством, позволяющим совершать самые разнообразные действия, от

ведения личной переписки до осуществления рабочей и финансовой деятельно-

сти. В настоящее время подавляющее большинство доступных на рынке смарт-

фонов оснащены компактными биометрическими системами, которые призваны

упростить доступ к функционалу личного устройства для владельца и в то же

время защитить хранящиеся на нем данные от чужих глаз. Стоит упомянуть,

что далеко не все устройства могут обеспечить полную защиту личных данных

на смартфоне от несанкционированного копирования в случае взлома опытны-

ми хакерами в обход программной оболочки. Подразумевается, что биометри-

ческая система создает дополнительный уровень противодействия при взломе

неспециалистами, не имеющими знаний о скрытых уязвимостях мобильных опе-

рационных систем.

2.1. "EB59AABEF< @B5<?PAOI 5<B@9FD<K9E><I E<EF9@

К наиболее распространенным БХЧ, применяемым в современных персо-

нальных устройствах (смартфонах, плантешах и т.д.), относят рисунок папил-

лярных линий пальца и видеообраз лица. Обе из упомянутых модальностей

позволяют решать задачу аутентификации с высочайшей точностью, но первая

из них требует внедрения в мобильное устройство дополнительного сенсора для
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считывания отпечатков пальцев, что вызывает повышение суммарной стоимо-

сти и проблем встраивания нового технического элемента в дизайн. При этом

вторая из упомянутых БХЧ может быть получена при помощи фронтальной ка-

меры видимого света практически на каждом современном смартфоне. Данный

функциональный элемент обрел широкую популярность в последнее десятиле-

тие как следствие распространения социальных медиа и личных видеозвонков

и возросшей пропускной способности сотовых сетей.

Ввиду популярности лица и отпечатка пальца как биометрических модаль-

ностей особое внимание уделяется безопасности таких систем с точки зрения

противодействия спуфингу или взлому при помощи подделок. Системы распо-

знавания по лицу демонстрируют высокую степень уязвимости по отношению к

подобным попыткам несанкционированного доступа ввиду простоты создания

искусственных копий БХЧ. Распространенность социальных сетей позволяет

найти набор качественных фотографий лица, а для создания достаточно эф-

фективной подделки требуется лишь распечатать его в цвете на плотной фо-

тобумаге или продемонстрировать на дисплее высокого разрешения. В СМИ

упоминаются случаи успешного обмана встроенных технологий распознавания

по лицу для ряда современных смартфонов [109, 117]. Более того, обширные ис-

следования специалистов в области информационной безопасности [42, 139] де-

монстрируют результаты, показывающие наличие уязвимости к спуфингу прак-

тически во всех современных смартфонах с установленной операционной систе-

мой Android и единственной фронтальной камерой для получения видеообраза

лица.

В случае со сканером отпечатка пальца создание искусственной копии зло-

умышленников осложняется по ряду причин. Во-первых, необходимо некото-

рым образом получить качественный рисунок папиллярных линий одного из

пальцев жертвы, что требует близкого контакта и определенных навыков. Во-

вторых, воспроизвести этот рисунок при помощи пластилина, гипса или иных

вспомогательных материалов. Наконец, стоит учесть различия набора уязвимо-
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стей тех или иных типов дактилоскопических сенсоров. Иными словами, взлом

системы распознавания по отпечатку пальца требует от взломщика наличия

богатого практического опыта работы с подобными системами, в то время как

обман системы распознавания по лицу кажется весьма простым и интуитив-

но понятным процессом [91]. Поэтому наиболее актуальной модальностью для

разработки методов анти-спуфинга является видеообраз лица.

Применение мобильной биометрической системы предполагает учёт спе-

цифики взаимодействия с пользователем: требуется учитывать поведенческие

особенности человека и возможные значительные изменения окружения. По-

пытки распознавания могут происходить при ходьбе или при наличии тремора

рук, что приводит к дрожанию устройства и размытию кадра; пользователь мо-

жет носить очки, головные уборы, маски; смартфон допускается располагать

как вблизи лица, так и на расстоянии вытянутой руки, как в портретной, так

и в ландшафтной ориентации; наблюдаемая поза головы способна существенно

видоизменяться. Уровень освещенности может сильно различаться в различ-

ных локациях применения устройства: от 10−4 люкс в полутьме без источников

света до более 105 люкс под прямыми солнечными лучами. Эти факторы нега-

тивно влияют на качество биометрических данных (Рис. 2.1) и, как следствие,
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на точность идентификации и способность детектирования спуфинг-атак [119].

Вдобавок для мобильных устройств существуют требования удобства при-

менимости в повседневной жизни. Встраиваемые биометрические системы так-

же должны предоставлять простой интерфейс взаимодействия с пользовате-

лем и обеспечивать высокую скорость распознавания, которая во многом опре-

деляется вычислительной сложностью композиции применяемых алгоритмов

(Рис. 1.2. Также процесс аутентификации должен потреблять минимальное ко-

личество энергии устройства и допускать обработку входных данных с частотой

поступления кадров. Это создает компромисс между сложностью встраиваемых

алгоритмов и энергопотреблением, существенно ограничивает диапазон приме-

нимых методов детектирования подделок. К примеру, кооперативные подходы

к определению живости лица не могут быть встроены в мобильные биометри-

ческие системы.

Стоит также учитывать особенности мобильных систем защиты личных

данных, подобных паролям и пин-кодам. С недавних пор к этому списку стали

добавляться и сами алгоритмы идентификации вместе с обрабатываемой ими

биометрической информацией. Главное требование к таким системам — отсут-

ствие прямого доступа к ним извне из операционной системы устройства и ее

периферии. В настоящее время существуют технологии, реализующие необхо-

димые ограничения на практике, как правило в виде системы на чипе (SOC,

System on Chip). Это понятие подразумевает подсистему аппаратной начинки

устройства в виде части центрального процесса, оборудованную специальной

независимой от основной операционной системой. Среди наиболее широко рас-

пространенных — TrustZone от ARM [15]. Применения методов биометрического

распознавания внутри SoC осложняется из-за особенностей таких систем: умень-

шенная пиковая тактовая частота процессора, ограниченный объем доступной

оперативной памяти и в некоторых случаях невозможность использования мно-

гопоточности.
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Процесс несанкционированного доступа в систему биометрического распо-

знавания при помощи искусственно созданного материального артефакта, со-

держащего образ человека, чей биометрический шаблон сохранен в базе заре-

гистрированных пользователей, называется спуфингом (spoofing) или атакой

PA (presentation attack). Попытки взлома различаются по типам артефактов,

степени сложности получения изображения пользователя и уровню подготовки

злоумышленника.

Возможны следующие виды физических артефактов:

• Бумажные: распечатки изображения лица жертвы на обычной или фото-

бумаге повышенной плотности. Возможны модификации: создание проре-

зей для глаз или рта, вырезание по контуру силуэта лицевой области.

• Электронные: выведенное на некоторый дисплей изображение или видео-

запись лица пользователя.

• Объемные: созданные из некоторого материала маски, повторяющие гео-

метрию и текстуру лица жертвы. Тип используемого материала определя-

ет диапазон подвижности подобного вида атак: пластиковые или гипсовые

артефакты позволяют точно передать текстуру лица, силиконовые маски

могут давать подвижность лицевой области. Отличаются высокой времен-

ной и материальной стоимостью создания.

Подделки лица могут отличаться источниками биометрической информа-

ции:

• Уровень I: статическое изображение лица пользователя обычного каче-

ства. Пример: изображение из социальных сетей или полученное при по-

мощи скрытой фотосъемки.
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• Уровень II: видеозапись или изображение лица высокого качества. При-

мер: изображения личной фотосессии в контролируемых условиях осве-

щенности.

• Уровень III: видеозапись с набором лицевых движений: повороты голо-

вы, моргание или изображение лица в другой модальности. Примеры:

тепловой снимок, карта глубины, ближний инфракрасный спектр и т.д.

Такие данные практически невозможно получить без длительной слежки

за жертвой.

Лица, осуществляющие взлом, могут иметь разный уровень осведомленно-

сти о работе биометрических систем и подсистем определения живости:

• Уровень I: Обыватель, не обладающий опытом работы с биометрическими

системами.

• Уровень II: Пользователь, имеющий общее представление о методах детек-

тирования подделок, типах используемых сенсоров и скрытых проверках.

• Уровень III: Эксперт или группа экспертов в области биометрической

идентификации и информационной безопасности.

В совокупности с учетом вышеописанного можно составить следующую

классификацию спуфинг-атак:

• Базовая категория (Б): распечатанная или статичная и показанная на

экране фотография, как с видимыми так и с невидимыми краями под-

делки. При создании не требует высокого уровня экспертизы и специа-

лизированного оборудования. Источник лицевой информации: уровень I.

Минимальная экспертиза взломщика: уровень I.

• Продвинутая категория (П): демонстрируемая на экране высокого разре-

шения видеозапись пользователя или бумажная маска на основе фото вы-

сокого разрешения. Для создании бумажной маски возможно вырезание
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лицевой области по контуру силуэта или воспроизведение грубой трех-

мерной геометрии лица при помощи бумаги. Подобный тип атак неосу-

ществим без достаточного уровня экспертизы взломщика и высокого ка-

чества исходной фотографии/видеозаписи жертвы. Источник лицевой ин-

формации: уровень II. Минимальная экспертиза взломщика: уровень II.

• Экспертная категория (Э): данные из дополнительных модальностей и

объемные маски высокого качества изготовления. По сравнению с преды-

дущим уровнем требуются значительные временные и финансовые затра-

ты на подготовку и создание реалистичного артефакта. Источник лицевой

информации: уровень II. Минимальная экспертиза взломщика: уровень

III.

Подавляющее большинство видов атак, упоминаемых в литературе и в ма-

териалах открытых баз изображений, относится к категориям Б и П (табл 2.1,Рис. 2.2

Причина такой неравномерности в том, что оставшаяся группа Э является мало-

выгодной для практического взлома: необходима высокая степень экспертизы

злоумышленника вкупе с применением дорогостоящего и слабо представленно-

го на рынке оборудования.

По этой же причине на практике в требования заказчиков при составлении

технического задания для алгоритмов определения живости в составе мобиль-

ных систем распознавания по лицу входит устойчивое противодействия поддел-
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Метка Описание Категория

PR Печатная фотография без изменений. Возможна как

глянцевая, так и матовая печать.

Б

PC Силуэт лицевой области, вырезанный по контуру из пе-

чатной фотографии. Возможные изменения: вырезание

области глаз или рта для наложения поверх настоящего

лицо и совершения движений в этих регионах.

П

PP Вырезанный регион лицевой области, содержащий, к при-

меру, области глаз и щек, для наложения поверх настоя-

щего лица. Необходима проверка успешного прохождения

таким артефактом этапа сравнения с сохраненным в си-

стеме шаблоном.

П

SM Неподвижное изображение лица, выведенное на экран

смартфона.

Б

SI Неподвижное изображение лица, выведенное на экран вы-

сокого разрешения: планшета, ноутбука, телевизора.

Б

SV Видеозапись движений лица, выведенная на экран высо-

кого разрешения или смартфона.

П

MP Объемная бумажная маска низкого качества лица жерт-

вы.

П

MA Объемная пластиковая маска лица жертвы, повторяющая

геометрию и текстуру области интереса.

Э

MS Объемная силиконовая маска лица жертвы, повторяю-

щая геометрию и текстуру области интереса.

Э
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кам лишь первых двух категорий. В качестве примера можно привести список

требований к системам распознавания по лицу мобильной операционной систе-
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мы Google Android [93]. В списке рассматриваемых видов атак содержатся лишь

примеры подделок базовой и продвинутой категорий: фотографии лица, демон-

страция лица на экране высокого разрешения и вырезанные по контуру силуэта

лицевой области распечатки.

Стоит отметить, что реализация биометрических систем в составе Google

Android согласно упомянутому документу подразумевает введение ПИН-кода

устройства раз в 72 часа даже для самых устойчивых к спуфингу решений

(Biometric Class 3, formerly strong). Это говорит о некотором недоверии по отно-

шению к безопасности существующих на рынке мобильных систем распознава-

нии по лицу при помощи фронтальной камеры, и в то же время свидетельствует

о наличии спроса на разработку более совершенных алгоритмов определения

живости в индустрии.

2.3. "5;BD @9FB8B6 89F9>F<DB64A<S CB889?B>

Одна из первый работ [120] посвященных проблеме анти-спуфинга была

опубликована в 2002 году и постулировала основную мотивацию последующих

исследований: определение живости путем распознавании физиологической ин-

формации как признака подлинности биометрического шаблона.

Ранние разработки в области детектирования поддельных БХЧ появились

задолго до эпохи повсеместного использования методов глубокого обучения и

были основаны либо на текстурном анализе определенных областей интереса

региона лица, либо на обнаружении действий и движений объекта и коопера-

тивных подходах. Так в [82] предлагается использовать спектральный анализ

для построения классификатора, способного различать изображения подлин-

ных лиц и двумерных распечатанных масок. Отличия в освещенности объем-

ных объектов по сравнению с плоскими проявляются в области низких частот,

в то время как область высоких частот будет отражать несходство детализа-

ции искусственно созданных подделок по отношению к текстуре живого лица.
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в качестве классификатора применялся метод опорных векторов (SVM). Боль-

шую популярность в тот период развития анализа изображений имели текстур-

ные дескрипторы, например, LBP (local binary pattern) [100]. На основе этого

способа извлечения высокочастотных признаков была предложена работа [90],

также использующие метод опорных векторов для построения решающего пра-

вила. Существуют также решения [73], комбинирующие подходы к построению

признакового описания при помощи LBP и частотный анализ изображения ли-

ца. Упомянутые методы имеют значительное преимущество в виде низкой вы-

числительной сложности, что позволяет применять их с учетом ограничений

мобильной биометрической системы, но в настоящий момент не позволяют до-

стичь высокой обобщающей способности на более объемных выборках данных

с большим разнообразием спуфинг-атак.

Популярным подходом к определению живости лица является использо-

вание динамических признаков, извлекаемых из последовательности изображе-

ний. В одной из ранних работ [68] по данной теме предлагается анализировать

изменчивость периокулярной области лица для серии последовательных кад-

ров. Органы зрения отличаются большой подвижностью (движения глаз и век)

даже на сравнительно небольших временных интервалах, что позволяет исполь-

зовать эту особенность для противодействия статическим подделкам разного

вида. Ряд работ [101, 102, 126] посвящен непосредственно выявлению морганий

путем моделирования паттернов естественных изменений степени открытости

век у человека при помощи Conditional Random Fields (CRF) и сравнения с та-

ковыми у искусственно созданных примеров БХЧ. Анализ движений области

глаз часто применяется в контексте кооперативной биометрической идентифи-

кации. В нескольких работах [19, 77, 130] было предложено использование раз-

личных методов расчета оптического потока для последовательности кадров.

Его компоненты позволяют извлекать сложные динамические признаки лице-

вой области и оценивать грубую карту глубины, что является достаточным

условием для построения устойчивой защиты от двумерных статичных подде-
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лок. Ряд работ [80, 137] предлагает извлекать признаки формы лица но набору

кадров при помощи трехмерной реконструкции лицевой области и без опоры

на расчет оптического потока. К недостаткам подобных методов стоит отне-

сти их высокую вычислительную сложность. Более экзотический подход [74]

к извлечению динамических признаков живости предполагает использование

программно-регулируемого изменения фокуса камеры биометрической системы

при съемке подряд идущих кадров. Предполагается, что положение пользова-

теля в кадре не успеет существенно измениться, а отличия в степени размытия

переднего и заднего планов для объемных лиц и плоских подделок может быть

использовано для детектирования спуфинг-атак базового уровня сложности. В

качестве ограничений динамических подходов в контексте мобильных приложе-

ний стоит упомянуть снижение удобства применения биометрической системы

при росте количества последовательных кадров, необходимых для принятия

решения в связи с возрастающим временем отклика.

Зачастую при построении алгоритмов оценки живости видеообраза лица

исследователи полагаются на анализ фона сцены [55, 104, 146] с целью детек-

тировать неестественное искажение геометрии кадра и присутствие краев и ар-

тефактов, характерные для изображений подделок. Подобные решения часто

используются как комплементарные к методам определения подлинности по

лицевой области и динамическим признакам.

В последние годы сверточные нейронные сети показали высокую произ-

водительность применительно к задачам распознавания изображений по срав-

нению с иными уже существующими подходами. Описанные выше подходы к

определения живости лица были во многом идейно воспроизведены с использо-

ванием методологии глубокого обучения.

В литературе описано множество [17, 26, 83, 148] способов анализа тексту-

ры лицевой области при помощи нейросетевых классификаторов, построенных,

как правило, с помощью логистической функции потерь. Полученные резуль-

таты показали высокое качество решения задачи при валидации на данных
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внутри одной и той же базы изображений, содержащей как правило общий

набор типов подделок и видов камер в обучающей и тестовой выборках. При

этом решения демонстрировали [149] крайне низкие результаты при тестирова-

нии на непересекающихся базах с примерам подделок или типов сенсоров, не

встреченных сетью при обучении. Проблема обобщаемости при кросс-тестиро-

вании получаемых решений по мнению исследователей вызвана рядом причин,

важнейшая из которых — ограниченные по объему и вариабельности данные

открытых баз изображений подделок. Создание таких баз является крайне тру-

доемким процессом и требует от исполнителей высокого уровня экспертизы

в области. Ресурсов академических исследовательских групп по сравнению с

индустрией зачастую недостаточно для выполнения поставленной задачи, в то

время как коммерческие базы данных отсутствуют в открытом доступе. Второй

по важности причиной является склонность нейросетевых решений к переобу-

чению на текстурных особенностях изображений, что особенно проявляется на

небольших выборках. Сенсор каждой камеры обладает уникальным видом вы-

сокочастотных шумов, связанных с работой подсистем экспозиции и фокусиров-

ки [23]. Данные текстурные особенности проявляются по-разному на изображе-

ниях подлинных лиц и подделок в зависимости от условий окружений (уровень

и направление освещения), что связано с различиями в альбедо поверхностей,

представленных перед камерой. Наконец, стоит отметить, что зачастую постав-

ленная задача рассматривается как задача бинарной классификации на классы

«живое лицо»/«подлог», которая в процессе обучения нейронной сети решает-

ся минимизацией логистической функции потерь методом градиентного спуска.

При этом проблема определения живости в биометрических системах является

более многогранной: для предсказания требуется учет характеристик типа под-

делки, уровня освещенности кадра и изменчивости видов лица человека [149].

В связи с этим многие современные подходы к построению нейросетевых ме-

тодов анти-спуфинга предлагают широкий спектр [47, 69, 75, 87, 127] способов

регуляризации путем введения дополнительных функций потерь.
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Методы глубокого обучения применялись также для детектирования под-

делок по динамическим признакам набора кадров лицевой области [46, 85, 138,

142, 150]. Получаемые результаты демонстрировали прирост качества решений

по сравнению с однокадровыми подходами при валидации в рамках одной базы

данных, но сохраняли проблему снижения производительности при кросс-тести-

ровании. Особенностью данной группы методов является высокая вычислитель-

ная сложность, что затрудняет их адаптацию для ограничений мобильных био-

метрических систем.

2.4.  9FB8 BCD989?9A<S :<6BEF< ?<J4 8?S @B5<?PAB7B

GEFDB=EF64

В данной главе представлено решение для обнаружения подделок видео-

образа лица в мобильных биометрических приложениях, отвечающее соответ-

ствующим требованиям точности и быстродействия. Уникальными характери-

стиками метода являются: учет атрибутов лица и контекста кадра, позволяю-

щий осуществлять предварительную оценку живости и отбраковывать заведомо

некорректные примеры с учетом особенностей взаимодействия пользователя с

мобильным устройством; многостадийная структура алгоритма; а также комби-

нированное решение для детектирования подделок по набору регионов интереса

входного изображения. Упомянутые особенности позволяют применять метод в

режиме реального времени в условиях значительной изменчивости окружения.

2.4.1. %FDG>FGD4 @9FB84 BCD989?9A<S :<6BEF<

Общая схема предлагаемого решения дана на Рис. 2.3. Основная идея за-

ключается в построении системы обнаружения явных и характерных попыток

подделывания алгоритма распознавания с целью раннего отказа от дальнейшей

верификации. При этом в случае набора истории N подряд идущих кадров с

меткой «подделка», возможно прерывание текущей попытки верификации цели-
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ком. Вычислительно сложные алгоритмы определения живости в таком случае

предполагается применять только после успешного прохождения всех упомяну-

тых базовых проверок. Используемые методы ранних отказов от распознавания

должны при данном сценарии применения обладать крайне низкими значени-

ями доли ложных отказов (FRR, False Rejection Rate), чтобы применение их

последовательной комбинации не оказывало значительное влияние на общую

статистику отказов от распознавания.

Во множестве описанных в литературе работ задача детектирования подде-

лок очень часто рассматривается как задача бинарной классификации на два

класса «подлинный пример» и «подделка». Зачастую такая задача решается

путем обучения нейросетевой модели или ансамбля таких моделей на выборке
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значительного объема, содержащей большое количество примеров подделок раз-

ных видов и настоящих лиц с большой вариабельностью освещения. При такой

процедуре практически невозможно контролировать, что получаемые признако-

вые описания соотносятся с реальными артефактами, содержащимися в изобра-

жениях подделок (неестественные размытие, блики, границы); модель склонна

попадать в локальные оптимумы и демонстрировать эффект переобучегтя, что

порой приводит к появлению ошибок классификации (ложных пропусков) даже

для простейших примеров подлога [149].

Мотивация построения многостадийной структуры алгоритма определе-

ния живости с ранними отказами заключается в разбиении задачи на набор

блоков, каждый из которых отвечает за обнаружении одного из явных арте-

фактов, характерных для подделок. Во-первых, это позволяет применять менее

глубокие и вычислительно сложные архитектуры нейронных сетей. Во-вторых,

снижает вероятность ложного пропуска подделки. Наконец, полученную систе-

му проще поддерживать в случае необходимости подстройки под новый тип

входных данных. При обнаружении некорректной работы возможно отслежи-

вание ее причин до конкретного модуля, который возможно без существенных

затрат обновить за счет переобучения с выбором наилучшей модели по каче-

ству решения на отложенной валидационной выборке. В сценарии применения

единственной глубокой нейросетевой модели для определения живости, процесс

перенастройки будет существенно более затратным по времени и ресурсам, по-

скольку потребуется как соответствие прежним критериям производительности

на валидации, так и удовлетворение новым требованиям.

2.4.2. 'KёF GE?B6<= B>DG:9A<S

Применение алгоритма определения живости для мобильной биометриче-

ской системы требует учета большой изменчивости условий окружения при

построении комбинированного решения. В случае обнаружения сложного сце-

нария распознавания, например, попытки верификации в темном помещении,
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допускается изменение решающего правила с целью снизить уровень ложных

отказов системы. Подобный механизм адаптации возможен, поскольку значи-

тельная часть поддельных лиц будет заметно отличаться от подлинных в по-

лутьме с единственным источником освещения в виде экрана смартфона. Тем

не менее данное утверждение не верно для примеров подлога путем показа дис-

плеев с изображениями лиц.

Яркостные характеристики входных изображений сами по себе могут быть

использованы для оценки характеристик условия окружения. Однако такая

оценка будет некорректной в случае попыток подделывания при помощи снято-

го в полумраке изображения лица на небольшом ярком экране или распечатан-

ной на бумаге сцены с человеком, снятой в темном помещении, но предъявлен-

ной при естественном свете. Вдобавок, данный подход не может быть эффек-

тивно применен на практике вследствие присутствия в алгоритмах обработки

сигнала с сенсора фронтальной камеры процедуры автоматического подбора

экспозиции.

Тем не менее, подобранные параметры экспонирования (время открытия

затвора texp и коэффициент усиления cgain) могут быть получены в режиме

реального времени для текущего кадра. Уровень освещенности b (brightness)

снимаемой сцены прямо пропорционален упомянутым параметрам:

b ∼ texpcgain. (2.1)

Некоторые современные версии операционной системы Android позволяют полу-

чить значение параметра b во внутренней шкале измерений напрямую с камеры

без промежуточных расчетов. Вдобавок, большинство современных смартфо-

нов оборудовано датчиком освещенности, которые позволяет грубо оценивать

эту величину для передней панели устройства.

Совместное использование упомянутых характеристик позволяет постро-

ить систему адаптивной подстройки решающих правил для сложных сценариев

применения биометрической системы.
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2.4.3. �<6BEFP CB 7D4A<J4@ CB889?><

Процесс спуфинга мобильной системы распознавания злоумышленником

уровня экспертизы I или II допускает появление краев подделки в области види-

мости сенсора камеры, будь то границы распечатанной фотография (PR) или

рамка дисплея иного устройства (SM,SI,SV), Табл. 2.1, в то время как попытки

доступа реальным человеком как правило не будут содержать явных артефак-

тов подобного рода. Данный признак может быть использован для внедрения

дополнительного уровня защиты от взлома путем построения нейросетевого би-

нарного классификатора, оценивающего вероятность присутствия неестествен-

ных пограничных регионов в контексте кадра.

Наличие краев подделки внутри сцены является низкочастотной инфор-

мацией, для обнаружения которой не требуется высокое разрешение входного

растра. В результате для обучения нейронной сети будет достаточно информа-

ции, извлекаемой из результата масштабирования входного кадра к низкому

разрешению, что позволит существенно уменьшить количество операций с пла-

вающей точкой (FLOPs, Floating-Point Operations) прямого прохода сети для

любой применяемой архитектуры. Вдобавок допустимо исключить цветовую

информацию с целью снижения вероятности переобучения под цветовые ха-

рактеристики конкретной камеры мобильного устройства и перевести данные

из цветового пространства RGB в черно-белое представление. Эксперименталь-

ным путем было определено, что для входного кадра с соотношением сторон 1x1

для решения поставленной задачи будет достаточно монохромного растра с раз-

мерами 80× 80. В случае неквадратных размеров входного кадра допускается

масштабирование наименьшей из сторон к значению 80 пикселей с сохранением

пропорций.

Стоит учесть, что выборку обучающих примеров должны составлять изоб-

ражения подлинных лиц и лишь та часть примеров подделок (PR,SM,SI), Табл. 2.1,

в сценах которых наблюдается хотя бы один край подделки. Формирование
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подвыборки подобных примеров возможно путем экспертной разметки соответ-

ствующей части базы спуфинг-атак. При этом возникает риск переобучения на

задних планах как для живых лиц, так и для подделок, поскольку на практике

невозможно обеспечить полный диапазон всех возможных естественных фонов,

в том числе содержащих прямые контрастные линии.

Предлагается искусственно нарастить выборку поддельных лиц путем син-

теза дополнительных примеров в исходном разрешении данных, получаемых

с камеры устройства. Подобные подходы описаны в литературе [55, 147], но

применяются как правило для повышения обобщающей способности методов

определения живости в целом, без опоры на конкретные характеристики неко-

торых спуфинг-атак. Синтез примеров для распечатанных подделок типа PR не

составляет труда путем наложения региона исходного растра с лицом на неко-

торое вспомогательное случайное изображение естественного фона из общедо-

ступных баз данных [141] или подвыборки класса «настоящее лицо» непосред-

ственно. Имитация изменчивости расстояния и положения подделки возможна

путем случайной перспективной трансформации региона лица с последующим

размытием пропорционально размеру региона для имитации потери резкости,

а также случайно яркостной коррекцией. Малозаметные артефакты и неточ-

ности подобной трансформации будут пренебрежимо малы при последующем

масштабировании к низкому разрешению для обучения сети.

Для синтеза поддельных примеров SM и SI содержащих рамки смартфо-

нов, планшетов или стационарных дисплеев, предлагается создать вспомога-

тельную выборку изображений-шаблонов для ряда популярных устройств та-

кого рода в разных цветовых расцветках для большей вариабельности. Задний

план и область экрана таких изображений предполагается выделять разными

цветами для возможности последующего маскирования и наложения в соответ-

ствующие регионы растров случайных сцен фона и примеров лиц, содержащих-

ся в обучающей выборке для задачи, подобно технологии хромакей (chroma

key), Рис. 2.4.
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$<E. 2.5. �DI<F9>FGD4 A9=DBAAB= E9F< 8?S B5A4DG:9A<S CB889?B> E >D4S@<.

Синтезированные примеры всех упомянутых типов поддельных данных

предполагается добавить в обучающую выборку в пропорции 1:2 и сравнить ка-

чество полученных решений для исходного и расширенного набора данных на

отложенном тесте. Для отсечения наименее правдоподобных результатов син-

теза применялся детектор лиц [153]: в случае отказа искусственно полученный

растр не был добавлен в обучающую выборку.

в качестве архитектуры модели была выбрана неглубокая архитектура,

подобная [63] по строению блоков, Рис. 2.5. Разрешение входного изображения,

количество слоев и их параметров подобраны таким образом, чтобы обеспечить

медианное время обработки одного изображения до пары миллисекунд на одном

ядре современного мобильного устройства и лишь незначительно уменьшить
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Условия освещенности
Тип данных

REAL SM PR SI

IN 54172 14200 13661 14512

OUT 31340 4220 12367 4644

LI 22930 5351 1359 5690

Всего: 108442 23771 27387 24864

Синтетика - +12871 +13693 +12210
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скорость отклика системы целиком.

Описание используемой обучающей и тестовой выборок дано в табл. 2.2

При их формировании учитывалось требование балансировки примеров основ-

ных классов и подклассов по типам подделок и условий освещенности. Выборки

не пересекаются по личностям присутствующих на изображениях людей, чтобы

избежать переобучения на биометрические характеристики.

Обучение модели производилось в течении 300 эпох, с целью регуляриза-

ции применялись аугментации случайной коррекции яркости, насыщенности и

контраста, а также наложение случайного пуассоновского шума. Аугментации

поворота изображения не рассматривались, поскольку примеры с различной

ориентацией самих подделок содержались в искусственно синтезированной под-

выборке, и применение подобной трансформации может приводить к неесте-

ственным искажениям сцен. Результаты обучения модели (Табл. 2.3) и демон-

стрируют прирост производительности модели при обучении на расширенной

обучающей выборке. Подкласс примеров подлинных лиц для сценария распо-

знавания в естественном помещении показывает снижение точности классифи-

кации ввиду присутствия в базе данных сцен, снятых в офисных помещениях,

содержащих на фоне значительное количество контрастных линий и перепадов
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Обучающая выборка
Точность классификации, %

IN OUT LI PR SM SI

Базовая 96.5 97.2 98.7 95.7 98.2 96.4

Расширенная 98.4 99.3 99.1 97.9 99.2 98.0

&45?<J4 2.3. $9;G?PF4FO F9EF<DB64A<S @B89?9= A4 BF?B:9AAB= 6O5BD>9 8?S CB8>?4EEB6 CB8­

?<AAOI < CB889?PAOI CD<@9DB6.

яркости, похожих на края подделок. Подкласс примеров взлома при помощи

распечаток лиц также демонстрирует сниженную производительность по срав-

нению с другими типами подделок ввиду присутствия сцен, в которых фон

фотографии сливается с задним планом кадра.

2.4.4. �<6BEFP CB EF9C9A< D4;@OFBEF< D97<BA4 ?<J4

Мобильные биометрические системы распознавания для данной БХЧ ис-

пользуют фронтальную камеру для съемки. Попытки взлома такой системы

при помощи подделок, содержащих образ лица на сравнительно небольших дис-

плеях, наподобие таковых у смартфонов или планшетов, часто сопряжены с

необходимостью зафиксировать лицевой регион в области видимости камеры

непосредственно вблизи от нее.

Применение фронтальной камеры в системах идентификации в современ-

ных смартфонах часто осуществляется без автоматического определения фокус-

ного расстояния оптической системы с целью повышения скорости отклика при

попытке распознавания. Мобильные сенсоры захвата изображения в большин-

стве случаев оборудованы системой фокусировки, подбирающее оптимальное

положение линзы полным перебором таким образом, чтобы контрастность неко-

торого региона входного растра была максимальной. Поэтому процесс подстрой-

ки фокусного расстояния может занимать несколько секунд, что является кри-

тичным с точки зрения удобства применения устройства пользователем. Стоит

отметить, что во фронтальных камерах современных смартфонах начинают по-
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являться более оптимальные с точки зрения производительности альтернативы

упомянутому подходу, так называемые системы автофокуса путем определения

фазы (PDAF, phase detection auto-focus), позволяющие осуществлять подстрой-

ку параметров оптики за сотни миллисекунд, но их распространение ограничено

более высокой стоимостью таких решений. В связи с перечисленными особен-

ностями, мобильные биометрические системы часто фиксируют фокус камеры

при попытке распознавания соответствующим некоторому среднему ожидаемо-

му расстоянию от устройства до лица пользователя. Это приводит к тому, что

в некоторых сценариях использования лицевая область на изображении может

оказаться размытой, в частности, при попытках взлома при помощи артефак-

тов, расположенных вблизи устройства. Подобные попытки представляют зна-

чительную опасность, поскольку как правило не содержат явно неестественных

областей, соответствующих краям подделок, расположенных вне области види-

мости камеры.

Заметный смаз региона лица на входном изображении может быть обна-

ружен простейшим нейросетевым классификатором живости при условии, что

некоторая часть обучающей выборки примеров класса «подделка» содержат

подобный дефект, и при этом ничтожно малая часть примеров класса «подлин-

ное лицо» не содержит его. В противном случае возможны ложные пропуски

моделью поддельных растров, похожим по степени размытия на подлинные

вследствие переобучения. В случае использования обширной базы видеопосле-

довательностей, собранной при имитации попытки распознавания человеком в

естественных условиях в разнообразных условиях освещенности, практически

невозможно гарантировать отсутствие смазов в лицевой области. Слабо контро-

лируемые небольшие случайные движения рук или головы участников и иден-

тификация при даже медленной ходьбе неизбежно приведут к возникновению

размытия. Полученные в результате крупномасштабной съемки изображения

как правило подвергаются полуавтоматической обработке с целью выделения

региона лица и ключевых точек для последующего построения базы данных
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разметки и анализом части извлекаемых регионов лица человеком-экспертом

для отбраковки некорректных кадров. Но при такой процедуре бывает затруд-

нительно выявить все примеры смаза, который может быть слабо заметен при

просмотре изображений. Более того, восприятие степени размытия может раз-

личаться для разных людей-экспертов, что затрудняет фильтрацию некоррект-

ных примеров.

В таком случае для выявления подобных искажений изображения лица

и для повышения безопасности системы против спуфинг-атак, расположенных

вблизи смартфона, целесообразно разработать алгоритм оценки качества, поз-

воляющий определять степень смаза в области интереса. Подобный метод мо-

жет быть реализован в виде нейросетевого бинарного классификатора, оцени-

вающего вероятность присутствия неестественного размытия. Однако, процесс

обучения подобного решения сопряжен с рядом сложностей, затрудняющих его

практическую реализацию. Во-первых, как упоминалось выше, процесс созда-

ния бинарных меток для процедуры обучения затруднителен по причине труд-

ности интерпретации искажений такого рода. Во-вторых, ошибки в бинарной

разметки обучающей выборки могут привести к переобучению сверточной ней-

ронной сети на малой части некорректных примеров и привести к ошибкам ее

применения на практике и появлению уязвимостей. Наконец, степень размыто-

сти в области лица напрямую зависит от расстояния до объекта съемки, которое

вследствие этого требуется учитывать при принятии решения.

Чтобы справиться с перечисленными трудностями допустимо использо-

вать подходы самоконтролируемого обучения (self-supervised learning). Пред-

лагается свести задачу бинарной классификации к задаче регрессии некоторой

степени размытости лицевого региона в виде вещественного числа, чтобы впо-

следствии на валидационной выборке подобрать систему порогов в зависимости

от расстояния до объекта. При таком подходе в целом не требуется присут-

ствие поддельных примеров в обучающей выборке, допускается воспользовать-

ся примерами класса «настоящее лицо». К каждому изображению предлагает-
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ся применять фильтр Гаусса со случайно выбранным вещественным значением

дисперсии σ из интервала от 0 до σ0 = 3. Полученный в результате растр мо-

жет быть обработан неглубокой сверточной сетью, обучаемой на предсказание

выбранного значения σ путем минимизации среднеквадратичной ошибки меж-

ду истинным и предсказанным значением. Для такого сценария обучения не

требуется обширная и разнообразная выборка с корректной разметкой, выбор

целевой значения целевой переменной из равномерного распределения U(0, σ0)

обеспечивает широкий диапазон изменчивости обучающих данных.

Для обучающей выборки были отобраны порядка 100000 изображений под-

линных лиц в трех условиях окружения: естественное освещение, яркий сол-

нечный день при съемке вне помещения и полутемное помещение с уровнем

освещенности не превышающем 1-2 люкс, в котором освещение региона лица

возникает в основном за счет яркости подсветки экрана устройства. В качестве

области интереса для нейросетевого классификатора был выбран квадратный

регион лица, определяемый на этапе сегментации. Диапазон применимости мо-

бильной биометрической системы подразумевает возможность распознавания

устройства с расстояния вытянутой руки (50-60см). В таком случае использу-

емый алгоритм сегментации с учетом разрешения изображений, получаемых

от камеры, извлекает квадратные области со стороной, не превышающей 128

пикселей. С целью исключения артефактов, возникающих при повышении раз-

решения растра, данное значение было выбрано в качестве пространственной

размерности входных данных. Каждый регион лица большего размера, возни-
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кающий при попытках распознавания с более близкого расстояния, будет били-

нейно масштабироваться к разрешению 128 пикселей для обработки сетью. Для

снижения вероятности переобучения под высокочастотные особенности камер,

используемых при съемке базы изображений, цветности входных растров была

преобразована из формата RGB в монохромный.

Строение используемой архитектуры дано на Рис 2.6. При обучении при-

менялись аугментации случайного поворота на 90 градусов и случайной яркост-

ной коррекции для регуляризации и повышения обобщающей способности. Для

валидационной выборки помимо примеров изображений настоящих лиц были

отобраны подделки вида распечаток (PR), снятых без видимых границ вблизи

мобильного устройства, экранов смартфонов (SM) и планшетов (SI). Распре-

деление значений предсказанных степеней размытия на отложенной выборке,

содержащей примеры размытия для поддельных лиц, в зависимости от разме-

ров квадратной области лица и его типа дано на Рис. 2.7. В ходе исследований

было выявлено, что для обнаружения размытия требуется адаптивный порог,

зависящий от характерного размера лица в пикселях на изображении. Подо-

бранная форма зависимости значений порога представлена на Рис. 2.7 голубой

линией.
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Сценарии повседневного применения биометрической системы с мобильно-

го устройства подразумевают высокую степень изменчивости лицевой области.

В частности, допустимы возникновения перекрытий головными уборами, мас-

ками или темными непрозрачными очками, что затрудняет верификацию поль-

зователя и снижает количество доступной для детектирования подделок инфор-

мации, содержащейся в ней. Некоторые попытки подделывания при помощи по-

каза лиц на экранах мобильных устройств или дисплеев также содержат блики,

перекрывающие информативные области. В дополнение, требуется учитывать

присутствие закрытых глаз, которое может свидетельствовать о попытке вери-

фикации вне ведома владельца устройства в случае, если таковой находится в

состоянии сна, что создает угрозу безопасности личных данных [53].

С целью обнаружения упомянутых искажений предлагается применить

неглубокие нейросетевые классификаторы (Рис. 2.8, позволяющие оценивать

вероятности перекрытия верхней области лица PT, области рта PM, а также

вероятность присутствия закрытых левого и правого глаз PRC и P LC . Суммарно
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требуется обучение четырех моделей, каждая из которых будет применяться

для соответствующего региона интереса, извлекаемого из фронтализованного

растра области лица и масштабируемого к сравнительно малому разрешению

с целью сокращения вычислительной сложности. Фронтализация позволит по-

высить устойчивость к углам поворота головы в кадре, а небольшой размер

получаемых регионов достаточен для сравнительно несложных задач обнару-

жения артефактов или заметных и измеримых характеристик лица. Пример

извлечения регионов интереса приведен на Рис. 2.9. Каждая из моделей обу-

чается отдельно на соответствующей подвыборке при помощи логистической

функции потерь. Полученные вероятности рассматриваются как меры качества

изображения лица и используются для отказа от идентификации для кадра, в

котором присутствуют оба закрытых глаза или перекрытия периокулярной или

ротовой областей.

2.4.6. �B@5<A<DB64AAO= @9FB8 89F9>F<DB64A<S CB889?B>

Описанных ранее методы обнаружения артефактов, характерных для неко-

торых искусственных примеров рассматриваемой БХЧ, недостаточно для созда-

ния системы защиты от более искусно выполненных попыток взлома (Табл. 2.1,

таких как вырезанный регион лицевой области (PC или PP), а также от об-

разцов с невидимыми в поле зрения камеры краями, содержащихся в области

фокуса камеры.

Для детектирования таких случаев необходим нейросетевой модуль опре-

деления живости, который должен учитывать следующую информацию, пред-

ставленную на входном растре:

• особенности текстуры лица человека: артефакты печати, малозаметные

блики, муаровый узор и т.д.;

• неестественные паттерны в лицевой области: видимые обрезанные края

двумерной маски лица или отсутствие глубины резкости головы и фона и
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т.д.;

• нестандартный контекст снимаемой сцены: присутствие кистей человека

в кадре, неестественный силуэт и т.д.

Таким образом, для детектирования подделок требуется анализ соответствую-

щих регионов изображения человека при попытке распознавания, Рис. 2.10:

• образец текстуры лица с центром в области носа;

• регион вокруг головы, частично захватывающий задний план, область

шеи и плеч;

• весь кадр целиком.

Первый из перечисленных регионов с целью сохранения информации об ис-

ходной текстуре лица должен извлекаться без масштабирования, в то время как

пространственное разрешение оставшихся регионов может быть снижено с це-

лью уменьшения вычислительной сложности применений нейронных сетей при

сохранении производительности. Таким образом, для решения задачи определе-

ния живости по одному изображению лица человека требуется обучение как ми-

нимум трех сверточных нейронных сетей или блоков, по одному на каждый из

описанных регионов интереса. Для построения решающего правила допустимо

усреднение получаемых от классификаторов вероятностей, взвешенная сумма
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или комбинация упомянутых моделей в одну мультимодальную с несколькими

входными слоями. Однако, для практического применения вариант построения

ансамбля путем взвешенной суммы предсказаний с подбором значений весов на

отложенной валидации обладает рядом преимуществ. Во-первых, в таком слу-

чае менее затратно поддерживать и обновлять каждую из сетей по отдельности

в случае обнаружения критических случаев некорректной работы. Во-вторых,

снижается вероятность переобучения под конкретные комбинации трех регио-

нов, присутствующие в обучающей выборке.

В настоящее время не существует достаточно объемных баз данных изоб-

ражений или видеозаписей лиц и соответствующих подделок, полученных в сце-

нариях применения мобильной биометрической системы и содержащих значи-

тельную изменчивость параметров окружения и видимого образа пользователя.

По этой причине для проведения исследований и разработки была собрана соб-

ственная база данных. Ее образцы представляют собой видеообразы лица или

соответствующих подделок категорий Б и П длительностью от 3 до 10 секунд,

Табл. 2.1, полученных при помощи нескольких мобильных устройств с различа-

ющимися по характеристикам фронтальными камерами. Процесс съемки базы

включал в себя имитацию повседневного применения смартфона в различных

условиях освещенности: при ярком солнечном свете, засветках сбоку и сверху, в

естественном освещении в помещении, а также в полумраке (1-2 люкс) с вклю-

ченной подсветкой экрана устройства. Полученные видеообразы лиц включали

изменения поз головы человека, направления взгляда, присутствие носимых ак-

сессуаров (очки, маски, головные уборы), а также различные расстояния рас-

положения устройства относительно пользователя. Поддельные образцы также

были получены с вариацией освещения, расстояния и пространственной ориен-

тации. Детальная информация о собранной БД представлена в Таб. 2.4. Данная

база данных и ее подвыборке применялись для обучения моделей определения

живости, в том числе и в экспериментах, описанных ранее.

Для описанных регионов интереса была выбрана общая архитектура моде-
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#4D4@9FDO REAL PR PC PP SI SV

�B?<K9EF6B 6<89BDB?<>B6, FOE. LF. 830 189 101 40 192 188

�B?<K9EF6B EJ9A4D<96 BE69M9AABEF< 5 3

�B?<K9EF6B >48DB6 6 6<89BDB?<>9 30− 90 20− 40

$4EEFBSA<9 EN9@>< 25− 60 (E@)

�B?<K9EF6B CB?P;B64F9?9= 1220

$4EB64S CD<A48?9:ABEFP �;<4FO & �HD<>4AJO & �6DBC9B<8O

$4;D9L9A<9 @4FD<JO >4@9DO 1280× 960

&45?<J4 2.4. #4D4@9FDO 54;O 84AAOI 6<89BCBE?98B64F9?PABEF9=, <ECB?P;B64AAB= 6 Q>EC9D<­

@9AF4I.

$<E. 2.11. %FDB9A<9 A9=DBAAB= E9F< BaseNet.

ли BaseNet, представленная на Рис. 2.11. В данной модели применялись обыч-

ные сверточные блоки с батч нормализацией (Batch Normalization), демонстри-

рующие прирост обобщающей способности для решения задач детектирования

подделок [149] по сравнению с подходом MobileNet [63]. Для повышения произ-

водительности прямого прохода нейронной сети применялась 8-битная кванти-

зация операций свертки [21]. Размер входных данных для региона лица, получа-

емого без масштабирования, был подобран с учетом минимального возможного

размера прямоугольной области, определяемой на этапе сегментации и составил

128 пикселей. Для регионов контекста лицевой области и кадра целиком соответ-

ствующие размеры были подобраны с учетом требований производительности

сети и составили 140× 140 и 128× 170 соответственно.

Полное медианное время обработки входных изображения для соответ-

ствующих нейронных сетей на одном ядре мобильного процессора Qualcomm
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 9DO >4K9EF64,% "EAB6AB= 4?7BD<F@ + #B<E> 7D4A<J + �<J96O9 4FD<5GFO + "J9A>4 D4;@OF<S

�
4
8
D
O

FAR 1.54 1.03 0.98 0.51

FRR 4.33 4.91 5.10 5.32

EER 2.89 - - -

�
<
8
9B FAR, 1.42 0.89 0.83 0.92

FRR 2.04 2.55 2.64 2.84

FRR 1.90 2.55 2.64 2.84

&45?<J4 2.5. �4K9EF6B B5A4DG:9A<S CB889?B> @AB7BEF48<=AO@ @9FB8B@.

Snapdragon 888 составило 8, 11 и 13 мс.

2.4.7. $9;G?PF4FO CD<@9A9A<S @AB7BEF48<=AB7B 4?7BD<F@4

В соответствии с принятыми в области определениями и понятиями, опи-

санными, например, в [149], а также стандартах ISO/IEC 30107-1:2016 и ГОСТ

Р 58624.1-2019, для оценки характеристик системы обнаружения подделок были

выбраны следующие:

• FAR (False Accept Rate) — доля изображений подделок, ошибочно клас-

сифицированных как живые, также называемый в литературе APCER

(Attack Presentation Classification Error Rate);

• FRR (False Reject Rate) — доля изображений живых образцов, ошибочно

классифицированных как подделки, иногда также называемый в литера-

туре BPCER (Bona-fide Presentation Classification Error Rate);

• EER (equal error rate) - равный уровень ошибок, при котором FAR=FRR;

Полученные результаты по точности классификации набора данных под-

линных и поддельных примеров предложенным решением даны в таблице 2.5.

Описанные меры качества оценены при помощи системы автоматического те-

стирования на отложенной валидационной подвыборке описанной ранее базы

данных (Табл. 2.4). Подвыборка состоит из 10% полной выборки и из уникаль-
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ных субъектов общей базы, не содержащихся в обучающих наборах используе-

мых методов.

#DBJ98GD4 F9EF<DB64A<S применялась без учета результатов систем из-

влечения и сравнения признаков и опиралась лишь на выходные данные модуля

образмеривания (сегментации) лиц. Было рассмотрено два сценария тестирова-

ния:

1. Покадровое формирование предсказаний живости без учета принадлеж-

ности изображений видеопоследовательностям;

2. Оценка живости для видеопоследовательностей с экспоненциальным сгла-

живанием предсказаний и ранним отказом от дальнейшей обработки в

случае обнаружения последовательности N = 10 кадров, помеченных как

«подделка» модулями предварительной оценки качества 2.4.1;

3. Вычисление показателей точности классификации (Таб. 2.5).

В режиме обработки видеопоследовательностей таковые считались опреде-

ленными как «подлинные», если и только если хотя бы один кадр был определен

как таковой и при этом не произошло раннего отказа от продолжения проце-

дуры. Это объясняет достаточно высокие значения характеристики FRR для

покадрового режима, которые частично компенсируются учетом всех кадров

видеообраза лица.

�A4?<; 5OEFDB89=EF6<S Применимость предлагаемого подхода для сце-

нариев распознавания с помощью мобильного устройства была исследована при

помощи смартфона, оснащенного процессором Qualcomm Snapdragon 888 (2.84

GHz, Quad-core) в однопоточном режиме. Медианное время выполнения соста-

вило 10 и 32 (мсек) для операций первой и второй стадии (2.4.1, Рис. 2.3) соот-

ветственно.
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2.5. �O6B8O >B 6FBDB= 7?469

Исследованы подходы к построению модулей противодействия взлому при

помощи подделок в составе систем биометрического распознавания по видео-

образу лица, предназначенные для использования в мобильных устройствах

и учитывающие характерные для такого сценария применения ограничения и

особенности. Предложены, протестированы и внедрены:

1. новая многостадийная структура метода детектирования подделок, ос-

нованная на применении блоков обнаружения набора характерных для

искусственных БХЧ артефактов, позволяющая выполнять определение

живости человека при помощи устройства с существенно ограниченны-

ми вычислительными ресурсами в режиме реального времени (≈ 25 кад-

ров/сек.), удовлетворяющая критериям ошибок: FRR ≤ 3% при FAR ≤

1%.

2. алгоритм раннего обнаружения поддельных примеров, позволяющий:

• осуществлять разностороннюю оценку атрибутов лица человека на

изображении с целью обнаружения наиболее распространенных спо-

собов подделывания;

• производить анализ условий окружения при помощи вспомогатель-

ных данных с установленных в мобильное устройство сенсоров вспо-

могательных для их учета при принятии решения о живости пред-

ставленного системе лица;
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"CD989?9A<9 :<6BEF< ?<J4 CD< CB@BM<

EF9D9B>4@9DO

В отличие от систем, использующих трудно воспроизводимые биометриче-

ские признаки, такие, как рисунок отпечатка пальца или текстура радужки,

изображение лица человека несложно получить с целью создания подделок.

Множество систем распознавания лиц использует изображения в видимом диа-

пазоне, что позволяет осуществлять спуфинг-атаку на такую систему при по-

мощи обычной качественной фотографии, показываемой на цифровом экране

или распечатанной на принтере высокого разрешения (Глава 2).

Большинство представленных на рынке мобильных устройств с системой

распознавания по лицу, дающей доступ к личной информации пользователя

и осуществлению платежных операций, оборудовано дополнительными датчи-

ками [13, 51] для обеспечения высокого уровня безопасности против спуфинг-

атак, как правило сенсорами определения глубины. При этом небольшая груп-

па устройств [52, 118] снабжена парой фронтальных камер, позволяющих оце-

нивать глубину снимаемых сцен алгоритмами стереозрения. По сравнению с

большинством более совершенных датчиков, используемых для оценки глуби-

ны сцены, дополнительная фронтальная камера вносит небольшую добавочную

стоимость в систему по ряду причин. Во-первых, упомянутые сенсоры применя-

ют технологию активной подсветки для получения карты глубины, что требует

установки источника этой подсветки и приемника — дополнительной камеры,

зачастую восприимчивой к ИК-излучению, что делает ее совмещение с основ-

ной фронтальной камерой невозможным. Во-вторых, два добавочных датчи-

ка требуют для установки дополнительное пространство на передней панели

мобильного устройства, большую часть которой занимает сенсорный дисплей.

Поэтому разумно исследовать возможности применения фронтальных стерео-
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камер мобильных устройств для решения задачи анти-спуфинга в системах

распознавания по лицу.

3.1. "5;BD @9FB8B6 BCD989?9A<S :<6BEF< ?<J4 E CB@BMPR

4CC4D4FAOI ED98EF6

Подделки лица человека можно разделить на три группы по способу их

создания: распечатки изображения лица, цифровые изображения или видео и

лицевые маски [149]. Сложность детектирования подделок во многом определя-

ется качеством используемых материалов и устройств. Важнейшим принципом

обнаружения подделки лица является определение трехмерных характеристик

видимой сцены. Первые два способа здесь отсекаются, третий становится зна-

чительно более трудоемким.

Описанные в литературе подходы методы анти-спуфинга можно разделить

на две группы: использующие дополнительное оборудование (сенсоры глуби-

ны [129], камеры в ближнем инфракрасном диапазоне (ИК-камеры) [125], теп-

ловые камеры [121]) и основанные исключительно на программной обработке

входного изображения. Методы первой группы позволяют решать задачу детек-

тирования подделок с высокой точностью, однако их применение на практике

существенно увеличивает стоимость системы. Вторую группу можно разделить

на две подгруппы: кооперативные и некооперативные методы. Кооперативные

методы требуют выполнения определенных движений лицом и/или его частя-

ми в соответствии с запросом системы, что повышает уровень безопасности, но

раздражает пользователя и увеличивает время отклика системы.

Системы биометрической идентификации в мобильных устройствах, та-

ких, как смартфоны и ноутбуки, должны иметь малое время отклика, возмож-

ность работать на ограниченных вычислительных ресурсах, допускать примене-

ние в разнообразных и неконтролируемых условиях съемки. В случае с изобра-

жением лица человека в видимом спектре изменчивость условий съемки делает
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возможным появление практически идентичных низкокачественных изображе-

ний настоящих лиц и подделок [149]. Эти факторы существенно ограничивают

набор подходов к решению задачи.

Задача построения карты глубины сцены по изображениям стереокамеры

является классической [5]. Ее решение, как правило, состоит из нескольких

этапов: калибровка стереопары, построение карты смещений (диспаратности) и

последующее построение карты глубин с учетом параметров калибровки.

Более современный подход – применение сверточных нейронных сетей [27,

72, 152]. При наличии достаточно большого по объему и разнообразию набора

входных изображений можно решать как задачу оценки смещений [27], так и

извлечения глубины изображения в разнообразных условиях освещенности [72].

Недостатками этих подходов применительно к их использованию в мобильных

устройствах являются высокие вычислительные затраты и необходимость боль-

шого стереобазиса, такого, как, например, в беспилотных автомобилях. Описа-

ны менее ресурсоемкие подходы [155]. Для предсказания глубины сцены авторы

предлагают задействовать как информацию от мобильной стереопары с малым

расстоянием между центрами камер, так и от подсистемы фазового фокуса од-

ной из камер (PDAF, phase detection auto focus).

Большинство описанных в литературе методов, использующих стререо-

изображения для антиспуфинга, так или иначе пытаются извлечь информацию

о глубине изображения или видео лица человека для определения его живо-

сти [128]. Эти подходы имеют преимущество перед однокадровыми, особенно

для изображений, полученных в разнообразных условиях съемки. Как прави-

ло, такие алгоритмы основаны на классических или нейросетевых классифика-

торах, обрабатывающих признаки карты смещений или карты глубин. В [113]

авторы предлагают способ построения приблизительной карты диспаратности

при помощи небольшой сверточной нейронной сети, предобученной на целевом

домене. После этого этапа обучается вторая нейронная сеть, использующая при-

знаковые описания, которые получены от первой.
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В [84] для предсказания метки класса предлагается нейронная сеть, по-

строенная по принципу автокодировщика и состоящая из двух частей. Кодирую-

щая часть нейронной сети извлекает промежуточные признаки, которые затем

используются декодирующей частью для регрессии значений диспаратности.

Результат обработки входных изображений декодером затем подается в неболь-

шую сверточную нейронную сеть для классификации. Обе части нейронной сети

обучаются совместно как на регрессию истинных значений диспаратности, так и

на предсказание правильной метки класса, что повышает обобщающую способ-

ность полученной нейронной сети. Аналогичный подход был применен в ряде

работ по детектированию подделок и привел к повышению точности итоговых

решений [87]. Недостатком этого подхода является вычислительная сложность,

поскольку для предсказания метки класса требуется пропустить входную пару

изображений через обе части нейронной сети.

Все упомянутые работы используют обучающие выборки, полученные при

помощи стереокамер с большим стереобазисом (более 4 см), что повышает устой-

чивость и точность восстановления трехмерных признаков. Однако типичные

стереокамеры мобильных устройств имеют расстояния между центрами сенсо-

ров не более 2 см.

3.2. "5A4DG:9A<9 CB889?B> CD< CB@BM< EF9D9B;D9A<S

�O5BD HGA>J<< CBF9DP

Детектирование подделок – это задача бинарной классификации, при ре-

шении которой при помощи методов машинного обучения часто применяют

логистическую функцию потерь или перекрестную кросс-энтропию:

L0 =
1

K

N
∑

i=1

(

−yi log ai − (1− yi) log(1− ai)
)

→ min , (3.1)

где yi ∈ {0; 1} – метка класса, ai – ответ алгоритма на i-м примере обучающей

выборки, имеющей размер K.
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Пусть классификатором является нейросеть N(I0, I1;w) с набором весов w.

Ее предсказания соответствуют вероятности принадлежности лица на стерео-

изображении к положительному классу (в данном случае – к классу «настоящее

лицо»):

ai = N(I
(i)
0 , I

(i)
1 ;w) = P (yi = 1;w). (3.2)

Представим упомянутую сеть в виде композиции подсетей, осуществляю-

щих извлечение признаков из пары изображений Nf(I0, I1;wf) и предсказание

метки класса No(I;wo):

N(I0, I1;w) = No(Nf(I
(i)
0 , I

(i)
1 ;wf);wo). (3.3)

В работе подразумевается, что при генерации метки класса итоговая мо-

дель должна опираться на отличия глубины сцен, содержащих настоящие и

поддельные лица. При этом процедура минимизации функции потерь не гаран-

тирует того, что модель научится извлекать релевантные и устойчивые при-

знаки для корректных предсказаний на отложенных данных. Более того, как

показывают эксперименты, оптимизация лишь перекрестной кросс-энтропии не

обеспечивает хорошей обобщающей способности результата обучения в случаях

ограниченных по разнообразию и размеру обучающих выборок.

В литературе описаны способы повышения обобщающей способности ней-

ронных сетей за счет многоцелевого обучения [115]. Оптимизация осуществ-

ляется для суммы нескольких функций потерь, соответствующих разным, но

связанным между собой подзадачам. В результате при прохождении входно-

го сигнала через обученную нейронную сеть в ней возникают промежуточные

представления, порождающие более устойчивое признаковое описание для ре-

шения каждой из подзадач, в том числе и основной. Обобщающая способность

повышается за счет того, что процедура обучения не позволяет весам нейронной

сети оказаться в тривиальном для данного набора данных локальном оптимуме.

Применение данного подхода описано для задачи детектирования подде-

лок среди цветных изображениям лиц [48, 87]. Полученные модели показывали
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лучшее качество по сравнению с их аналогами с единственной классификаци-

онной функцией потерь.

Предлагается использовать вспомогательную функцию потерь, которая

позволит нейронной сети извлекать информацию о глубине представленной

на стереоизображении сцены. Для этого требуется добавить в модель подсеть

Na(I;wa), которая предсказывает карту принадлежности пикселей A к передне-

му плану с помощью признакового описания, полученного подсетью Nf(., .;wf).

Каждый элемент A может принимать только значения 0 или 1. Примеры таких

карт для истинного и поддельного лица показаны на Рис. 3.1.

4 5

$<E. 3.1. �4DFO CD<A48?9:ABEF< C<>E9?9= C9D98A9@G C?4AG: (4) A4EFBSM97B ?<J4; (5) CB8­

89?><.

Для каждого пикселя первого из входных изображений I0 с координата-

ми m ∈ [1;M ], n ∈ [1;N ] нейронная сеть Na(.;w) должна также предсказать

вероятность:

bmn = Na(Nf(I0, I1;wf);wa)mn = P (Amn = 1;wa, wf). (3.4)

В таком случае внутренние представления обученной нейронной сети бу-

дут содержать в себе информацию, связанную с особенностями глубины изоб-

ражений и величинами смещений между левым и правым изображениями сте-

реопары. Для моделирования принадлежности пикселей предлагается исполь-
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зовать сигмоидную функцию активации и для обучения применять логистиче-

скую функцию потерь 3.1 для каждого из пикселей по отдельности:

Li
1 =

1

MN

M
∑

m=1

N
∑

n=1

(

−Ai
mn log b

i
mn − (1− Ai

mn) log(1− bimn)
)

→ min , (3.5)

L1 =
1

K
Li
1 . (3.6)

Итоговая функция потерь определяется как сумма: L = L0 + L1.

#D9864D<F9?PA4S B5D45BF>4 6IB8AOI 84AAOI Большое значение для

качества работы классификатора имеет предварительная подготовка данных,

минимизирующая различия в условиях регистрации. Здесь рассматриваются

ректификация, определение ориентации лица и выбор цветового пространства.

Калибровка и ректификация. Первым этапом предобработки изображений

стереопары является ректификация – приведение изображений к некоторому

стандартному виду путем компенсации искажений, вносимых индивидуальны-

ми особенностями камер. Ректификация производится на основании калибро-

вочных данных, (матрица внутренних параметров камеры и коэффициенты

дисторсии) могут быть извлечены из памяти устройства [50]. Каждая камера со-

временных мобильных устройств калибруется на производственных линиях на

специальной установке, как правило, еще до окончательной сборки корпуса. К

сожалению, при сборке, транспортировке и эксплуатации положения сенсоров

и/или линз камер может измениться, что приводит к несоответствию калибров-

ки действительным параметрам камер [38]. Дефекты калибровки незаметны

в большинстве приложений, однако являются существенными для фотограм-

метрии. Повторная калибровка на стороне пользователя нежелательна даже в

автоматизированном режиме, поскольку это снижает удобство и вносит значи-

тельный риск некорректного выполнения.

По этой причине в данной работе используются изображения, полученные

без ректификации.
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Определение ориентации лица. Особенностью использования мобильных

устройств является то, что их ориентация при распознавании может быть раз-

личной: портретной и ландшафтной. Детектирование подделок происходит по-

сле этапа образмеривания.

Среди точек, полученных при образмеривании, содержатся положения цен-

тров глаз pR = (xR, yR) и pL = (xL, yL), эти координаты можно использовать

для определения ориентации входного растра. Угол наклона прямой, соединя-

ющей зрачки к оси OX , равен

αLR = arctg

(

yR − yL
xR − xL

)

и определяет ориентацию R входного кадра (рис. 3.2):

R =







































0, |αLR| <
π
4 ,

90, π4 < αLR < 3π
4 ,

180, |αLR| >
3π
4 ,

270,−3π
4 < αLR < −π

4 .

(3.7)

$<E. 3.2. %I9@4 >B@C9AE4J<< BD<9AF4J<< ?<J4 A4 6IB8AB@ D4EFD9

Значение R задает угол, на который требуется повернуть исходный растр

против часовой стрелки, чтобы ориентация лица на нем стала естественной,

строго «подбородком вниз».

Выбор цветового пространства. Цветовые каналы RGB-представления

изображений сильно скоррелированы, поэтому для повышения обобщающей
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$<E. 3.3. �DI<F9>FGD4 A9=DBE9F96B7B D9L9A<S

способности нейронных сетей предлагается применять либо иные цветовые про-

странства, либо избавляться от цветности вовсе [17]. В работе изображения

перед подачей в нейронную сеть преобразовываются к одноканальному (мо-

нохромному) представлению. К полученным парам растров применяется ал-

горитм блочного приведения гистограмм [8], чтобы избавиться от искажений,

вносимых расхождением автоэкспозиций стереокамер.

�DI<F9>FGD4 D9L9A<S

В качестве основы для построения нейронной сети была выбрана сравни-

тельно легковесная архитектура семейства UNet [114] с добавлением остаточ-

ных блоков [57] для улучшения сходимости. Модель устроена по принципу ав-

токодировщика, составленного из комбинаций сверточных блоков и операций

сокращения пространственной размерности (пулинга). Общее строение пред-

ставлено на рис. 3.3, архитектуры блоков кодирующей и декодирующей частей

сети – на рис. 3.4. Каждый элемент блок-схемы содержит название операции, ее

параметры и размер результирующего тензора. Символом s′ обозначена вели-
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$<E. 3.4. %FDB9A<9 <ECB?P;G9@OI E69DFBKAOI 5?B>B6: >B8<DGRM9= (4) < 89>B8<DGRM9= (5)

>B@CBA9AF.

чина смещения фильтра операции свертки. Большая часть сверточных блоков

кодировочной части построена по принципу, описанному в [63] для повышения

производительности архитектуры. Строение используемых сверточных блоков

дано в Таблице 4.1.

Пары изображений подаются в модель в исходной их ориентации (как они

получены с сенсоров камер), чтобы сохранить горизонтальным направление

смещений соответственных пикселей и упростить задачу сегментации перед-

него плана для декодирующей части. При этом промежуточное признаковое

описание лица после обработки входного сигнала кодировщиком может быть

представлено в некорректной ориентации 3.7. Чтобы упростить классифика-

цию, имеет смысл повернуть это признаковое описание пространственно на

угол, кратный π/2, таким образом, чтобы линия уровня глаз соответствовала

ориентации R = 0. На рис. 3.3 эта операция обозначена как слой компенсации

поворота.

Преобразование карты признаков.

В сетях, построенных по принципу автокодировщиков, нейроны внутрен-

него представления обычно имеют большие рецептивные поля, охватывающие

значительные связные области пикселей входного изображения. Такие представ-

ления с малой пространственной размерностью и большим количеством кана-
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лов содержат богатое агрегированное признаковое описание. В случае предска-

зания карты глубины или аналогичных задач с попиксельным предсказанием

некоторых значений важно при построении ответа с помощью декодирующей

части сети использовать внутреннее представление целиком. Однако задача де-

тектирования подделок является локальной: содержательная часть признаков

«живости» пространственно локализована в области лица на исходном растре с

поправкой на операции пулинга. Отличия подделок от настоящих лиц содержат-

ся именно в особенностях карты глубины вокруг лицевой области: у настоящего

лица в этой области присутствует резкий перепад по отношению к заднему пла-

ну и плавные перепады на переднем плане, а у поддельного перепад к фону и

на переднем плане отсутствует. Более того, учет информации от заднего плана

может привести к переобучению в связи с ограниченным размером обучающей

выборки.

При этом подача растра лицевой области напрямую в нейронную сеть

нецелесообразна, так как часть информации о соотношении глубины фона и

переднего плана может потеряться. Более того, лицо на изображении может

занимать различную площадь ввиду разнообразия расстояний съемки, поэтому

будет необходимо приведение входных данных к общему размеру, что может ис-

казить исходную карту смещений между правым и левым растром в стереопаре.

В работе предлагается отобразить область лица в промежуточном представле-

нии входного сигнала нейронной сети в результирующий тензор To фиксиро-

ванного размера S × S для его последующей обработки блоком предсказания

метки класса. Для отображения используется билинейная интерполяция.

Область лица задается в данном случае как прямоугольник C = (x, y, w, h),

где x, y — положение центра прямоугольной области, w, h — ее ширина и высо-

та соответственно. Значения параметров вычисляются из положения ключевых

точек на лице:

x =
1

4
(xL + xR + xML + xMR), (3.8)
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y =
1

4
(yL + yR + yML + yMR), (3.9)

w = h = 2
√

(xR − xL)2 + (yR − yL)2 . (3.10)

В данной работе разрешение результирующего представления области ли-

ца S = 10 выбрано с учетом средних параметров области интереса, определен-

ных на обучающей выборке.

3.3. 1>EC9D<@9AF4?PAO9 D9;G?PF4FO

Предложенный метод протестирован на различных наборах стереоизобра-

жений как общедоступных, так и собранных вручную. Большое внимание уде-

лено получению изображений с разнообразными условиями регистрации.

(BD@<DB64A<9 54;O <;B5D4:9A<=.

В литературе описано несколько баз стереоизображений для задачи де-

тектирования подделок, полученных при помощи полноразмерных стереопар с

большим стереобазисом [84, 113]. Набора данных для мобильных приложений

и поставленной задачи в открытом доступе авторы не нашли. Тем не менее,

известна обширная база изображений Holopix [64], полученная при помощи мо-

бильной стереокамеры и содержащая большое разнообразие типов сцен, сре-

ди которых присутствует класс «селфи», соответствующий классу «настоящих

лиц» в контексте данной работы. При съемке были использованы два вида сен-

соров: со стереобазисом в 12 и 5 мм. Выборка содержит изображения различных

разрешений, снятые в разнообразных условиях. Среди 50 тыс. растров этой вы-

борки лишь 1052 можно отнести к классу «селфи» (selfie, self-photo), который

подразумевает наличие единственного лица в кадре и его расположение на рас-

стоянии от 20 до 60 см до камеры (рис. 3.5).

Для полуавтоматического отбора изображений применялся алгоритм де-

тектирования лиц [153]. Упомянутый набор данных допустимо использовать в
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$<E. 3.5. #D<@9DO <;B5D4:9A<= 6O5BD>< Holopix.

качестве отложенной тестовой выборки для проверки обобщающей способности

алгоритма.

По причине нехватки открытых баз изображений был осуществлен допол-

нительный сбор данных при помощи Google Pixel 3 – одного из смартфонов

с двойной фронтальной камерой, позволяющей получать изображения с обоих

сенсоров одновременно. Выборка изображений лиц получена от 90 участников

обоих полов. Каждому участнику предлагалось принять участие в съемке трех

сценариев освещенности: естественное освещение в помещении (E1), яркая за-

светка с одной из сторон или всей сцены целиком (E2, E3 или E5) и съемка в

полутемном помещении (E4). Примеры изображений даны на Рис. 3.6

Полученные фотографии частично были использованы для создания изоб-

ражений подделок следующих типов: распечатка лица (PR, printed), лицо на

экране высокого разрешения (SI, screen image) и лицо на небольшом дисплее

мобильного устройства (SM, smartphone). Примеры изображений подделок да-

ны на рис. 3.7. Сбор изображений подделок происходил как минимум в двух

условиях освещенности: при достатке (E1 или E5) и недостатке света (E4).

Съемки каждого участника и подделок его лица осуществлялась в двух

ориентациях мобильного устройства: портретной и ландшафтной. Применялись

два расстояния до сенсора камеры: порядка 25− 30 см, что соответствует ком-
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(7) (8)

$<E. 3.6. $4EE@BFD9AAO9 6 EB5D4AAB= 54;9 <;B5D4:9A<= GE?B6<S B>DG:9A<S.

фортному положение смартфона относительно глаз, и порядка 45 − 60 см –

положение смартфона в вытянутой руке. Подробное описание полученного на-

бора изображений приведено в табл. 3.1.

Разбиение на обучающую и валидационную выборки осуществлялось в про-

порции 7 к 3. При этом изображения одного и того же участника помещались

лишь в одну из подвыборок.

Положения лиц и ключевых точек на каждом из полученных изображений

определены при помощи метода [153]. Для формирования бинарных карт при-

надлежности пикселей переднему плану, описанных ранее, использован один
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$<E. 3.7. �EE?98G9@O9 F<CO CB889?B>.

из методов вычисления оптического потока с его последующей бинаризаци-

ей [88]. Грубые ошибки определения оптического потока, возникающие вслед-

ствие некорректной работы камеры мобильного устройства и/или съемки в

сложных условиях освещенности, исключены из обучающей выборки.

�D4A<JO CD<@9A<@BEF< @9FB84.

Как известно, разрешающая способность стереопары по глубине dZ, со-

гласно эпиполярной геометрии [11], зависит от нескольких параметров: величи-

ны стереобазиса B, фокусного расстояния используемых сенсоров f , погрешно-

сти измерения смещений d и самой глубины данной точки Z:

dZ = Z2 d

fB
. (3.11)

Мобильное устройство Google Pixel 3 имеет следующие характеристиках ка-

мер: B = 10мм = 0.01м, разрешение сенсоров W × H = 2448 × 3264 точек,

f = 4.5мм = 0.0045м, апертура 1/1.8. Оценочный размер сенсора по разре-

шению и значению апертуры составляет порядка ω = 5мм = 0.005м. Таким

образом, один пиксель на выходном изображении имеет физический размер

ω/W = 2 · 10−6м. При этом в целях повышения скорости обработки входных

изображений нейронной сетью пространственное разрешение требуется сокра-
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Тип освещенности
Количество изображений

Настоящие лица
Подделки

SM PR SI

E1 11326 5667 5844 7117

E2 7840

1839 8923 3006E3 10980

E4 3240

E5 10335 4555 4617 4822

Всего 43721 12221 19384 15936

тить до некоторого

WCNN =
W

s
, (3.12)

где s > 1 – коэффициент масштабирования, который можно определить в рам-

ках поставленной задачи.

В данной работе предполагается, что обученная нейронная сеть должна

уметь отличать настоящее лицо от плоского поддельного на расстоянии от 20

до 60 см при помощи информации о глубине сцены, которая содержится в сте-

реоизображениях. Характерный размер головы человека можно определить как

20 см, поэтому величина dZ не должна превосходить это значение, чтобы по-

тенциально извлекаемая карта глубины могла различать видимое лицо на фоне

близкого плоского объекта позади, в худшем случае при Z = 0.6м.

Точность определения смещений d задается равной 1 пикселю на растре

пониженного разрешения WCNN, т.е.:

d =
sω

W
= 2 · 10−6s. (3.13)

Требуется выполнение следующего неравенства:

Z2 sω

fBW
< dZ ↔ s <

fBW · dZ

ωZ2
. (3.14)

75



Подставляя ранее определенные значения, получаем

s ⪅ 12.24. (3.15)

В таком случае наименьший допустимый размер используемого изображе-

ния в пикселях равен
W

s
=

2448

12.24
= 200 .

Это значение было выбрано в качестве разрешения входных изображений для

нейронной сети.

Ограничение сверху на разрешающую способность также определяет невоз-

можность применения предлагаемого метода для детектирования подделок в

виде плоских масок. Для детектирования этого типа спуфинга требуется раз-

решение dZ ≈ 5см = 0.05м, дабы извлекать информацию о геометрии лица

и его частей. Тогда требуется использовать коэффициент масштабирования

smask = 1
4s ⪅ 3.06, что определяет минимальный размер изображения в 816

пикселей. Применение нейронных сетей в условиях видеопотока с таким про-

странственным разрешением в реальном времени на маломощных мобильных

вычислительных устройствах в условиях ограничений внутренней защищённой

ОС [15] затруднительно.

#DBJ98GD4 B5GK9A<S.

Все эксперименты с обучением нейронных сетей проводились на обучаю-

щей части выборки с контролем на валидационной части. Модели обучались

методом стохастического градиентного спуска с адаптивным моментом. Пер-

воначальное значение темпа обучения составляло 0.001 и уменьшалось экспо-

ненциально в 0.9 раз каждые 10 эпох. Обучение каждой модели проводилось

на протяжении 128 эпох. Для предсказания метки класса при валидации ис-

пользовались лишь кодирующий и классификационный блоки нейронной сети.

Декодирующий блок не участвовал, поскольку его предназначение – лишь ре-

гуляризация обучения.
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Во время обучения для повышения устойчивости модели к вариациям вход-

ных данных применялись аугментации случайной яркостной коррекции, нало-

жения случайного пуассоновского шума, случайного аффинного поворота на

угол до 20◦ относительно оптического центра изображения, случайного отобра-

жения по горизонтали и извлечения случайного региона фиксированного раз-

мера вокруг области лица, меньшего, чем размер исходного изображения.

Помимо этого, в отдельном эксперименте была применена операция слу-

чайного обнуления смещений между пикселями пары: для некоторых примеров

вне зависимости от метки класса одно из них приравнивалось к другому, ре-

зультату присваивалась метка «поддельное лицо» и вспомогательная маска 3.4

заполнялась нулями. Интуиция подобного подхода состоит в регуляризации про-

цедуры обучения нейронной сети. В результате описанного преобразования по-

строенные в модели признаковые описания должны опираться на особенности

карт смещений, а не на текстурные характеристики растров. Нейронная сеть,

обученная таким образом, помечена как “RZ — RandomZero”.

%D46A9A<9 @B8<H<>4J<= CD98?4749@B7B CB8IB84.

Поскольку осуществить сравнение качества решения предлагаемого мето-

да с аналогами затруднительно ввиду различий области применения и источни-

ков входных данных, решено осуществить сравнение с базовыми алгоритмами,

не использующими стереоинформацию.

В работе рассматривается несколько способов построения нейросетевого

классификатора для решения задачи антиспуфинга. Самый простой способ –

использование лишь одного изображений из стереопары в черно-белом режиме

для предсказания метки класса. Такая модель применена в качестве базового

алгоритма с именем “Base”. Этот подход можно усложнить, добавив интерпо-

ляцию карты признаков вокруг региона лица. Модели с такой модификацией

обозначены как “ROI”.

Основной способ предсказания метки класса – использование пары изобра-

жений в черно-белом режиме без добавления декодирующего блока (разд. 3.2)
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и без применения интерполяции признаков региона лица (разд. 3.2). Этот класс

моделей имеет наименование “Stereo”. Далее этот подход можно развить, доба-

вив соответствующие модификации, первую из которых предлагается обозна-

чить через “Aux”.

Результаты вычислительных экспериментов с разными модификациями

предлагаемого подхода даны в табл. 3.2.

&45?<J4 3.2. �4K9EF6B D9L9A<S A4 BF?B:9AAB= 6O5BD>9

Модель
Значения мер, %

APCER BPCER EER

Base 0.12 41.31 12.54

Base+ROI 0.58 15.06 4.82

Stereo 2.35 13.02 4.95

Stereo+Aux 0.89 2.9 1.89

Stereo+Aux+ROI 0.57 3.01 1.45

Stereo+Aux+ROI+RZ 0.23 5.24 1.24

Основной мерой качества в задаче детектирования подделок считается зна-

чение равной ошибки классификации (EER). Значения APCER и BPCER отра-

жают склонность моделей к присваиванию метки класса «1» или «0» на пороге

принятия решения 0.5.

По итогам вычислительного эксперимента наилучшая точность решения

на валидационной выборке достигается для модели типа “Stereo” со всеми упо-

мянутыми выше модификации. Базовые модели этого типа чаще присваивают

входным изображениям метку класса «подделка». При этом добавление моди-

фикаций, призванных получить более информативные признаки для решения

поставленной задачи, действительно повышает обобщающую способность моде-

лей, что отражается на итоговых мерах качества.

Модели типа “Stereo” позволяют получить лучшее решение задачи по срав-

нению с моделями типа “Base”. При этом добавление модификации “ROI” да-
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ет возможность повысить производительность до уровня базовой модели типа

“Stereo” без модификаций. При этом модели “Stereo” используют больше инфор-

мации при работе. Скорее всего, это связано с тем, что модификация “ROI” сни-

жает склонность сети к переобучению на признаках заднего плана, а текстурной

информации лицевой области растров достаточно, чтобы достичь сравнительно

высокой точности решения на валидационной выборке.

В качестве отложенной тестовой выборки была использована подвыборка

набора изображений [64]. Для оценки выбрана модель “Stereo+Aux+ROI+RandomZer

порог принятия решения был принят равным порогу меры EER: 0.38. В резуль-

тате 970 из 1052 пар растров было помечено алгоритмом как «настоящее лицо».

Это соответствует точности классификации в 92.2%. Среди ошибок классифи-

кации большую часть (51 пример) составляют пары, содержащие изображение

лица на большом расстоянии и снятые на сенсоры со стереобазисом в 5мм, что

можно понять из визуализации карты смещений для этих примеров. Оставшие-

ся ошибочные предсказания содержат, напротив, лица, снятые с очень близкого

расстояния (менее 20 см), и лица, снятые со значительными бликами от солнца

в кадре.

"J9A>4 CDB<;6B8<F9?PABEF<.

Предлагаемая модель для классификации в режиме тестирования исполь-

зует лишь кодирующий и предсказательный блок описанной нейронной сети.

Суммарное количество операций умножения и сложения в данных блоках моде-

ли составляет порядка 63.2 MFlop. Медианное время выполнения на одном ядре

процессора Qualcomm Snapdragon 888 составляет 65 мс. Применение 8-битной

квантизации весов и активаций обученной нейронной сети методом [21] позво-

ляет сократить время выполнения до 23 мс за счет применения целочисленной

арифметики и оптимизации операций свертки.
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3.4. �O6B8O > FD9FP9= 7?469

Предложен метод определения спуфинг-атак в мобильных системах рас-

познавания по лицу с применением пары камер с малым стереобазисом. Он

заключается в использовании сверточной нейронной сети небольшого размера,

обученной со специальной функцией потерь. Предлагаемый подход достигает

высоких показателей точности детектирования подделок, сравнимых с описан-

ными в современной литературе аналогичными подходами, в том числе на дан-

ных открытой базы стереоизображений. От известных аналогов предлагаемый

метод отличается малым временем выполнения на современных мобильных про-

цессорах, поэтому может быть применен для детектирования подделок в био-

метрических системах с малыми вычислительными ресурсами.
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Выделение (сегментация) региона радужной оболочки глаза на изображе-

нии — неотъемлемая составляющая любого алгоритма распознавания по данно-

му биометрическому признаку. Ошибки на данном этапе приводят к повышению

уровня ошибок принятия решений системы в целом, снижая в итоге ее надеж-

ность и удобство применения [108]. Значительная часть описанных в литературе

методов предполагают использование системы в условиях мало изменяющихся

условий регистрации изображения. Для подобного сценария применения систе-

мы допускается применение основанных на эвристиках классических методов,

которые позволяют достичь необходимой точности локализации. Расширение

диапазона применения рассматриваемой биометрической технологии распозна-

вания требует разработки более гибких и устойчивых к изменчивым условиям

съемки подходов к сегментации радужки.

Вариативные сценарии применения пользователем мобильного устройства

в быту расширяют диапазон рассматриваемых качественных характеристик ре-

гистрируемых системой изображений, что, в свою очередь, существенно влияет

на свойства извлекаемой биометрической информации.

Стоит упомянуть границы изменчивости условий съемки, связанных с осве-

щенностью, уровень которой варьируется в диапазоне от 10−4 в темном помеще-

нии или в ночное время суток до 105 (лк) при воздействии прямых солнечных

лучей в середине дня. Сценарий мобильного распознавания по РОГ допускает

наличие различных источников света с самым разнообразным расположением

относительно лица субъекта съемки. Тени, блики и отражения способны вне-

сти заметные искажения в наблюдаемую текстуру биометрического признака.

Внешние условия в процессе распознавания способны спровоцировать морга-

ние, сильное прищуривание или резкие движения глаз, что может привести к
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деградации качества изображения в целом. Реакция на свет может вызывать из-

менение размеров зрачка пользователя устройств и повлечь деформацию струк-

туры радужки. Более детальное описание влияющих на распознавание условий

внешней среды дано в [99, 111, 131, 154]. Примеры изображений радужки, за-

регистрированных при воздействии упомянутых внешних факторов, даны на

Рис. 4.1.

4.1. "5;BD EGM9EF6GRM<I @9FB8B6

В последние два десятилетия было предложено значительное количество

решений задачи сегментации или образмеривания области пикселей радужки

на изображении глаза. Значительная их часть нашла свое применение в ком-

мерческих решениях и позволила достичь высокой точности не мобильных био-

метрических систем. Некоторые из алгоритмов выделения радужки можно за-

служенно называть классическими.

Упомянутые подходы можно разбить на несколько групп, связанных об-

щей методологией решения задачи:

• Использование интегро-дифференциального оператора, впервые описан-

ного в [35]. В предположении, что зрачок и радужку можно аппроксими-

ровать двумя концентрическими окружностями, имеет смысл применение

оператора, позволяющего выделять радиально-симметричные структуры.

Основанные на данной идее методы позволяют достичь высокой точности

82



локализации границ радужки, но обладают чрезмерно высокой для боль-

шинства приложений вычислительной сложностью [6].

• Методы, основанные на анализе гистограммы изображений с последую-

щей бинаризацией для поиска областей зрачка и радужки и их образмери-

вания. Подобные решения обладают низкой вычислительной сложностью

и хорошо зарекомендовали себя в применении к изображениям высокого

качества, полученных в контролируемых условиях [31, 134], но демонстри-

руют снижение точности в более естественных сценариях [105, 106].

• Моделирование границ РОГ параметрически заданными кривыми и опре-

деление оптимальных параметров этих кривых при помощи методологии

Хафа (Hough) путем анализа т.н. массивов-аккумуляторов. Среди множе-

ства описанных в рамках упомянутой методологии стоит выделить [20,

25, 107, 140, 4]. К достоинствам данной группы методов стоит отнести

низкую вычислительную сложность, которая зачастую достигается путем

применения ряда эвристик [2]. В то же время, подход Хафа менее устойчив

к шуму во входных данных по сравнению, например, с методами, приме-

няющими интегро-дифференциальный оператор и его модификации.

Перечисленные методы и их вариации составляют значительную часть ра-

бот, посвященных задаче сегментации изображения РОГ. Многие авторы зача-

стую предлагают способы повышения точности решения за счет применения

специальной предварительной обработки входного растра [103, 151], вспомога-

тельных решающих правил, позволяющих во многих случаях компенсировать

недостатки применяемых подходов [24, 35, 89, 96, 156, 6, 10]. В общем случае

решение задачи сегментации можно представить в виде алгоритма, составлен-

ного из нескольких блоков, представленных на Рис. 4.2. Работа [6] предлагает

подробный анализ и классификацию классических подходов, упомянутых вы-

ше.
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Распознавание изображений методами машинного обучения быстро разви-

вается в последние годы вследствие увеличения объема доступных данных и

роста производительности вычислительных систем. Среди упомянутой группы

подходов выделяется область глубокого обучения, демонстрирующая наилуч-

шее качество возможных решений при наличии обширных и разнообразных

обучающих выборок. Глубокие сверточные нейронные сети как частный при-

мер методов упомянутой области начиная с 2012 года применяются для мно-

жества задач компьютерного зрения и позволяют превзойти по точности не

только ранее разработанные классические подходы, но в некоторых случаях

даже человека [49, 71, 79, 132].

Подходы глубокого обучения постепенно нашли употребление и в алгорит-

мах биометрических систем, в частности, для задачи сегментации изображения

РОГ. Так в работе [86] впервые было показана возможность сегментации радуж-

ки для изображений, снятых в разнообразных условиях, при помощи достаточ-

но объемной сверточной нейронной сети. Задача была сформулирована в виде

попиксельной бинарной классификации: входному растру требовалось поста-

вить в соответствие соразмерную бинарную маску, значение каждого пикселя в

которой определяет класс объекта. К примеру, допускается помечать положи-

тельным классом область радужки, а отрицательным — фоновую информацию.

Авторы приводят сравнение двух подходов к решению такой задачи: «patch

based» и «end-to-end». Первый предполагает обучение сети с использованием

небольших фрагментов исходного изображения, каждому из которых в зависи-
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мости от его расположения поставлена в соответствие метка принадлежности

к положительному классу. Второй предлагает напрямую обучать нейронную

сеть предсказывать соразмерную бинарную маску с применением логистиче-

ской функции потерь.

Работа [16] предлагает иной способ построения решения при помощи «patch-

based» подхода. При этом в работе [124] того же года были показаны преимуще-

ства «end-to-end» решения на фоне упомянутой альтернативы. Авторы экспери-

ментально показали, что применение «patch-based» метода ухудшает качество

сегментации. Успешный пример применения актуальной для задач сегмента-

ции архитектуры SegNet [18] с регуляризацией при помощи техники дропаут

(dropout) [136] дан в [67]. Внедрение более современных методик построения

нейронных сетей для попиксельной сегментации [78] позволяет существенно по-

высить качество получаемых решений для вариативных входных данных. Так-

же предлагается [45] расширение «end-to-end» подхода: единственная нейрон-

ная сеть призвана решать задачи локализации, выделения и сравнения призна-

ков одновременно.

Упомянутые подходы позволяют достигать весьма высокого качества ре-

шения задачи локализации области радужки, однако их вычислительная слож-

ность затрудняет их применение в системах малой производительности, таких,

как мобильные устройства. Использование «end-to-end» подхода связано с необ-

ходимостью построения нейронной сети из двух составляющих: кодирующей

исходное изображение в некоторое промежуточное представление и декодирую-

щей, выполняющей в некотором смысле обратную операцию. Вторая компонен-

та требует большого количества операций сложения и умножения чисел за счет

операций повышения размерности при помощи сверточных слоев, что вносит

существенный вклад в общую вычислительную сложность.

Альтернативой «end-to-end» подходам являются методы, позволяющие оце-

нить параметры аппроксимирующих границы радужки кривых. Задача подбо-

ра таких параметров не требует предсказания карты результатов, соразмер-
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ной входному изображению, а лишь предсказания набора вещественных чиcел.

Такой подход требует меньшего количества слоев и обучаемых параметров в

применяемой модели. Как следствие, вычислительная сложность подхода со-

кращается как минимум в два раза, поскольку для CNN таковая растет прак-

тически линейно в зависимости от количества использованных слоев. Так в [40]

предлагается предсказывать координаты центра зрачка при помощи небольшой

сверточной нейронной сети. При этом полученное решение может быть затруд-

нительно применять на практике в мобильных устройств за счет неоптимальной

архитектуры модели относительно вычислительной сложности. К тому же, за-

дача локализации решена лишь частично, без детектирования внешняя граница

радужки.

При аппроксимации региона радужной оболочки окружностями точность

решения будет заведомо ниже по сравнению с «end-to-end» подходами, хотя бы

потому, что ее истинная форма отличается от идеально округлой [6]. Тем не ме-

нее, легковесная нейросетевая модель, способная давать грубую оценку положе-

ния пикселей РОГ на изображении может упростить последующее применение

более вычислительно сложных подходов, которым в таком случае потребуется

лишь уточнить искомое решение задачи.

4.2. �CCDB>E<@4J<S 7D4A<J D48G:>< @9FB84@< 7?G5B>B7B

B5GK9A<S

В данной работе предлагается метод аппроксимации границ радужки окруж-

ностями с допустимой ошибкой не более 5% от диаметра ее области. В осно-

ве метода лежит применение сверточной нейронной сети с небольшим коли-

чеством параметров, обучаемой при помощи функции потерь, которая приме-

няется для задач классификации. Решение задачи детектирования радужной

оболочки осуществляется как последовательность шагов: сперва применяются

две сверточные нейронные сети для определения параметров ограничивающих
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окружностей, затем при помощи эвристического подхода оценивается качество

полученных предсказаний.

#BEF4AB6>4 ;484K<.

Входными данными для предлагаемого метода является изображение, на

котором заведомо содержится глаз. Без ограничения общности будем предпо-

лагать, что входное изображение I есть квадратный растр размером W × W

пикселей, внешняя и внутренняя границы радужной оболочки на котором зада-

ются двумя окружностями: (Xi, Yi, Di) и (Xp, Yp, Dp), где X, Y — координаты

центра окружности диаметром D в левосторонней системе координат с центром

в верхнем левом углу изображения. Индексы i и p соответствуют границам

«склера-радужка» и «радужка-зрачок». Значения координат центров и диамет-

ров обеих окружностей при этом удовлетворяют неравенствам:











min {X,W −X, Y,W − Y } <
D

2
,

D ⩽ W ⩽ 4D .

(4.1)

Результатом работы описанного метода являются параметры аппроксими-

рующих границы радужной оболочки окружностей:

1. xi, yi, di — внешняя граница, «радужка-склера»;

2. xp, yp, dp — внутренняя граница, «радужка-зрачок».

Предлагается считать, что параметры окружностей были определены кор-

ректно, если абсолютная ошибка детектирования не превышает α = 5% истин-

ного диаметра радужки на изображении:

|xi −Xi| < αDi, |xp −Xp| < αDi,

|yi − Yi| < αDi, |yp − Yp| < αDi,

|di −Di| < αDi, |dp −Dp| < αDi.

(4.2)

Для оценки точности работы метода применяется набор или выборка из

N изображений, для каждого из которых возможно определить, удовлетворя-
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ют ли предсказанные на нем значения xki , y
k
i , d

k
i , x

k
p, y

k
p , d

k
p неравенствам (4.2).

Для обозначения истинных и предсказанных параметров окружностей для k-го

по порядку изображения из выборки используются верхние индексы. Совокуп-

ность упомянутых параметров применяется для расчета значений следующих

мер качества.

1. Средняя абсолютная ошибка оценки диаметра:

MAE(D, d) =
1

N

N
∑

k=1

|Dk − dk|. (4.3)

2. Распределение относительных расстояний между предсказанным и истин-

ным центром окружности:

H(α) =
1

N

∣

∣

∣

∣

{

k :
ρk

Dk
< α, k ∈ 1, N

}∣

∣

∣

∣

, (4.4)

где ρk =
√

(xk −Xk)2 + (yk − Y k)2, | {·} | — мощность множества.

3. Распределение относительных ошибок детектирования параметров окруж-

ности:

Q(α) =
1

N

∣

∣

∣

∣

{

k :
lk

Dk
< α, k ∈ 1, N

}∣

∣

∣

∣

, (4.5)

где lk = |xk −Xk|+ |yk − Y k|+ |dk −Dk|.

#9D9IB8 > ;484K9 >?4EE<H<>4J<<.

В соответствии с постановкой задачи параметры границ радужки могут

быть рассчитаны с относительной ошибкой до 5%. Поэтому отсутствует необхо-

димость обрабатывать входные изображения в полном разрешении, и решение

задачи может быть получено без потерь точности при помощи масштабирован-

ного к меньшему разрешению изображения при условии корректности условий

(4.1). Размер такого изображения может быть выбран как минимальный, поз-

воляющий притом допустить относительную ошибку не более 5%. В предполо-

жении, что диаметр радужки принимает свое наименьшее возможное значение
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и с учетом неравенств (4.1), после масштабирования изображения глаза к раз-

меру W ×W диаметр будет равен D = W/4. Тогда максимальная допустимая

ошибка аппроксимации будет составлять

∆max = αDi = 0.05
W

4
=

W

80
. (4.6)

Таким образом, чтобы максимально возможная ошибка составляла не ме-

нее одного пикселя, требуется выполнение неравенства W ≥ 80. Поэтому значе-

ние W выбрано равным 80 пикселям, что соответствует наименьшему допусти-

мому значению. Поскольку неравенство (4.1) всегда выполняется, параметры

(x, y, d) могут оцениваться как целочисленные. Это означает, что каждый па-

раметр может принимать конечное множество целочисленных значений от 0 до

W −1. Каждое из возможных изображения глаз может быть отнесено к одному

из W = 80 классов:
{

CX
k

}W−1

k=0
, где CX

k — класс изображений, для которых верно

X ∈ [k; k + 1). Аналогично, можно отнести изображения к одному из классов
{

CY
k

}W−1

k=0
значений Y и классов

{

CD
k

}W−1

k=0
значений D.

Таким образом, задача определения параметров x, y и d может быть све-

дена к решению трех задач классификации:

1. на классы
{

CX
k

}W−1

k=0
;

2. на классы
{

CY
k

}W−1

k=0
;

3. на классы
{

CD
k

}W−1

k=0
.

Если для входного изображения I верны следующие утверждения: I ∈ CX
i ,

I ∈ CY
j , I ∈ CD

k , тогда x = i, y = j, d = k будут корректными параметрами

аппроксимации радужки в смысле условий 4.2.

$9L9A<9 ;484K< >?4EE<H<>4J<<.

Для решения задачи классификации в данной работе предлагается исполь-

зовать сверточную нейронную сеть с небольшим количеством параметров в со-

ответствие с идеями, предложенными в [63]. Особое строение сверточных сло-

ев, описанное в этой статье, упрощает применение подобных нейронных сетей
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в мобильных устройствах. Основным компонентом, из которых состоит предла-

гаемая сверточная сеть, является блок операций, описанный в табл. 4.1.

Слой Размер ядра Шаг Размер входного тензора

Depth-wise свертка 3× 3 s N ×K ×K

Batch normalization - - N × K−3
s

+ 1× K−3
s

+ 1

Активация ReLu - - N × K−3
s

+ 1× K−3
s

+ 1

Свертка 1× 1 1 N × K−3
s

+ 1× K−3
s

+ 1

Batch normalization - - M × K−3
s

+ 1× K−3
s

+ 1

Активация ReLu - - M × K−3
s

+ 1× K−3
s

+ 1

&45?<J4 4.1. %FDB9A<9 5?B>4 MobileConvBlock(M, s)

В дальнейшем предлагается называть такую последовательность операций

MobileConvBlock или MCB, где M и s — параметры MCB, которые определя-

ют соответственно количество каналов тензора после применения блока и шаг

применения фильтра в первой операции свертки «depth-wise».

Строение приведенной в данной работе сверточной нейронной сети дано в

табл. 4.2.

Гиперпараметры ее архитектуры были выбраны в серии экспериментов

как те, которые позволили достичь наилучшей точности решения задачи детек-

тирования на валидационной выборке.

Описанное в табл. 4.2 строение нейронной сети применяется как для детек-

тирования внешней границы радужной оболочки, так и для внутренней. Будем

в дальнейшем называть первую модель IrisModel, а вторую — PupilModel.

#D<@9A9A<9 @9FB84 > 89F9>F<DB64A<R.

В данной работе предлагается определять параметры границ радужной

оболочки в два этапа, Рис. 4.3.

Этап 1. Определяются параметры внешней границы радужной оболочки,

что позволяет сократить область поиска окружности зрачка на втором этапе.

90



Слой Размер входного тензора

Свертка 3× 3 1× 80× 80

MCB(16, 2) 16× 78× 78

MCB(32, 1) 16× 38× 38

MCB(32, 2) 32× 36× 36

MCB(64, 1) 32× 18× 18

MCB(64, 2) 64× 16× 16

MCB(64, 1) 64× 7× 7

MCB(64, 1) 64× 5× 5

Global Average Pooling 64× 3× 3

Полносвязные слои для x, y, d 64× 1× 1

SoftMax для x, y, d 80

&45?<J4 4.2. %FDB9A<9 A9=DBAAB= E9F< 8?S 4CCDB>E<@4J<< 7D4A<J D48G:><

$<E. 4.3. %I9@4 CD<@9A9A<S >B@5<A4J<< E9F9= 8?S CB<E>4 7D4A<J D48G:><
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Входными данными для нейронной сети первого этапа является изображение

глаза, результатом — параметры окружности «радужка-склера» (xi, yi, di), по-

лученные как решения трех задач классификации в соответствии с разд. 4.2

Этап 2. Осуществляется поиск параметров внутренней окружности (xp, yp, dp).

Исходя из особенностей строения человеческого глаза и статистических иссле-

дований [2], можно ввести ограничения, связывающие между собой упомянутые

выше параметры:

Dp ∈





1

7
Di;

3

4
Di



 . (4.7)

Исходя из (4.7), имеет смысл осуществлять поиск зрачка внутри области изоб-

ражения, заданного как квадратная область, содержащаяся между точками p1

и p2:

p1,2 =

(

xi ∓
3

8
di, yi ∓

3

8
di

)

.

Полученная область изображения масштабируется к размеру W×W с уче-

том 4.6 и подается в сверточную нейронную сеть, которая осуществляет поиск

(xp, yp, dp) как решение трех задач классификации в соответствии с разд.4.2

"J9A>4 >4K9EF64 89F9>F<DB64A<S.

(4) (5)

$<E. 4.4. "J9A>4 >4K9EF64 89F9>F<DB64A<S ;D4K>4: 4) – B5?4EF< <;6?9K9A<S CD<;A4>B6; 5) –

CD<;A4>B6B9 BC<E4A<9 >BAFD4EFABEF< 7D4A<JO

Предлагаемый метод детектирования границ радужки, как и ряд других,

по построению не позволяет оценить точность получаемой аппроксимации. На
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практике наличие подобной оценки позволило бы снизить долю ложных сра-

батываний метода и, следовательно, не допустить некорректно обработанные

входные данные на последующие этапы работы системы распознавания.

Здесь предлагается простой эвристический подход к оценке качества ап-

проксимации границ. Пограничные зоны радужной оболочки характеризует

присутствие контраста для областей «радужка-зрачок» и «радужка-склера»,

степень выраженности которых может отличаться из-за особенностей строения

глаза или изменчивости условий регистрации изображения. Анализ контрастно-

сти пограничных областей позволит получить оценку качества аппроксимации.

Граница «радужка-склера» редко видима полностью вследствие перекрытия

веками и ресницами, в отличие от области «радужка-зрачок». При наличии

данных о расположении век и ресниц было бы возможно произвести анализ

контрастности внешней границы, однако это выходит за рамки предлагаемого

метода. Поэтому оценивается только аппроксимация внутренней границы, как

изображено на рис. 4.4, а.

Построим признаковое описание для контрастности внутренней границы

радужки θp = (xp, yp, dp). Выделим на аппроксимирующей окружности 36 точек

с шагом в φ = 10◦:

V =

{(

xp +
dp
2
cos(kφ), yp +

dp
2
sin(kφ)), k = 0, 35

)}

.

Для каждого пикселя (x, y) ∈ V с помощью билинейной интерполяции мож-

но оценить средние значения яркости изображения снаружи и внутри данной

окружности для соседних с (x, y) пикселей. Оценкой контрастности в окрест-

ности (x, y) будет разность этих средних значений. Совокупность этих оценок

позволяет построить признаковое описание f = F (V ; I, θp) для аппроксимиру-

ющей окружности. Работа данного алгоритма проиллюстрирована на рис. 4.4.

Пусть q ∈ [0; 1] — величина, принимающая значение 0 для идеальной ап-

проксимации окружностями и 1 — для ошибки сегментации. Построим алго-
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ритм, вычисляющий:

q = ap(f ; θp) = ap(I; θp). (4.8)

Рассмотрим задачу построения такого алгоритма как задачу бинарной класси-

фикации и воспользуемся методом логистической регрессии. Обучающую вы-

борку можно сформировать, используя истинные параметры аппроксимации

границы «радужка-зрачок» для объектов нулевого класса. Признаковое описа-

ние для объектов положительного класса можно получить, используя заведомо

некорректные значения координаты центра и диаметра зрачка. Для повышения

робастности подобной оценки качества также предлагается применять эквали-

зацию гистограммы входного изображения I перед построением признакового

описания f .

4.3. 1>EC9D<@9AF4?PAO9 D9;G?PF4FO.

Для обучения и тестирования моделей глубокого обучения, осуществля-

ющих поиск параметров границ радужки, применялись данные открытых баз

изображений. Использованные базы можно разделить на две группы. Первую

составляют базы, содержащие изображения высокого разрешения CASIA 2[30],

ES, ICE[105] и MMU[62], а также UBIRIS v.1[106], имеющая примеры изобра-

жений низкого качества. Вторую группу составляли изображения низкого раз-

решения, характерные для растров, которые получаются с небольших камер,

встраиваемых в мобильные устройства: CASIA Mobile [29] и собранная вручную

база изображений Raspberry DB. База изображений CASIA Mobile составлена

из трех частей: M1, M2 и M3. В данной работе, однако, были использованы толь-

ко последние две части, поскольку первая содержит изображения недопустимо

низкого в соответствии с (4.6) разрешения. База изображений Raspberry DB

была получена вручную при помощи одноименного микрокомпьютера, обору-

дованного совместимой инфракрасной камерой с активной инфракрасной под-

светкой. Более подробная информация об упомянутых базах изображений при-
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ведена в табл. 4.3, а примеры изображений из каждой использованной базы —

на Рис. 4.5.

Название Код Кол-во изображений, тыс. Разрешение

CASIA2-Iris-Lamp CAS 5 640× 480

ICE Database ICE 3 640× 480

CASIA-Iris-M1-S2 CM2 5 1968× 1024

CASIA-Iris-M1-S3 CM3 1 1920× 1920

ES dataset ES 25 640× 480

MMU GASPFA MMU 2 320× 286

Raspberry DB RAS 1 640× 480

&45?<J4 4.3. �ECB?P;B64AAO9 54;O <;B5D4:9A<= D48G:><

Целью поставленного вычислительного эксперимента была проверка ка-

чества работы предлагаемого метода на изображениях разного качества и из

разных доменов. Параметры истинных аппроксимирующих границы радужки

окружностей (Xi, Yi, Di) и (Xp, Yp, Dp) для баз были получены с помощью раз-

метки человека-эксперта.

#B87BFB6>4 84AAOI.

Все эксперименты с обучением нейронных сетей проводились на обучаю-

щей выборке, составленной из изображений баз CASIA2, CASIA Mobile S2 и ES.

В качестве валидационной выборки были применены базы изображений MMU,

CASIA Mobile S3, а также половина изображений из базы ICE. В качестве отло-

женной тестовой выборки использовалась другая половина изображений базы

ICE и база изображений низкого качества UBIRIS v.1.

Во время обучения для повышения обобщаемости модели применялись

аугментации случайной яркостной коррекции, наложения случайного пуассо-

новского шума, случайного аффинного поворота, случайного отображения по

горизонтали и извлечения случайной области внутри изображения. Масштаби-
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(4) (5) (6)

(7) (8) (9)

(:)

$<E. 4.5. #D<@9DO <;B5D4:9A<= <ECB?P;G9@OI 54;: (4) CASIA; (5) ICE; (6) CASIA Mobile v2;

(7) %ASIA MOBILE v3; (8) ES; (9) MMU; (:) RAS

рование изображений к целевому разрешению (4.6) производилось после опи-

санных преобразований. Обучение моделей осуществлялось методом стохасти-

ческого градиентного спуска с адаптивным моментом [76]. Первоначальное зна-

чение темпа обучения составляло 0.001 и уменьшалось экспоненциально в 0.9

раз каждые 10 эпох.

#DBJ98GD4 B5GK9A<S < CB85BD 7<C9DC4D4@9FDB6.

Архитектура предлагаемых нейронных сетей такова, что их выходной слой

может содержать произвольное количество нейронов, а значит, осуществлять
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предсказание произвольного количества классов для координат центра и диа-

метра. В случае, если количество предсказываемых классов будет превосходить

размеры изображения, можно утверждать, что модель будет обучена находить

параметры границ радужки с субпиксельной точностью. Однако в данной ра-

боте подобный эксперимент не был произведен, поскольку постановка зада-

чи допускает некоторую степень неточности решения задачи детектирования

при условии, что применяемая сверточная нейронная сеть будет сравнитель-

но небольшой. Для поиска оптимального размера выходных слоев произведен

вычислительный эксперимент. Осуществлялось сравнение моделей, предсказы-

вающей количество классов, соразмерное разрешению входного изображения

«original» и уменьшенное вдвое «reduced». Постановка этого эксперимента име-

ла смысл ввиду большого количества возможных искажений видимого качества

изображений и неизбежных ошибок экспертной разметки. Каждая модель бы-

ла обучена на протяжении 50 эпох, после чего проводилось сравнение по мере

качества (4.4) со значением α = 0.05. Большей точности на валидационной

выборке достигли модели с размерами выходных слоев «original». В дальней-

ших экспериментах были использованы соответствующие их версии. Отличия

по качеству решения задачи для IrisModel составили 85.3% против — 60.9%,

для PupilModel — 99.7% против — 99.1%. Заметим, что разные версии моделей

PupilModel практически не отличаются по точности решения задачи аппрокси-

мации границы зрачка, что можно объяснить тем, что поиск производится уже

внутри выделенной области радужки, тогда как IrisModel вынуждена искать

положение центра глаза на изображении периокулярной области, которая, как

правило, более вариабельна.

После выбора размеров выходных слоев обе модели обучались на протя-

жении 128 эпох на независимых выборках. Полученные значения мер качества

(4.3) — (4.5) приведены в табл. 4.4.

#D<@9A9A<9 @B89?9= 6 >B@5<A4J<<.

Детектирование границ радужной оболочки на изображении глаза осу-
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Модель Выборка
H(0.05) H(0.1) H(0.2)

MAE
%

IrisModel
Валидация 88.03 99.76 99.9 0.54

Тест 90.1 99.5 99.9 0.43

PupilModel
Валидация 99.76 99.4 99.9 0.7

Тест 95.48 99.6 99.9 0.9

&45?<J4 4.4. �4K9EF6B @B89?9= A4 64?<84J<BAAB= < F9EFB6B= 6O5BD>4I

ществляется в два этапа, как описано в разд. 4.2. Качество работы комбинации

двух моделей оценивается при помощи меры качества (4.5). В данном экспери-

менте применялись следующие базы изображений: CASIA Mobile S3, Raspberri

DB, UBIRIS v.1, MMU и ICE как составляющие валидационной и тестовой вы-

борок.

Определение точности комбинации моделей IrisNet и PupilNet было прове-

дено как совместно с применением алгоритма оценки качества аппроксимации

границы ap(I; θp) (4.8), так и без него (табл. 4.5).

База изображений
Qp(0.05) Qi(0.05) Qa

p(0.05) Qa
i (0.05) FRR

%

Raspberry DB 95.5 98.34 97.4 98.34 0.2

CASIA Mobile S3 97.9 98.5 98.1 98.6 0.9

UBIRIS v.1 85.8 95.3 98.7 98.1 9.1

ICE 97.6 95.8 98.6 95.8 0.7

MMU 88.3 98.5 90.2 98.8 0.2

&45?<J4 4.5. $9;G?PF4FO CD<@9A9A<S >B@5<A4J<< @B89?9=

Для изображений, где найденная окружность «радужка-зрачок» была по-

мечена ap(I; θp) как ошибочная, изображение не учитывалось при расчете меры

качества 4.8. Скорректированные таким образом значения данной меры каче-
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ства приведены в столбцах Qa
p и Qa

i . Доля объектов с неверными метками оши-

бочной аппроксимации внутренней границы радужки рассмотрена в столбце

FRR.

Для оценки точности метода на мобильной базе изображений CASIA Mobile

S3 требовалось бы применение постороннего алгоритма выделения области гла-

за на входном изображении, поскольку это изображение содержит обширную

область лица участника. В данной работе предложен иной способ оценки точно-

сти, использующий искусственное создание выборки изображений лица с приме-

нением экспертной разметки. Для каждого изображения лица из данной базы

извлекается пять случайных прямоугольных областей глаза следующим обра-

зом:

1. размер области глаза выбирается случайно из равномерного распределе-

ния U(2Di, 4Di);

2. координаты центра области (x, y) выбираются случайно из равномерного

распределения U(−Di, Di).

Таким образом удается оценить точность детектирования радужки в условиях

ошибочной работы детектора области глаза.

Приведенные результаты вычислительного эксперимента демонстрируют

снижение качества работы предлагаемого метода на базах изображений низкого

качества, таких, как UBIRIS. Данная база содержит изображения с низкой кон-

трастностью на границе «радужка-зрачок», что также подтверждает высокий

уровень ложных срабатываний предложенного алгоритма ap(I; θp) в столбце

FRR, что, несомненно, усложняет задачу аппроксимации границ радужки. Обу-

чающая выборка предлагаемого метода имеет сравнительно малое количество

примеров изображений глаз, видимое качество которых подобно изображени-

ям UBIRIS. Наконец, база изображений UBIRIS отличается не только низким

контрастом границы «радужка-зрачок», но и распределением размеров зрачка

относительно радужки: большая часть изображений содержит в себе зрачки
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малого размера, сопоставимого по величине с бликом от осветителя. Низкая

точность работы детектора зрачка на базе MMU вызвана низким разрешением

исходных изображений и аналогично UBIRIS — большим количеством изобра-

жений с малым видимым размером зрачка.

#D<@9A9A<9 @B89?9= E CBE?98GRM<@ GFBKA9A<9@.

Помимо описанного в предыдущем разделе способа применения комби-

нации моделей, было проанализировано использование последующего уточне-

ния получаемой аппроксимации границ с помощью метода [35] со значительно

суженной областью поиска. По построению предлагаемый метод имеет ошибку

детектирования не выше 5% от истинного диаметра радужки. Таким образом,

область поиска параметров границы θ̂ = (x̂, ŷ, d̂) при уточнении методом [35]

можно определить следующим образом в зависимости от первичной аппрокси-

мации θ = (x, y, d):

x̂ ∈ [x− 0.05Di; x+ 0.05Di] ,

ŷ ∈ [y − 0.05Di; y + 0.05Di] ,

d̂ ∈ [d− 0.05Di; d+ 0.05Di] .

Вычислительная стоимость поиска внутри такой области пространства па-

раметров будет сравнительно невысокой. Результаты применения предлагаемо-

го метода с уточнениями даны в табл. 4.6.

Уточнение границ радужной оболочки при помощи классического мето-

да [35] позволяет повысить качество работы комбинации методов и снизить

долю ложных срабатываний алгоритма ap(I; θp) на базе UBIRIS, вызванных

низкой контрастностью на границе «радужка-зрачок» и ошибками детектиро-

вания зрачка. Однако прирост точности детектирования для границы зрачка

нельзя назвать существенным. Аналогично для базы изображений MMU при-

менение метода [35] для уточнения границы зрачка не привело к значительным
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База изображений
Qp(0.05) Qi(0.05) Qa

p(0.05) Qa
i (0.05) FRR

%

Raspberri DB 96.1 98.3 97.9 98.9 0.1

CASIA Mobile S3 98.3 98.7 98.7 99.0 0.3

UBIRIS v.1 84.5 97.5 92.7 98.9 5.9

ICE 97.6 95.8 98.6 95.8 0

MMU 89.2 98.8 92.3 99.2 0.1

&45?<J4 4.6. $9;G?PF4FO CD<@9A9A<S >B@5<A4J<< @B89?9= E CBE?98GRM<@ GFBKA9A<9@

улучшениям, поскольку данный метод работает неустойчиво на изображениях

с небольшими по величине зрачками.

%D46A9A<9 E EGM9EF6GRM<@< @9FB84@<.

Предлагаемый метод детектирования границ радужной оболочки на изоб-

ражении глаза также сравнивался с иными методами, описанными в [35, 89, 92,

140, 2].

Мера

качества

Метод детектирования

Уильдс Дугман Мазек Ма Ганькин CNN CNN и уточнение

εc 3.15 2.61 4.98 3.92 0.97 1.4 1.3

εr 6.12 4.39 5.15 5.39 1.13 1.9 1.7

tc+r (ms) 379.61 523.14 97.52 363.64 106.60 8 10

&45?<J4 4.7. $9;G?PF4FO ED46A9A<S E EGM9EF6GRM<@< @9FB84@<

Сравнение производилось с применением базы изображений MMU при по-

мощи следующих мер качества:

1. относительная ошибка детектирования центров:

εc =
1

N

N
∑

k=1

√

(yk − Y k)2 + (xk −Xk)2;
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2. относительная ошибка детектирования радиусов:

εr =
1

N

N
∑

k=1

|rk −Rk|.

Помимо точности детектирования в сравнение было включено медианное

время выполнения (tc+r) на одном ядре процессора Qualcomm Snapdragon 845.

Результаты приведены в табл. 4.7.

4.4. �O6B8O > K9F69DFB= 7?469

Предложен метод детектирования параметров, аппроксимирующих грани-

цы радужки окружностей для мобильных биометрических систем. Метод со-

стоит из двух сверточных нейронных сетей небольшого размера. Предлагаемый

подход достигает показателей точности детектирования, сравнимых с описанны-

ми в современной литературе, однако обладает существенно меньшим временем

выполнения на современных мобильных процессорах. Метод может быть при-

менен для получения грубой оценки границ, которая может быть использована

в дальнейшем для ее улучшения иными методами.
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Радужная оболочка глаза как биометрическая модальность является пер-

спективной технологией, применяемой в современных мобильных устройствах

1.1. К таковым относится несколько моделей известных производителей [37, 95,

116]. Как правило, методы биометрического распознавания применяются при

разблокировке устройства для повышения общего уровня безопасности. Допус-

кается и применение упрощении доступа к личной информации: например, к

платежным системам.

Система распознавания по РОГ как правило использует изображения, ре-

гистрируемые в ближнем инфракрасном спектре излучения с активной под-

светкой одним или несколькими диодами. Взлом системы путем предъявления

искусственно созданного биометрического образца (спуфинг, spoofing) затруд-

няется ввиду того, что требуется воссоздать видимые в ИК-диапазоне характе-

ристики глаза жертвы. Более того, наблюдаемые характерные особенности под-

делки будут более заметны в условиях активной подсветки. Тем не менее, были

выявлены факты успешного взлома или спуфинг-атаки нескольких оснащен-

ных сканером радужки мобильных устройств. Авторами выступили несколько

независимых групп профессионалов, чьей специализацией является взлом и де-

монстрация уязвимостей систем безопасности, в т.ч. и биометрических [22, 28].

Настоящая работа экспериментально подтверждает возможность успешно-

го обмана сканера радужки путем спуфинга, однако, лишь при выполнения ря-

да важных условий. Во-первых, растр радужной оболочки глаза должен быть

создан при помощи инфракрасной камеры высокого разрешения, без размытия

и ошибок экспонирования кадра. Во-вторых, глаза должны быть в достаточной

мере открыты и направлены взглядом в камеру. Стоит отметить, что соблю-

дение этих условий требует съемки объекта спуфинг-атаки с очень короткого
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расстояния или с применением телеобъектива высокого разрешения и трудно

реализуется на практике без кооперации или тесного контакта с жертвой. Нако-

нец, поддельное изображение РОГ должно быть напечатано на бумаге с разре-

шением не менее 600 dpi и иметь диаметр не менее 250-300 точек. Тем не менее,

можно сделать вывод, что задача детектирования подделок является актуаль-

ной и для рассматриваемых мобильных биометрических систем.

5.1. "5;BD ECBEB5B6 6OS6?9A<S CB889?B> D48G:><

В современной литературе описаны несколько эффективных способов под-

лога изображения РОГ при распознавании [33, 44, 60]. Наиболее распространен-

ным видом спуфинга является демонстрация фотографии изображения радуж-

ки жертвы, напечатанная на принтере высокого разрешения (свыше 600 dpi).

Аналогичным способом является использование экранов других устройств для

показа изображения или видеозаписи глаза пользователя в случае, если систе-

ма распознавания оперирует в видимом спектре. Допускаются также более экзо-

тичные и порой трудно обнаруживаемые виды атак: демонстрация искусственно

созданного из стекла или пластика глазного протеза или нанесение текстуры

РОГ жертвы на прозрачную контактную линзу, а также иные варианты, ими-

тирующие подлинный человеческий глаз для сенсоров системы распознавания.

В литературе описано несколько групп методов определения подделок РОГ:

• Требующие и не требующие внедрение в биометрическую систему допол-

нительной аппаратуры, специально предназначенной для детектирования

физиологических свойств подлинной радужки. К таковым можно отне-

сти глазной гиппус или изменение размера зрачка после неожиданной

смены освещения, получаемое в результате подсветки дополнительным

диодом [33, 44] в процессе регистрации изображения РОГ сенсором.

• Кооперативные и некооперативные по отношению к пользователю систе-
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мы. Взаимодействие с таковым осуществляется, к примеру, путем выво-

да подсказок с просьбой закрыть/открыть веки, совершить определенное

движение глазами и др.

Применение дополнительных аппаратных средств как и усложнение про-

цедуры распознавания путем взаимодействия с ее участником как правило за-

труднительно для мобильных устройствах потому, что такой класс методов де-

тектирования подделок способен заметно уменьшить удобство использования и

при этом увеличить стоимость технологии в целом [98]. По этой причине фокус

внимания исследователей в основном направлен на полностью автоматические

методы, которые наиболее выгодны при коммерческом применении. В то же

время к таковым предъявляются повышенные требования к их устойчивости к

вариабельности входных данных, универсальности и удобства поддержки.

Возможность детектирования подделок в системе распознавания по ра-

дужной оболочке была исследована Джоном Дугманом. В его работе [36] рас-

сматриваются атаки на биометрическую систему при помощи распечаток фо-

тографий глаз, сделанных в инфракрасном диапазоне. Для печати были ис-

пользованы лазерные принтеры, созданные по устаревшей на данный момент

технологии, вследствие чего имеющие характерные артефакты в виде видимой

невооруженным глазом на распечатке сетки точек. Дугман предложил искать

побочные максимумы в частотной области результата двухмерного дискретного

преобразования Фурье входного изображения. Данный подход показал высокую

точность детектирования распечаток глаз, однако оказался практически беспо-

лезным против подделок, изготовленных на современных лазерных принтерах,

обладающих высокой плотностью печати. Несмотря на это, идея применения

частотного анализа для детектирования изображений неживых глаз получила

развитие в работах [32, 58, 112].

Другим подходом к решению задачи определения живости глаза является

использование информации об особенностях текстуры объектов, представлен-
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ных на изображении глаза. Физические свойства подделки человеческого глаза

отличаются от таковых у биологических тканей, что вносит изменения в рас-

пределение интенсивности отраженного света и порождает видимые артефакты

на изображении глаза-подделки.

Ряд работ предлагает использовать локальные дескрипторы для описания

и анализа текстуры РОГ с целью детектирования спуфинга. К примеру, моди-

фикации текстурного дескриптора LBP [100] (local binary patterns, локальные

бинарные шаблоны) могут эффективно применяться [56, 60] против нескольких

известных типов атак: искусственные глаза из пластика и стекла, контактные

линзы с рисунком радужки, бумажные распечатки и т.д. Анализ [110] бинари-

зованных локальных статистик изображения (BSIF, binarized statistical image

features) также продемонстрировал практическую применимость к решению за-

дачи определения живости на примере нескольких специализированных баз

растров. Комбинированное решение с применением LBP, BSIF и частотного ана-

лиза (LPQ, local phase quantization) для извлечения разнородных текстурных

признаков предложено в объемном исследовании [54], посвященном детектиро-

ванию подделок для нескольких биометрических модальностей: РОГ, отпечаток

пальца и лицо.

Меры качества изображения применяться [44] для обнаружения подделок

в биометрической системе. Обоснованием такого подхода служит гипотеза о

том, что запечатленный при помощи камеры растр спуфинг-атаки будет ка-

чественно отличаться от снимка живого глаза человека в нормальных (фик-

сированных) условий распознавания. Как правило, корректная работа сенсора

регистрации изображения на поддельных образцах не гарантируется производи-

телем. Несколько специфичных для изображений РОГ мер качества [44] было

изучено в контексте детектирования атак вида бумажных распечаток.

Перспективным подходом к обнаружению спуфинг-атак в биометрических

системах сегодня считается применение методов глубокого обучения. Они де-

монстрируют высокую производительность при сравнению с иными уже суще-
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ствующими подходами. Первой работой на тему нейросетевых решений задачи

анти-спуфинга для модальностей радужки, лица и отпечатков пальцев считает-

ся [94]. Объемные сравнительные исследования различных подходов к постро-

ению подобных классификаторов «живости» биометрических образцов прово-

дятся в рамках LivDet соревнований, демонстрируя при этом превосходство

методов глубокого обучения [143—145].

Часть вышеупомянутых методик были исследованы в контексте приме-

нения в контексте мобильных приложениях. При таком сценарии на решение

задачи накладываются достаточно жесткие ограничения по времени обработ-

ки входных данных и потреблению вычислительных ресурсов вычислительно-

го устройства. Среди описанных в литературе были выбраны несколько подхо-

дов [110, 122, 123], соответствующих упомянутым ограничениям и демонстри-

рующих перспективные результаты. Методики определения живости РОГ при

помощи набора мер качества изображений описаны в [122, 123], а в [110] —

применение BSIF [70] разных масштабов.

5.2. �9F9>F<DB64A<9 CB889?B> D48G:><

Предложен основанный на глубокой сверточной нейронной сети (CNN)

метод определения живости глаза против спуфинг-атак разных типов. Приме-

нение метода требует информации о положении и размерах зрачка и радуж-

ки, которые предлагается аппроксимировать параметрическими окружностя-

ми. Входными данными являются пара изображений: квадратная область глаза

IER, центр которой совпадает с центром окружности зрачка, и развернутая в

прямоугольник кольцевая область радужной оболочки INI, которую принято

называть нормализованной радужкой.

Процедура нормализации была впервые предложена в работе [34] и подра-

зумевает трансформацию растра с изображением радужки I(x, y) за счет смены

системы координат (Рис. 5.1) с Декартовой (x, y) на полярную (r, θ) (5.1):
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$<E. 5.1. %I9@4 ABD@4?<;4J<< D48G:><

I(x(r, θ), y(r, θ)) → I(r, θ) (5.1)

где (r, q) - соответствующие нормализованные координаты в полярной. x(r, θ) и

y(r, θ) заданы в виде линейных комбинаций групп точек границ зрачка (xp(θ), yp(θ))

и радужки (xi(θ), yi(θ)):

x(r, θ) = (1− r) · xp(θ) + r · xi(θ)

y(r, θ) = (1− r) · yp(θ) + r · yi(θ)
(5.2)

Алгоритм обнаружения потенциального подделывания применяется сразу

после этапа сегментации радужки на входном изображении глаза (Глава 4). Пе-

ред процедурой вычисления результата предсказания нейронной сети, входные

данные масштабируются к заранее определенным размерам, Рис. 5.2. Регион

глаза IER(MER, NER) извлекается с параметрами MER = NER = 3Ri, где Ri —

радиус окружности внешней границы радужки. Центр изображения IER сов-

мещен с центром окружности зрачка. Размер входных растров был определен

как оптимальный для выбранной архитектуры с учетом требований точности

получаемого решения и скорости обработки.

�DI<F9>FGD4 D9L9A<S

В нейросетевой модели применяются идеи работы MobileNets [63] как обла-

дающие необходимыми для мобильных приложений характеристиками быстро-

действия при сохранении описательной способности. Архитектуры такого виде

имеют особую конструкция сверточных блоков, в которых достигается сокраще-

ние вычислительной сложности по сравнению с классической при сохранении
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емкостных характеристик за счет использования сепарабельных ядер. Трехмер-

ной свертка раскладывается в композицию операций «по глубине» (depthwise),

применяющую одно ядро для всех каналов тензора, и «точечную» с ядром раз-

мера 1 × 1, позволяющей скомбинировать результаты «предыдущей» и сфор-

мировать более сложное признаковое описание, Табл. 4.1. Такое разбиение поз-

воляет значительно сократить количество атомарных операций (сложение или

умножение) и уменьшить число параметров в сверточных блоках.

Сверточные блоки CNNBER и CNNBNI принимают на вход пару растров
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IER и INI соответственно, Рис. 5.2, полученные из одного исходного изображе-

ния глаза. Строение CNNBER и CNNBNI дано в Таб. 5.1. Блоки обладают

схожей структурой, составными элементами являются сверточные блоки семей-

ства архитектур MobileNet [63], обозначенные как MCBI . Их структура описа-

на в 4.1.

1?9@9AF 4DI<F9>FGDO E9F< Размер входного тензора

CNNBER CNNBNI

Сверточный слой (kh = kw = 3, s′ = 2) 1× 91× 91 1× 59× 123

Блок MCBI(kh = kw = 3, s′ = 2) 8× 45× 45 8× 29× 61

Блок MCBI(kh = kw = 3, s′ = 2) 16× 43× 43 16× 27× 59

Блок MCBI(kh = kw = 3, s′ = 1) 32× 21× 21 32× 13× 29

Блок MCBI(kh = kw = 3, s′ = 2) 64× 19× 19 64× 11× 29

Блок MCBI(kh = kw = 3, s′ = 1) 64× 9× 9 64× 5× 13

Глобальный усредняющий пулинг 64× 7× 7 64× 3× 11

&45?<J4 5.1. %FDG>FGD4 5?B>B6 CNNBER < CNNBNI : kh, kw — D4;@9DO S89D E69DF>< CB

69DF<>4?< < 7BD<;BAF4?< EBBF69FEF69AAB, s′ — L47 (stride) CD<@9A9A<S BC9D4J<< E69DF><.

Выбранная версия архитектуры модели имеет меньшую вычислительную

сложность прямого прохода (forward pass) сети по сравнению с оригинальной [63],

несмотря на это позволяя при этом решать поставленную задачу с высокой точ-

ностью. Промежуточные признаковые описания изображений IER и INI , полу-

ченные на выходе соответствующих блоков, обрабатываются операцией глобаль-

ного усредняющего пулинга (global average pooling) и комбинируются в общий

вектор признаков путем конкатенации. Результат подается на вход полносвяз-

ному (fully-connected,linear) слою. Вероятности принадлежности Plive и Pspoof

изображения глаза к одному из двух классов («живой» или «подделка» соответ-

ственно) оцениваются при помощи softmax классификатора, обучение которого

осуществляется при помощи логистической функции потерь.

"C<E4A<9 54;O 84AAOI CB889?B> В открытом доступе присутству-
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ют несколько баз данных, содержащих изображения как подлинных (живых),

так и поддельных радужек. Такие базы можно разделить на две группы: полу-

ченные в видимом и ближнем инфракрасном (БИК) спектрах. Использование

при распознавании по радужной оболочке глаза БИК спектра считается более

надежным решением за счет ряда преимуществ [35]. По этой причине современ-

ные производители мобильных устройств применяют инфракрасные камеры и

активную ИК-подсветку.

Кроме того, описанные в литературе виды подделок радужки в БИК спек-

тре можно разбить на две смысловые группы: созданные с целью имитировать

биометрическую характеристику жертвы и, наоборот, нацеленные на сокрытие

личности участника процедуры идентификации. К первой группе можно отне-

сти следующие способы спуфинга: распечатка области глаза на бумаге; живая

радужка, покрытая полупрозрачной линзой с воспроизведенным на ней рисун-

ком РОГ другого человека; глазные протезы с текстурой РОГ. К последней от-

носятся изображения живых глаз, покрытых текстурированными (узорчатыми)

контактными линзами и глазные протезы различной степени реалистичности.

Для случая обхода мобильных систем распознавания характерны именно при-

емы из первой группы, поскольку мобильное устройство, как правило, имеет

одного или нескольких пользователей среди узкого круга лиц, например, чле-

нов семьи. Подделывание рисунка радужки на полупрозрачной линзе или глаз-

ном протезе не рассматривается в данной работе ввиду его высокой сложности

реализации, особенно для второго типа подделок. В некоторых работах предла-

гаются способы детектирования и таких подделок, но случай реализации реше-

ния для мобильных устройств не рассматривается. Печать изображения глаза

жертвы спуфинг-атаки на бумаге является более интуитивным и простым.

На данный момент в открытом доступе не представлены базы изображений

подделок, полученных при помощи мобильного устройства в БИК диапазоне.

Поэтому подобная выборка данных была предварительно собрана вручную. В

нее были включены следующие типы искусственных образцов: (i) распечатка
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качественной фотографии глаза человека (PR), (ii) распечатка с покрытой про-

зрачной контактной линзой областью радужной оболочки (PWL) и (iii) распе-

чатка с нанесенным на регион РОГ прозрачным канцелярским клеем (PWG).

Выбор подобных типов подделывания был сделан с учетом успешного их приме-

нения при обходе мобильных биометрических систем [22, 28]. Для регистрации

качественных изображений-подделок применялась NIR-камера высокого разре-

шения с диапазоном расстояний от 20 до 40 (см). Создание подделок произво-

дилось путем печати на белой бумаге плотности 80 г/м3. Для искусственных

примеров в равной пропорции применялась плотность печатных элементов в

600 и 1200 (dpi).

Для формирования выборки подлинных примеров были выбраны два вида

условий освещенности: (i) нормальный уровень освещенности внутри жилого

помещения (IN); (ii) повышенный уровень освещения в солнечную погоду на

улице (OUT). Выбор таких категорий был продиктован необходимостью рас-

смотреть изменения условий окружения, характерным для применения систем

распознавания в мобильных устройства.

Для получения изображений в ближнем инфракрасном диапазоне излу-

чения при создании собственной выборки примеров применялся портативный

маломощный компьютер Raspberry Pi. В качестве сенсора захвата области глаза

применялась совместимая камера (PiCamera v2.1) с заменой фильтра видимо-

го света на полосно-пропускающий в диапазоне 850 ± 20нм, а для активной

подсветки при съемке в помещении был задействован светодиод с соответству-

ющей пиковой частотой излучения. Подробное описание набора данных дано в

Таб. 5.2. Разбиение базы на подвыборки для обучения и тестирования учиты-

вало требования непересечения их по субъектам. Рис. 5.3 содержит примеры

растров IER.
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Для оценки производительности предлагаемого алгоритма было проведено

сравнение по точности с несколькими описанными в современной литературе

подходами, зарекомендовавшими себя как демонстрирующие наивысшую про-

изводительность на наборах данных растров, полученных в БИК диапазоне

согласно обзору, приведенному в работе [43]. При сравнении использовалась

собранная база изображений.

Используемые для сравнения методы были реализованы и обучены на ее

#4D4@9FD �A4K9A<9

Разрешение 320× 240

Персон/Глаз 23/46

Подделки/Настоящие радужка 18548/18031

IN/OUT/PR/PWL/PWG (всего) 10679/7869/6233/5907/5891

IN/OUT/PR/PWL/PWG (тест) 2534/2006/1436/1452/1568

&45?<J4 5.2. "C<E4A<9 EB5D4AAB= 54;O <;B5D4:9A<=
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тренировочной подвыборке. К таковым относятся следующие известные рабо-

ты: построенные с применением частотного анализа методы [32, 58]; опирающи-

еся на признаки, извлекаемые при помощи текстурных дескрипторов LBP [56] и

BSIF [110] решения, а также подход [122], использующий численные показатели

качества изображения. Нейросетевой метод на основе пары CNN в комбинации с

набором эвристик, предложенный группой исследователей из CASIA в [145] был

исключен из рассмотрения по причине его высокой вычислительной сложности

и, как следствие, неприменимости в мобильных биометрических системах, ра-

ботающих в режиме реального времени. Быстродействие прямого прохода ней-

ронной сети для этого подхода превышает время обработки предлагаемым в

данной работе методом на два порядка.

При оценке качества методов применялись следующие показатели:

• APCER (attack presentation classification error rate) — доля изображений

подделок, ошибочно классифицированных как живые;

• BPCER (bona fide presentation classification error rate) — доля изображе-

ний живых образцов, ошибочно классифицированных как подделки;

• CCR (correct classification rate) — доля правильно классифицированных

на всей выборке.

Результаты тестирования упомянутых ранее методов и предлагаемого под-

хода, включая медианное время выполнения на мобильном процессоре trun,

представлены в Таб. 5.3. Стоит упомянуть, что только два упомянутых решения

( [122] и [110] ) представлялись авторами как допускающие возможность при-

менения в биометрических системах на мобильных устройствах. Метод [122]

действительно обладает простотой и относительным быстродействием алгорит-

ма на фоне аналогов. В то же время подход [110] мало применим для приме-

нения на видеопотоке в режиме реального времени в мобильном устройстве,

поскольку требует произведения вычислительно сложных операций свертки с
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 9FB8 BPCER APCER CCR IN OUT PR PWL PWG trun, @E

Czajka [32] 0.505 0.207 0.661 0.614 0.959 0.121 0.598 0.885 64

He et al. [58] 0.370 0.739 0.442 0.782 0.919 0.513 0.465 0.530 42

Gupta et al. [56] 0.294 0.251 0.749 0.871 0.968 0.049 0.644 0.684 51

Raghavendra [110] 0.076 0.128 0.897 0.916 0.980 0.867 0.836 0.901 900

Sequeira [122] 0.320 0.293 0.694 0.461 0.932 0.644 0.542 0.834 126

#D98?4749@O= 0.038 0.034 0.969 0.983 0.961 0.981 0.97 0.986 5

&45?<J4 5.3. %D46A<F9?PAO= 4A4?<; @9FB8B6 89F9>F<DB64A<S CB889?B> D48G:><

фильтрами большой размерности: от 7× 7 до 17× 17.

Тестирование методов осуществлялось при помощи мобильного устройства

с операционной системой Android. Медианное время классификации нейронной

сетью trun с применением одного ядра процессора Qualcomm Snapdragon 835

CPU (2.45 GHz) составляло 4-6 миллисекунд.

5.4. �O6B8O > CSFB= 7?469

Рассмотрены принципы построения систем защиты от взлома при помощи

подделок в применении к системам распознавания по радужке на мобильном

устройстве. С учетом опыта исследовательских групп профессионалов в дан-

ной области, изучена и воспроизведена процедура подделывания современных

мобильных систем идентификации по радужке. Произведена классификация

общих подходов к защите от подделывания, а также обзор известных из лите-

ратуры методов, их преимуществ и недостатков. Предложены и исследованы

новые пути создания и предъявления подделок системе, ранее не рассматрива-

емые в литературе: (i) распечатка с покрытой прозрачной контактной линзой

областью радужной оболочки; (ii) распечатка с нанесенным в область радуж-

ной оболочки прозрачным клеем. Предложена и реализована методология сбо-

ра мобильным устройством базы изображений подделок с учетом изменчивости

условий окружения, содержащей в том числе новые виды спуфинг-атак. Разра-

ботан, протестирован и внедрен новый метод определения живости радужки
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при помощи классификатора на основе глубокой сверточной нейронной сети.

Предложенный подход показал высокую точность решения задачи, превосходя-

щую таковую для описанных в литературе аналогов, а также достаточную для

применения на мобильном устройстве в режиме реального времени скорость

обработки.
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1. Исследованы особенности построения алгоритмов противодействия взло-

му при помощи подделок для методов биометрического распознавания по

видеообразу лица в приложениях мобильных устройств. Исследованы за-

висимости и причины изменения видимого образа лица с учетом специфи-

ки поведения пользователя устройства и характерных нестандартных и

изменчивых условий окружения, присущих сценариям регистрации изоб-

ражений объектов в мобильных приложениях. Разработан, предложен и

внедрен метод детектирования подделок, допускающий применение в ре-

жиме реального времени в мобильных устройствах.

2. Исследованы методы и алгоритмы извлечения характеристик изображе-

ния лица применительно к решению задачи детектирования подделок.

Разработан и внедрен метод раннего обнаружения спуфинг-атак для мо-

бильных приложений, позволяющий до применения вычислительно слож-

ных алгоритмов обнаруживать неестественные артефакты и атрибуты,

присущие попыткам взлома, учитывать и использовать данные экспози-

ции камеры и вспомогательных сенсоров устройства с целью получения

дополнительной информации об окружении.

3. Исследованы особенности обнаружения попыток подделывания лица при

распознавании с мобильного устройства, оборудованного стереокамерой с

малым стереобазисом. Разработан и протестирован новый метод опреде-

ления живости лица при помощи классификатора в виде сверточной ней-

ронной сети. Предложенное решение показало высокую точность и быст-

родействие детектирования подделок, в том числе тестировании на отло-

женной выборке данных открытой базы мобильных стереофотографий,

содержащей изображения лиц, полученных в широком диапазоне условий

окружения.
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4. Разработаны, исследованы и внедрены алгоритмы аппроксимации окруж-

ностями границ радужной оболочки на изображении глаза основанные

на применении методологии глубокого обучения. Предложенные подходы

позволяют осуществлять оценку положений границ радужки в режиме

реального времени для растров как высокого, так и низкого качества.

5. Изучена специфика построения систем обнаружения попыток взлома мо-

бильных систем распознавания по радужке и новые способы подделыва-

ния этой БХЧ. Разработан, протестирован и внедрен новый метод опреде-

ления живости в виде классификатора в виде сверточной нейронной сети.

Предложенное решение показало высокий уровень производительности и

быстродействия при детектировании подделок, значительно превышаю-

щий таковой для описанных в литературе аналогичных методов.

6. Собраны, обработаны и размечены следующие базы данных: наборы изоб-

ражений сниженного качества для подлинных лиц и распространенных

типов подделок, содержащих более 1000 уникальных личностей и извле-

ченных при помощи мобильного устройства с имитацией реальных сцена-

риев повседневного использования в изменчивых условиях окружения и

применения, набор данных стереоизображений лица (более 90000), набор

данных изображений подлинных и поддельных радужек, содержащий как

известные, так и новые виды атак (более 160000).

7. Созданы программные средства для проведения вычислительных экспе-

риментов по оценке качества разработанных алгоритмов.

8. Созданы библиотека и демо-приложения для апробации реализованных

методов и алгоритмов на мобильном устройстве.
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