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Введение

Актуальность темы исследования.

Несмотря на постоянное развитие систем безопасности, человеческий фак­

тор все еще остается одним из самых незащищенных элементов. Использование

полиграфа позволяет уменьшить такие риски. Психофизиологические исследо­

вания решают следующие прикладные задачи: выявление негативных факторов

в прошлом опыте кандидатов на должность, проверка на лояльность и соблюде­

ние внутренних регламентов организации, осуществление оперативно-розыскной

деятельности, проведение корпоративных и антикоррупционных расследований

и т.д.

Полиграфная проверка является эффективным, но достаточно трудоза­

тратным и требовательным к квалификации специалиста способом выявления

скрываемой информации. Именно поэтому одной из основных целей данной

работы является создание системы для автоматических рекомендаций полигра­

фологу. «Второе мнение» поможет оперативно принять решение или скоррек­

тировать саму процедуру полиграфной проверки.

Распознавание эмоций человека является важной научно-исследователь­

ской проблемой, которая затрагивает такие дисциплины, как медицина и пси­

хология.

Распознавание эмоций решает прикладные задачи в следующих сферах

деятельности: онлайн-обучение - построение учебного плана с учетом динами­

ки вовлеченности учащихся на каждом этапе; банковское дело - дополнение

скоринговых моделей информацией о возможных искажениях для выявления

мошенников; колл-центры - управление удовлетворенностью во время звонка,

составление независимого индекса потребительской лояльности; организация

транспортной безопасности - контроль за состоянием водителя, сигнализирова­

ние о возможном переутомлении; производство эмпатичных роботов - дополни­

тельный инструмент для выбора оттенков диалога.
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Цели и задачи диссертационной работы:

В работе были поставлены следующие цели:

• Повысить точность методов и алгоритмов классификации эмоционально­

го состояния человека на голосовой фонограмме.

• Разработать методы и алгоритмы для классификации эмоционального со­

стояния человека на видеозаписи, устойчивые к изменениям условий съем­

ки.

• Создать методы и алгоритмы классификации силы реакции организма на

стимулы при помощи регистрируемых полиграфом параметров (дыхание,

сердечно-сосудистая и электродермальная активность).

Для достижения поставленных целей были решены следующие задачи:

• Создание, исследование и подбор алгоритмов обработки голосовых фоно­

грамм для классификации эмоционального состояния говорящего

• Исследование и разработка методов классификации эмоций человека на

видеозаписях

• Нормализация психофизиологических характеристик, учитывающих ин­

дивидуальные особенности испытуемого.

• Разработка методов и алгоритмов автоматической классификации пара­

метров, регистрируемых при помощи полиграфа – КГР, плетизмограмма,

дыхательные циклы.

• Создание тестового приложения и проведение вычислительных экспери­

ментов по определению работоспособности перечисленных методов.

Научная новизна. диссертационной работы состоит в следующем:

1. Создана архитектура нейронной сети для автоматической классификации

голосовых фонограмм с высокой точностью;
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2. Созданы новые методы классификации эмоций на видео, отличающиеся

высокой устойчивостью при работе с материалами, записанными в несту­

дийных условиях;

3. Предложен метод нормализации психофизиологических характеристик,

полученных при помощи полиграфа, учитывающий индивидуальные осо­

бенности испытуемого.

4. Созданы 3 новых метода автоматической классификации силы реакции че­

ловека (балльная оценка) на предъявляемый стимул при помощи оценки

регистрируемых независимых параметров: дыхательных циклов, электри­

ческой активности кожи (КГР), сердечных ритмов (плетизмограммы).

Теоретическая и практическая значимость.

Результаты, изложенные в диссертации, применены для создания интел­

лектуальной системы оценки факторов риска при трудоустройстве и проведе­

ния служебных опросов.

Получено 2 свидетельства о государственной регистрации программы для

ЭВМ:

1. №2021615620, «Программное обеспечение по оценке эмоционального со­

стояния человека по видеопотоку в режиме реального времени с использовани­

ем искусственного интеллекта»;

2. №2022661019 «Программный комплекс на основе инновационной стан­

дартизированной и валидизированной методики для проведения полиграфных

проверок»;

Результаты работы реализованы и используются в следующих системах:

• Система автоматической балльной оценки проведенного тестирования в

Профессиональном компьютерном полиграфе «Финист»;

• Модуль по оценке эмоционального состояния собеседника в аппаратно­

программном комплексе «Детектрон».
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ФГБУ «Фонд содействия развитию малых форм предприятий в научно­

технической сфере» подтвердил практическую значимость указанных выше

систем и обеспечил поддержку развития указанных выше модулей в форме

грантов: №3493ГС1/57463 «Разработка прототипа программного обеспечения

по оценке эмоционального состояния человека по видеопотоку в режиме ре­

ального времени с использованием программного обеспечения искусственного

интеллекта» - 2020 г.; №240ГС1ЦТС10-D5/65720 «Разработка прототипа про­

граммного комплекса на основе инновационной стандартизированной и валиди­

зированной методики для проведения полиграфных проверок» - 2021 г.

Положения, выносимые на защиту:

• Предложена и программно реализована архитектура нейронной сети для

решения задачи определения эмоции на голосовой фонограмме с высокой

точностью.

• Предложена и программно реализована архитектура многослойной ней­

ронной сети для решения задачи определения эмоции человека на видео­

записи, подготовленной в нестудийных условиях.

• Предложен метод нормализации психофизиологических характеристик,

полученных при помощи полиграфа, учитывающий индивидуальные осо­

бенности испытуемого.

• Создан модуль для автоматической классификации силы реакции челове­

ка на предъявляемые стимулы при помощи оценки регистрируемых поли­

графом параметров (дыхание, сердечно-сосудистая и электродермальная

активность).

Степень достоверности и апробация результатов.

Достоверность результатов подтверждена экспериментальной проверкой

результатов предлагаемых методов на реальных данных, в том числе сторон­

ними организациями; публикациями результатов исследования в рецензируе­

7



мых научных изданиях и конференциях по машинному обучению; воспроизво­

димостью результатов исследования при использовании различных тестовых

наборов данных из публичных репозиториев; корректным использованием ма­

тематического аппарата известных алгоритмов машинного обучения, стандарт­

ных метрик качества классификации, современных средств программирования

и библиотек машинного обучения; публикациями результатов в рецензируемых

научных изданиях, в том числе рекомендованных ВАК;

Основные результаты диссертации докладывались на следующих конфе­

ренциях: II Всероссийская научная конференция с международным участием

«От идеи – к практике: cоциогуманитарное знание в цифровой среде» - Новоси­

бирск, 2022; 14-я международная научная конференция студентов и магистран­

тов «Современный специалист-профессионал: теория и практика» - Барнаул,

2022; Всероссийская научная конференция молодых ученых, посвященная Году

науки и технологии в России «Наука. Технологии. Инновации» - Новосибирск,

2021.

Соответствие паспорту научной специальности. Область исследова­

ния и содержание диссертации соответствуют паспорту специальности 05.13.17

«Теоретические основы информатики (технические науки)», в частности по сле­

дующим пунктам:

пункт 5: Разработка и исследование моделей и алгоритмов анализа дан­

ных, обнаружения закономерностей в данных и их извлечениях разработка и

исследование методов и алгоритмов анализа текста, устной речи и изображе­

ний.

пункт 7: Разработка методов распознавания образов, фильтрации, распо­

знавания и синтеза изображений, решающих правил. Моделирование формиро­

вания эмпирического знания.

Публикации. Материалы диссертации опубликованы в 3 печатных рабо­

тах, из них 3 статьи в рецензируемых журналах из списка ВАК.

Личный вклад автора. Содержание диссертации и основные положе­
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ния, выносимые на защиту, отражают персональный вклад автора в опубли­

кованные работы. Подготовка к публикации полученных результатов проводи­

лась совместно с соавторами, причем вклад диссертанта был определяющим.

Все представленные в диссертации результаты получены лично автором.

Структура и объем диссертации. Диссертация состоит из введения,

3 глав, заключения и библиографии. Общий объем диссертации 104 страницы,

из них 86 страниц текста, включая 14 рисунков. Библиография включает 159

наименований на 16 страницах.

Краткая характеристика содержания работы. Диссертация включа­

ет в себя 3 главы и одно приложение.

Глава 1. Методы распознавания эмоций на голосовой фонограм­

ме. Сделан краткий обзор методов распознавания эмоций на голосовой фоно­

грамме. Описаны методы классификации с использованием разложения аудио­

сигнала на эмпирические моды и вейвлет-анализа. Предложена архитектура

сверточной нейронной сети для распознавания с высокой точностью.

Глава 2. Методы распознавания эмоций на видеозаписи. Сделан

краткий обзор методов распознавания эмоций на изображениях и видеозаписях.

Описан метод покадровой классификации с применением локальных бинарных

паттернов. Предложен метод синтеза нового набора данных для распознава­

ния эмоций на видео и подход к переобучению сверточной нейронной сети. В

результате этого была создана архитектура сети для автоматической классифи­

кации эмоции на видеозаписях, устойчивая к различным изменениям условий

видеосъемки.

Глава 3. Методы классификации в исследованиях на полиграфе.

Описан принцип работы полиграфа. Исследованы возможности применения ча­

сто используемых архитектур нейронных сетей для оценки психофизиологиче­

ских характеристик, зарегистрированных при помощи полиграфа. Предложена

архитектура трансформера для решения данной задачи. Визуализированы по­

лученные результаты классификации.
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История развития метода выявления сокрытия информации.

Потребность выявлять ложь существовала всегда. Исторические хроники

повествуют о том, что методы выявления были абсолютно различными: от слож­

ных ритуалов и божественного суда до физических пыток.

Н.М. Карамзин в своих комментариях к первому своду российских зако­

нов пишет: «древние россияне, подобно другим народам, употребляли железо и

воду для изобличения преступников — обыкновение безрассудное и жестокое.

Обвиняемый брал в голую руку железо раскаленное или вынимая ею кольцо

из кипятка, после чего судьям надлежало обвязать и запечатать оную. Ежели

через три дня не оставалось язвы или знака на его коже, то невиновность была

доказана. Народ думал, что Богу легко сделать чудо для спасения невиновно­

го». Аналогичные нормы и законы были закреплены и в заподноевропейских

варварских правдах.

Но очевидно, что установление истины и изобличение лживых показаний

такими методами носит случайный характер и представляется сомнительным.

В то же время развивался и метод наблюдений. Люди обратили внима­

ние на то, что при сокрытии информации лжец ведет себя особенным образом.

Прежде всего в случаях, когда человек осознавал возможное наказания и испы­

тывал сильный страх перед разоблачением. Наблюдатель мог зафиксировать

физиологические изменения у лжеца по внешним признакам.

Например, китайцы определяли пересыхание слюнных желез при помощи

измерения влажности горсти рисовой муки во рту подозреваемого во время

зачитывания конкретных обвинений. В Индии предлагали называть ассоциа­

тивный ряд на нейтральные и явно связанные с совершенным преступлением

фразы, в то же время ударяя в гонг. Они обратили внимание на то, что в таких

случаях причастные к нарушению закона сопровождали ответы на критические

для них стимулы более громким звоном [20].

Древние римляне оценивали возможность сокрытия своих эмоций, чтобы

понять предрасположенность к заговорам. При отборе телохранителей их могли
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бить по лицу и задавать провокационные вопросы. Те, кто краснел и показывал

свои явные эмоции, были в приоритете.

Первое упоминание про анализ физиологических процессов в мировой ли­

тературе можно встретить у Д. Дефо, автора знаменитой книги про приключе­

ния Робинзона Крузо. В 1730 году писатель опубликовал трактат «Эффектив­

ный проект непосредственного предупреждения уличных ограблений и пресече­

ния всяких иных беспорядков по ночам». Дефо обратил внимание, что «у вора

существует дрожь (тремор) в крови, которая, если ею заняться, разоблачит

его». Такой подход был применим даже для психологически подготовленных

преступников: «Некоторые из них настолько закостенели в преступлении, что

даже смело встречают преследователя; но схватите его за запястье и вы обна­

ружите его виновность».

Так или иначе издревле оценивалось поведение человека при предъявле­

нии какого-то стимула, а все измерения проводились методом наблюдения по

причине отсутствия специального инструментария. Тем самым начал форми­

роваться психофизиологический способ выявления скрываемой информации, в

основе которого лежит неслучайность зависимости динамики физиологических

процессов и внутреннего состояния человека. В результате метод стал безопас­

ным и беспристрастным.

Приоритет в формулировании генерального принципа психофизиологиче­

ского метода выявления скрываемой информации по праву принадлежит пси­

хологу А.Р. Лурия [13], который в 1920-х годах писал, что «единственная воз­

можность изучить механику внутренних «скрытых» процессов сводится к тому,

чтобы соединить эти скрытые процессы с каким-либо одновременно протека­

ющим рядом доступных для объективного наблюдения процессов, в которых

внутренние закономерности и соотношения находили бы свое отражение».

Развитие приборов для измерения артериального давления и кровонапол­

нения.

Прародителем полиграфа можно считать гидроплетизмограф – устройство

11



для графического определения колебаний объема различных частей тела в за­

висимости главным образом от кровенаполнения.

Данный прибор был выполнен из суживающегося с одной стороны стек­

лянного цилиндра, соединенного трубкой с резервуаром для воды. Также в кол­

бе имелось три отверстия: одно для слива воды после завершения процедуры,

второе для соединения с записывающим устройством в виде механического ос­

циллометра, третье для ввода и фиксации объекта для исследования. После

установки руки в устройство, ее обтягивали резиновым рукавом, а в резерву­

ар наливали воду до полного вытеснения воздуха из цилиндра. Таким образом

создавалась герметически замкнутое пространство, соединенное с осцилломет­

ром, перо которого фиксировало изменения объема руки.

В 1877 году при помощи гидроплетизмографа итальянский физиолог А.

Моссо зафиксировали, что во время приема в клинике внезапно и без явных

причин увеличились пульсации у одной пацентки. Моссо описал этот случай:

«это поразило меня, и я спросил женщину, как она себя чувствует. Она сказала,

что хорошо. Я тщательно проверил прибор, чтобы убедиться, что все в порядке.

Тогда я попросил пациентку рассказать мне, о чем та думала две минуты на­

зад. Она ответила, что, рассматривая отсутствующим взором книжную полку,

висевшую напротив, остановила свой взгляд на черепе, стоявшем среди книг,

и была напугана им, так как он напомнил ей о болезни». В результате Моссо

опубликовал материалы и результаты своих экспериментов в монографии под

названием «Страх».

В 1895 году методики выявления стресса изложил выдающийся итальян­

ский криминалист Чезаре Ломброзо в своей широко известной книге «Преступ­

ный человек» практический опыт применения гидроплетизмографа в ходе про­

верки фигуранта по уголовному делу об ограблении. При проведении психофи­

зиологического исследования автор не смог зафиксировать видимые изменения

динамики артериального давления в ответ на предъявление стимулов, связан­

ных с ограблением, но обнаружил резкое уменьшение базовой линии осцилло­
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метра по другому делу, связанному с хищением паспортов. Позднее оператив­

ными методами удалось подтвердить правильность выводов Ломброзо.

В 1902 году он привлекался к расследованию уголовного дела об изнаси­

ловании и убийстве девочки. Ломброзо вновь применил гидроплетизмограф и

обнаружил незначительные изменения в пульса у подозреваемого, когда он де­

лал математические вычисления в уме. В то же время у него не было внезапных

изменений динамики артериального давления при предъявлении фотографии

убитой девочки. В дальнейшем результаты расследования подтвердили неви­

новность подозреваемого.

В 1854 году немецким врачом Карлом фон Фирордтом был изобретен сфиг­

мограф. Основной задачей прибора является графическое отображение свойств

артериального пульса. По полученным результатам можно оценить динамику

изменения кровяного давления в артериях и ритм сердечных сокращений.

В 1860 году французский физиолог и изобретатель Э. Маре сконструиро­

вал усовершенствованную версию сфигмографа. Данный прибор регистрировал

колебания пульса лучевой артерии на движущейся пластинке при помощи ры­

чага. Колебания передаются на рычаг через пелоту. Пелота накладывается на

пульсирующую артерию и закрепляется винтом, который помогает преодолеть

толстый слой кожи, обеспечивая необходимое надавливание на пластинку, и свя­

зывает рычаг с артерией. Спереди устройства располагается штифт с винтовой

поверхностью. При его движении вверх-вниз происходит зацепление с зубчатым

колесом, посаженным на ось. Далее данное колесо двигает полоску закопченной

бумаги, на которой и рисуется сфигмограмма. Все это фиксируется на руке при

помощи шин.

В начале 20-го века итальянский криминалист Э.Ферри опубликовал труд

«Уголовная социология», в котором предложил в качестве одного из методов

проверки истинности показаний подозреваемых использовать сфигмограф.

Развитие приборов для измерения кожно-гальванической реакции.

Другим каналом регистрации физиологических изменений в полиграфе
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является электрокожное сопротивление. Французский ученый Дюбуа-Реймон

первым заметил электробиотоки на изолированной коже лягушки, которые по

своей величине превосходили нервные и мышечные. Подобные эффекты в даль­

нейшем были названы кожно-гальванической реакцией (КГР).

В 1888 г. Ч. Фере, обследуя больную с жалобами на электрические пока­

лывания в кистях и ступнях, обнаружил, что при пропускании слабого тока

через предплечье происходили отклонения стрелки включенного в цепь гальва­

нометра в моменты сенсорных или эмоциональных воздействий. Независимо от

Фере в 1890 г. И. Тарханов показал, что электрические сдвиги наблюдаются и

без приложения внешнего тока. Он установил, что любое раздражение, нанесен­

ное человеку, через 1-10 секунд латентного периода вызывает сначала легкое

и медленное, а затем ускоряющееся отклонение стрелки гальванометра, ино­

гда даже выходящее за пределы шкалы. Оба метода, как показатели состояния

организма, дают идентичные результаты, только латентный период изменения

сопротивления кожи несколько выше, чем при изменении потенциалов кожи.

Карл Юнг рассматривал данный сигнал, как объективное физиологиче­

ское «окно» в сферу бессознательного, подлежащего изучению через психоана­

лиз. Он же первым выявил прямую зависимость между величиной КГР и силой

эмоционального переживания.

Развитие приборов для измерения дыхания.

Пневмограф - аппарат для измерения и графической регистрации дыха­

тельных движений грудной клетки или животаго изображения дыхательных

движений. Он был изобретен русским ученым Г.Н. Пио-Ульским в 1900 году.

Прибор состоит из манжетки от сфигмоманометра или полой резиновой

трубки, соединенной с капсулой Марея. В регистрирующую систему вводят

немного воздуха и закрывают краном от внешнего мира. После этого изменения

объема легких визуально фиксируется на чернильной ленте. Аппарат дает воз­

можность проанализировать дыхательные ритмы, длительность дыхательных

фаз (вдох, выдох, пауза).
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На сегодняшний день для фиксации дыхательных движений используют

не только пневматические, но и пьезоэлектрические датчики.

В 1914 году итальянец В. Бенусси использовал анализ динамики процесса

дыхания (изменения частоты и глубины) при проведении допросов подозревае­

мых в совершении преступлений. На тот момент не существовало методики по

оценке дыхательных ритмов, но она начала формироваться.

Аналоги полиграфных устройств.

В 1951 году Дж. Даусон разработал технику фотографической суперпо­

зиции (наложения) кривых ЭЭГ, которые могут возникать при многократном

предъявления одного и того же конкретного стимула. Такие исследования на­

зывают техникой «вызванных потенциалов» (ВП).

Активность головного мозга можно измерить при помощи ЭЭГ, причем

возможен анализ как позитивных (положительных) и негативных (отрицатель­

ных) волн, вызванных конкретным стимулом, с периодом развития реакции

около 300 мс.

Особенность и его новизна для применения в области детекции лжи за­

ключалась в изучении ответов головного мозга на конкретных стимул, вместо

анализа разрозненных и малодифференцированных мозговых процессов.

К сожалению, применение ЭЭГ требует особых условий для проведения

исследований, такие как:

• Постоянная фиксация глаз для избежания артефактов, вызванных мор­

ганием, особенно при записи активности от передних отделов мозга.

• Расслабленное состояние мышц головы и шеи на всем протяжении иссле­

дования для уменьшения электрической активности.

• Повторение одного и того же стимула от десяти до нескольких тысяч раз

в зависимости от вопросов, которые подлежат проверке.

Очевидно, что соблюсти такие серьезные ограничения на протяжении дли­

тельного времении, а тем более в «полевых» условиях попросту невозможно. В

то же время такие каналы информации, как КГР и частота сердечных сокра­
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щений являются очень устойчивыми к тоническому мышечному напряжению.

В 1968 году была проведена первая запись электромагнитного поля моз­

га человека Д. Коеном. Несмотря на невысокую первоначальную чувствитель­

ность методы, изобретение сверхпроводникового квантомеханического интер­

ферационного датчика, работающего на жидком гелии, позволило на порядок

повысить точность и пространственную разрешающую способность метода.

Данный метод мог бы претендовать на более точные и устойчивые измере­

ния, но применение его на практике сильно усложняется стоимостью оборудова­

ния, основанного на криотехнологиях, и серьезными требованиями к магнитной

защищенности помещения.

Именно по этим причинам полиграф остается самым подходящим для мас­

сового применения в целях выявления скрываемой информации.

Распознавание эмоции в оценке поведения человека.

Одно из определений эмоций описывает их как «психическое отражение

в форме непосредственного пристрастного переживания отношения конкрет­

ных явлений и ситуаций к потребностям» [3]. В таком толковании делается ак­

цент на возможность удовлетворения (или фрустрации) потребности, причем в

неразрывной связи с такими событиями, явлениями и предметами окружающей

действительности. Возникновению эмоций неизбежно предшествует появление

мотива деятельности (шире – поведения).

В деятельностной концепции эмоции в узком смысле этого слова определя­

ют как отношение результата деятельности к ее мотиву. Так, говоря абстрактно,

радость возникает у человека, когда мотив его деятельности реализован, страх

возникает, когда под угрозой находится мотив самосохранения, раздражение

возникает в том случае, если на пути к реализации мотива человек сталкивает­

ся с каким-либо непредвиденным препятствием и т.д.

Таким образом, эмоции являются очень важным индикатором, говорящим

об истинных мотивах поведения конкретного человека.
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Глава 1

Методы распознавания эмоций на голосовой

фонограмме

1.1. Краткий обзор существующих подходов и постановка

задачи

Рассматривая задачу распознавания эмоций человека на голосовой фоно­

грамме, стоит обратить внимание на существующие на настоящий момент ре­

шения в этой области [132, 126]. Несмотря на определенную субъективность

при оценке такой характеристики, как проявление эмоционального состояния

на аудизаписи, некоторые наборы данных отвечают всем необходимым требова­

ниям [33, 125].

Чаще всего для оценки эмоций выделяют просодические (характеризую­

щие речевую мелодию, темпоральные и тембральные особенности голоса) и

спектральные характеристики аудиофайла с последующей классификацией по­

лученных данных.

Различные исследования показали, что для распознавания эмоций требу­

ется анализировать такие характеристики голоса, как высота тона, энергия,

длительность фонем, перцептивные линейные прогностические коэффициенты

(PLP), линейные прогностические кепстральные коэффициенты (LPCC), мел­

частотные кепстральные коэффициенты и их комбинации.

Одним из часто используемых методов в исследовании звуковых сигналов

является вейвлет-анализ [146]. Он применяется для шумоподавления, обнару­

жения, сжатия, классификации и других операций с аудио данными [57, 124,

44, 75, 74, 66, 24, 30].

Для решения задачи классификации эмоций с применением вейвлет-ана­

лиза применяются следующие методы:
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• Вычисление вейвлет-характеристик вместе с мел-кепстральными коэффи­

циентами MFCC и результатами применения дифференциального энерге­

тического оператора (TEO) [152];

• Расчет энтропии биортогонального вейвлета [155].

• Вычисление следующих вейвлет-преобразованй: непрерывное (CWT), био­

ническое (BWT) и синхронно-сжатое (SSWT) [141].

• Расчет характеристик стационарного вейвлет-преобразования, энергии па­

кета вейвлета и энтропийных характеристики [111].

• Настроенное вейвлет-преобразования Q-фактора (TQWT) и пакетное вей­

влет-преобразование (WPT) [157].

• Пакетное вейвлет-преобразование на основе энергии и нелинейной энтро­

пии [66].

• Повышения точности классификации на основе пакетного вейвлет-пре­

образования с помощью последовательного плавающего прямого поиска

(SFFS) [148].

Классифицировать семь эмоций сложнее, чем классифицировать шесть

эмоций для базы данных EMODB [32, 135, 145].

Согласно исследованию набора данных EESDB (The elderly emotional speech

database) точность распознавания эмоций пожилых людей ниже, чем у молодых

[50]. Возможно это связано с изменением голосовых связок с возрастом.

Выбор признаков, который важен для распознавания эмоций [26, 51, 99],

можно разделить на две категории: контролируемые и неконтролируемые мето­

ды. Недавно был предложен ряд новых стратегий выбора признаков, таких как

полууправляемый метод [39] и разработка паранепротиворечивых признаков

[63].
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В этом исследовании используется последовательный плавающий поиск

вперед (SFFS), который является одним из видов методов выбора признаков,

впервые предложенных в [123]. Он широко использовался в области классифика­

ции речевых эмоций [141, 147]. Чтобы уменьшить количество векторов призна­

ков и улучшить производительность классификации, был выбран итеративный

подход SFFS для повышения производительности распознавания [148].

В статье [148] были описаны особенности пакета вейвлета для изучения

их влияния на производительность распознавания эмоций на голосовых фоно­

граммах. Производительность классификации с использованием вейвлет-паке­

тов сравнима с мел-кепстральными коэффициентами MFCC. Чтобы уменьшить

пространство признаков, был применен метод последовательного плавающего

прямого поиска (SFFS). При этом была достигнуто увеличение точности распо­

знавания.

В [94] для распознавания эмоций была предложена модель Маркова со

скрытой глубокой нейронной сетью (DNN-HMM), которая широко использова­

лась для работы с речью.

Коэффициенты вейвлет-пакетов оцениваются для каждого кадра. Как по­

казано в (1.42), 𝐶𝑗,𝑘 есть 𝑘-й коэффициент в 𝑗-уровневой декомпозиции речи. По­

сле 5-уровневого разложения имеется 32 коэффициента: 𝐶5,0, 𝐶5,1, 𝐶5,2, . . . , 𝐶5,31

соответственно.

Исследования [54, 29, 41, 34, 62, 42] показали, что признаки, содержащие

глобальную информацию, лучше локальных с точки зрения вычислительной

эффективности и производительности распознавания. Итак, максимум коэф­

фициента рассчитывается как в [29, 62, 42] из EESDB.

На сегодняшний день несколько исследователей разрабатывают методы

распознавания эмоций с акцентом на независимость от диктора. Авторы выде­

лили признаки, связанные со статистикой высоты тона, формант и энергетиче­

ских контуров, а также спектр, кепстр, перцептивные и временные признаки,

автокорреляцию и другие - всего 2327 признаков [92]. В другой работе были вы­
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делены признаки с использованием энергии, скорости пересечения нуля, MFCC

и параметров Фурье [145]. Дикторонезависимые признаки дают более устойчи­

вые результаты при распознавании эмоций [92].

Мел-частотные кепстральные коэффициенты (MFCC) были впервые вве­

дены в работе [45]. Исследования в [29, 92, 145] использовали данные показатели

для распознавания речи. Мел-частотные кепстральные характеристики описы­

вают восприятие человеческого слуха, благодаря своей шкале.

Также были рассчитаны глобальные признаки, поскольку они могут умень­

шить количество признаков. Пакет вейвлетов поддерживает множество алго­

ритмов, таких как вейвлет-фильтр Добеши и фильтр Габора [44].

Вейвлеты Добеши широко применяются для решения задач обработки сиг­

налов, особенно речевых сигналов. В текущем исследовании было выбраны се­

мейства вейвлетов Добеши [44]. DB2 изначально применялась для распознава­

ния эмоций.

Семейство вейвлетов Добеши широко используется в распознавании речи

[95], сжатии речи [93] и во многих других областях обработки сигналов [124,

56, 53]. Однако данный метод редко применяется для распознавания речевых

эмоций.

Производительность системы распознавания эмоций на аудиозаписях за­

висит от качества: функций, используемых для различения эмоций, классифи­

каторов и набора данных, используемых для обучения.

Для распознавания эмоций на голосовых фонограммах используются раз­

ные методы классификации. Например, опорные вектора (SVM) [109, 154, 37,

117], метод смеси Гауссовых распределений (GMM) [133], скрытая марковская

модель (HMM), нейронные сети (NN) [122, 133, 37], рекуррентные нейронные

сети (RNN) [98, 110, 80] и линейная регрессия (LR) [79].

Также имеет смысл рассмотреть методы выделения информативных при­

знаков из голосового сигнала.

Наиболее популярным способом получения дополнительных признаков из
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сигнала является быстрое преобразование Фурье (FFT). При помощи него функ­

ция представляется в виде суммы гармонических колебаний с разными часто­

тами. Для упрощения вычислений можно использовать метод быстрого преоб­

разования Фурье. Данные подходы основаны на гипотезах линейности и стаци­

онарности сигнала. Тем не менее, быстрое преобразование Фурье метод теряет

часть информации, которая может быть полезна для задачи классификации во

временной области [144].

Для минимизации проблемы стационарности возможно использование крат­

косрочного преобразования Фурье (STFT) [67, 144, 112]. Даный метод заключа­

ется в повторении умножения сигнала на короткие временные окна со сдвигом

и выполнении преобразования Фурье для полученного сигнала. В то же вре­

мя, краткосрочное преобразование Фурье (STFT) также имеет ограничения в

соответствии с фундаментальным принципом неопределенности. Согласно ко­

торому время и частота не могут быть одновременно определены с одинаковой

точностью. Данный метод не решает проблему нелинейности сигнала [52].

Для преодоления сложностей повышения точности распознавания эмоций

по речи, связанных с вариативностью и незначительностью изменений нелиней­

ных характеристик в проявлениях разных человеческих чувств речевой эмо­

ции, используется метод эмпирических мод (EMD) [70]. Сигнал раскладывается

на составляющие и анализируется без потери первоначальных свойств, несмот­

ря на линейность и/или нестационарность. Метод эмпирических мод (EMD)

успешно применялся в области распознавания эмоций в голосовых фонограм­

мах [96, 97, 128, 158].

Достижения в области нетрадиционного анализа речевых сигналов хорошо

описан в [130]. Метод эмпирических мод (EMD) раскладывает временной ряд

на внутренние колебания (IMF), имеющие самую высокую локальную частоту.

Однако такой подход имеет недостаток в виде смешивания мод [149, 58]. С одной

стороны это связано с дефектами сигнала, с другой - с изъянами самого мето­

да. Для решения описанной проблемы используется метода ансамбля декомпо­
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зиции эмпирических мод (EEMD). Данный подход заключается в добавлении к

исходному сигналу гауссовского белого шума, среднее значение которого равно

нулю.

Метод эмпирических мод EMD в сочетании с оператором энергии также

используется в качестве альтернативного метода повышения эффективности

частотно-временного анализа сигналов [27]. Для корректировки элементов под­

диапазона могут использовать различные функции. Достижение наиболее про­

дуктивных результатов возможно при совместном использовании метода эм­

пирических мод (EMD) и оператора энергии Тигера-Кайзера (TKEO) [96, 97].

Такое отображение может отслеживать мгновенные амплитуду и частоту ком­

понентов модулированного сигнала (AM-FM) в любой момент времени.

Также комбинация метода эмпирических мод (EMD) и оператора энергии

Тигера-Кайзера (TKEO) показывает хорошие результаты частотно-временного

анализа при демодуляции сигнала [83].

Для повышения точности классификации также могут быть применены

алгоритмы удаления избыточной и нерелевантной информации из результатов

обработки сигнала [137]. Например, можно извлечь признаки при помощи ли­

нейного дискриминантного анализа (LDA), метода главных компонент (PCA),

последовательного прямого выбора (SFS), рекурсивного удаления признаков

(RFE).

Близкими к данному исследованию выступают архитектуры, разработан­

ные в университетах Пассау в Германии [46], Калифорнии [36] и Техасса [22].

Сравнительный анализ вышеуказанных алгоритмов, основанных на CREPE,

привел к выявлению следующих недостатков:

1. Использование частичного обучением учителя в [46] приводит к неста­

бильным промежуточным результатам и потере точности.

2. Применение генеративно-состязательных сетей в [36] подразумевает по­

вышение качественных требований к набору данных, а также усложненному

процессу обучения и генерации результатов.
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3. Сложный алгоритм, описанный в [22], имеет в основе адаптацию алго­

ритмов обучения с помощью метода опорных векторов, примененного к син­

тетическим данным (автоматически сгенерированных алгоритмом), для даль­

нейшего использования с реальными данными (доменная адаптация). Помимо

сложности имплементации такая система имееть увеличенную вычислительную

стоимость и базируется на условных правилах (так называемая “rule-based си­

стема”). При наличии образцов данных на момент прогнозирования, выходящих

за установленный набор, точность такой системы окажется ниже расчетной.

У всех представленных алгоритмов имеется следующий недостаток: отсут­

ствие непосредственного анализа информации сигнала, так как обучение произ­

водится при помощи данных, либо полученных от внутренних преобразований

сети, либо от препроцессирующих алгоритмов.

Учитывая описанные выше моменты, особое внимание было уделено алго­

ритму CREPE, представленному в [84] и являющегося продолжением работ над

алгоритмами YIN [40] и pYIN [108]. Упомянутые публикации являются иннова­

ционными для задач определения частоты основного тона (также называемой

𝐹0 или Fundamental Frequency) в монофоническом аудиоматериале.

В центральном месте алгоритма CREPE находится сверточная нейронная

сеть, производящая обучение на непосредственно аудиосигнале во временной

области.

К сожалению, на сегодняшний день отсутствуют русскоязычные наборы

данных для распознавания эмоций на голосовых фонограммах. Исследование

будет продолжено по факту подготовки таких материалов.

1.2. Набор данных для классификации

Рассматривается следующая задача классификации:

𝑋 - множество голосовых фонограмм 𝑥;

𝑥𝑖 = {𝑥𝑖1, . . . , 𝑥𝑖𝑙} - аудиозапись, длительностью 𝑡 c.
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𝑌 = {Спокойствие, Радость, Грусть, Злость, Страх, Удивление, Отвраще­

ние} - множество классов из семи эмоций.

𝑋𝑚 = {(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)}, где 𝑚 - размер набора данных

Требуется построить алгоритм 𝑎 : 𝑋 → 𝑌 , способный классифицировать

произвольный объект 𝑥 ∈ 𝑋

Для обучения был выбран набор данных Ravdess [100], представляющий

из себя 1440 аудиозапией, на которых актеры произносят два предложения на

английском языке по 2 раза каждое (обычное произношение и нараспев). Пред­

ложения произносятся 2 раза для записи сильного и слабого проявления. Каж­

дая запись длится в среднем 4 с, в первой и последней секундах присутствует

лидирующий и заключительный отрезок без звука.

Аудиоматериал записан в стереоформате, частота семплирования равна 48

кГц. Каждый аудиофайл имеет метку с эмоцией (радость, спокойствие, грусть,

злость, страх, отвращение, удивление), которую испытывал актер при записи.

Выбранный набор данных RAVDESS является общедоступным и наиболее

полно аннотированным по сравнению с остальными.

1.3. Метод сверточных нейронных сетей

В соответствии с основной идеей работы алгоритма CREPE (непосред­

ственная работа над характеризующей сигнал графической информацией) были

рассмотрены несколько вариантов сверточных нейронных сетей с некоторыми

внутренними различиями, которые включают в себя: серьезные отличия архи­

тектур, разное количество слоев свертки, групп слоев, применение дополни­

тельных техник предотвращения эффекта переобучения (over-fitting, dropout,

regularization).

Нейронная сеть, как известно, носит такое название в силу того, что состо­

ит из некоторого количества вычислительных единиц – нейронов. Эти единицы

способны получать, обрабатывать и отправлять любую информацию дальше.
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Делятся нейроны на три основных вида (входной, выходной, скрытый) и два

вспомогательных (нейроны смещения, контекстный). Чтобы улучшить обработ­

ку информации при наличии большого количества нейронов, их совмещают в

слой. Они также разделяются на входной, выходной и скрытый слой. Общий

принцип работы основан на том, что каждый нейрон имеет два параметра: вход­

ные и выходные данные. Дальнейшие действия сводятся к простому циклу:

входной нейрон или слой получает введенную информацию, после чего обраба­

тывает ее и отдает на скрытый нейрон или слой. Во всех последующих скрытых

нейронах или слоях информация обрабатывается, и каждая последующая пере­

дача сопровождается собранной информацией каждого нейрона или слоя. В

конце функция активации нормализует все полученное и отдает на выходной

нейрон или слой, который выводит результат.

Чтобы решить более значительную задачу, например задачу классифика­

ции, нейроны собирают в общую систему - искусственную нейронную сеть [14].

Как известно, при наличии в нейронной сети более одного скрытого слоя такую

сеть принято называть глубокой [134]. В большом многообразии различных ар­

хитектур были выделены и рассмотрены лишь подходящие для цели исследова­

ния. В качестве оптимальных для данной задачи изначально рассматривались:

полносвязная нейронная сеть, когнитрон, перцептрон и сверточная нейронная

сеть.

В полносвязной нейронной сети присутствует множество простых процес­

соров, которые сами по себе могут только совершать тривиальные операции.

Каждому такому процессору (т.е. нейрону) назначается одна из задач: входные

принимают набор данных, обрабатывающие совершают простые математиче­

ские операции над набором, выходные используются для дальнейшей передачи.

В итоговом счете каждому пикселю изображения ставится в отношение один

нейрон. Это имеет место в большинстве вариантов таких архитектур. Такой

подход в машинном обучении прост в использования. Однако расчеты занима­

ют большое количество времени и задействованных нейронов, а качественная

25



оценка результатов может разниться из-за плохого качества изображения или

наличия шума, не видного человеческому глазу. Упомянутые причины снимают

приоритет с данного выбора.

Как известно, когнитрон и перцептрон являются двумя сходными архитек­

турами. Оба варианта в основе имеют принцип обработки изображения челове­

ческим мозгом зрительной корой, но есть различия во внутренней архитектуре.

В перцептроне клетки одного слоя не связаны между собой, но соседние слои

полностью связаны. При обработке объекта нейроны реагируют на него и дают

сигнал (по аналогии с реакцией зрительной коры мозга на попадание света на

сетчатку глаза). В когнитроне имеется иерархическая многослойная организа­

ция, в которой нейроны между слоями связаны только локально. Несомненно,

достоинством, общим для двух архитектур является то, что когнитрон и пер­

цептрон дают более точные результаты, по сравнению с полносвязными нейрон­

ными сетями. Но стоит отметить, что даже малейшие изменения изображения

могут восприниматься ими как совершенно новый объект изучения (что требует

постоянного дополнения набора данных для более полного охвата предметной

области задачи).

Как известно, в сверточной нейронной сети имеются слои, выполняющие

операцию свертки. Каждый фрагмент изображения умножается на матрицу

(ядро) свертки поэлементно, а результат суммируется и записывается в анало­

гичную позицию выходного изображения. Информация проходит распределе­

ние определенных свойств изображения, в которых выделяются более абстракт­

ные детали. Структуру и распределение этих абстрактных признаков и ядро

свертки нейронная сеть определяет самостоятельно в процессе обучения, обре­

тая способность фильтрации деталей и выделения существенных признаков.

По причине того, что сверточная нейронная сеть нацелена на высокую точ­

ность распознавания образов и лучшую из предложенных работу по классифи­

кации изображения, данный вариант рассматривался как наиболее приоритет­

ный, что выделяет эту архитектуру как самую эффективную для дальнейшей
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работы.

Для работы с аудиофайлами и их последующей обработки предваритель­

но необходимо рассмотреть схему создания звуковых волн в речевом тракте.

Несмотря на то, что при исследовании нет возможности создать трехмерную

схему траектории движения звуковой волны, достаточно описать общие харак­

теристики данных акустических процессов с учетом аэродинамических свойств.

Теория речеобразования достаточно полно описывает приведенную схему.

Как известно, речевым сигналом называется функция возбуждения с от­

кликами линейных фильтров. В этом случае в качестве функции возбуждения

выступает шум. В пределах 90-300 Гц колеблется основной тон человеческой

речи, который является уникальным для каждого отдельно взятого индивида.

В пределах 90-180 Гц располагается частота мужских голосов и в пределах

185-300 Гц – частота женских и детских голосов. Набор гармоник, кратных ос­

новному тону, представляет щелчок голосовой щели. Падение уровня энергии

гармоник напрямую зависим от увеличения частоты, 18 кГц — это максималь­

ная граничная частота речевого сигнала, но для тракта достаточно частоты до

3500 Гц. При таком частотном ряде часть фонем не воспринимается человече­

ским ухом.

Резонансные полости речевого тракта напрямую используются щелчком

голосовой щели. В этот момент часть гармоник, кратных основному тону, резо­

нируют и созданные в спектре локальные максимумы образуют области концен­

трации энергии, которые называются формантами. Четыре форманты служат

для создания гласных фонем, а любые другие изменения образуют согласные

звуки. Все вышеперечисленное называют фонемами. Однако форманта также

может служить для составления метрик на аудиоматериале речи человека, так

как принадлежит к статическим характеристикам речи.

Если рассматривать образование речи как создание легкими, бронхами и

трахеей акустической волны, которая образует речь посредством изменения тра­

ектории в голосовом тракте, то голосовой тракт (совокупность вышеназванных
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органов) можно представить как резонатор с несколькими пиками амплитудной

частотной характеристики, частоты которых определяют вид произносимой фо­

немы и соответственно состояние человека.

Реализованный на начальном этапе исследований простой алгоритм произ­

водит перевод итогового аудиосигнала в соответствующий набор параметров в

рамках описанного теоретического материала и в последствии –, в графический

вид. Благодаря своей информативности в сравнении с остальными вариантами

была выбрана спектрограмма – двумерная диаграмма с прямой зависимостью,

где по вертикальной оси показана частота, по горизонтальной оси – время, а ам­

плитуда на определенной частоте в каждый конкретный момент времени пред­

ставлена цветом.

Однако, несмотря на большую меру информативности спектрограмм, на

этапе первичного обучения сверточной нейронной сети не было получено долж­

ной ориентировочной точности классификации эмоций, что привело к выдви­

жению гипотезы о применении психофизической шкалы.

Известно, что человеческое ухо более чувствительно к изменениям звука

на низких частотах, чем на высоких. Это значит, что если частота звука изме­

нится со 100 Гц на 120 Гц, то человек с очень высокой вероятностью распознает

это изменение. Однако изменение частоты с 10000 Гц на 10020 Гц сложнее для

восприятия человеческим ухом.

Такая особенность слуха учтена в одной из единиц измерения высоты зву­

ка — мел. Она основана на психофизиологическом восприятии звука человеком

и логарифмически зависит от частоты, что непосредственно приводит к исполь­

зованию мел-спектрограмм:

𝑚 = 1127 ln(1 +
𝑓

700
) (1.1)

где m – высота звука в мелах, f – частота звука в Гц.

Мел-спектрограмма - это вариант спектрограммы, где частота выражена
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не в Гц (рис.1.1), а в мелах (рис. 1.2). Переход к мелам происходит с помощью

применения шкалирования исходной спектрограммы.

Рис. 1.1. Пример изображения со спектрограммой аудиофайла

Рис. 1.2. Пример изображения с мел-спектрограммой аудиофайла

Фильтрация шумов

Чтобы в дальнейшем система работала достаточно устойчиво на практике,

требуется уменьшить помехи и шумы в таких аудиозаписях. Можно сказать,

что требуется приблизить их качество к студийному. Такое изменение качества

фонограммы можно сделать следующим образом:
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• Рассчитывается результат быстрого преобразования Фурье по всему аудио­

файлу;

• При помощи быстрого преобразования Фурье рассчитываются частотные

статистические параметры;

• На основе этих параметров устанавливается порог шума и желаемая

чувствительность алгоритма;

• Рассчитывается быстрое преобразование Фурье на зашумленном сигнале

аудиофайла;

• Создается маска, сравнением быстрого преобразования Фурье шумного

сигнала и порога;

• Маска выравнивается при помощи фильтра по частоте и временному

домену сигнала;

• Маска применяется к быстрому преобразованию Фурье аудио и результат

инвертируется.

Выбор архитектуры сверточной нейронной сети.

Данная система имеет следующие входные и выходные данные. В каче­

стве входных данных взяты 1024 выдержки из аудиосигнала в моноформате во

временной области с частотой дискретизации 22 кГц. Они обрабатываются при

помощи шести сверточных слоев.

Выходными данными является тензор размерностью 2048, который затем

передается на полносвязный выходной слой классификации с активирующей

функцией сигмоидой размерностью в 360 нейронов. Каждый из 360 элементов

выходного вектора соответствует конкретному значению высоты звука, выра­

жаемой в центах.

Цент — единица частотного интервала, равная 1/1200 части октавы. Таким

образом данная шкала покрывает диапазон звуков в диапазоне частот от 32.70

Гц до 1975.5 Гц.

Ключевой характеристикой голосового сигнала является частота основно­

го тона. С музыкальной точки зрения — это образующая для всех остальных
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звуков натурального звукоряда, а для человеческой речи — частота колебаний

голосовых связок. Она присуща непосредственно их обладателю, а ее повыше­

ние воспринимается слушателем как повышение высоты звука. Таким образом,

возможно следующее предположение: решение задачи определения эмоций по

монофоническому аудиоматериалу можно осуществить, использовав набор ин­

струментов, схожий с задачей определения частоты основного тона алгоритма

CREPE.

При помощи вспомогательных библиотеки функций librosa и matplotlib

производится первичная обработка файлов: приведение материалов к монофор­

мату, децимация аудиофайлов до частоты 22 кГц, подготовка изображения с

мел-спектрограммой аудизаписи с разрешением 640 на 480 пикселей (рис. 1.2).

Именно на этом этапе все аудизаписи были преобразованы в изображения, в

которых по горизонтальной оси приведено время, по вертикальной оси — часто­

та. Третье измерение с указанием амплитуды на определенной частоте в кон­

кретный момент времени представлено интенсивностью желтого цвета каждой

точки изображения.

Посредством библиотеки Keras производится загрузка, нормализация, раз­

деление на обучающую и тестовую выборки, обучение и выбор наилучших ар­

хитектур, составление матрицы ошибок и классификационного отчета по рас­

познаванию эмоций.

Первоначальный вариант архитектуры, который показал неудовлетвори­

тельный для данного исследования результат, выглядел следующим образом

блок №1: 1 слой свертки и 1 слой пулинга.

блок №2: 1 слой свертки и 1 слой пулинга.

слой выравнивания

слой выброса

полносвязный слой

Для повышения точности классификации были использованы следующие

методы: использование различных комбинаций увеличения блоков и сверточ­
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ных слоев, нормализация пакета данных для одной итерации (батчей), тюнинг

гиперпараметров с помощью алгоритма RandomSearch.

По результатам проведенных исследований были получены следующих ре­

зультаты:

1conv_2blocks – 80.2,

2conv_2blocks – 78.29,

1conv_3blocks – 72.56,

2conv_3blocks – 78.81.

По результатам обучения отмечено следующее: сверточные сети, имеющие

в своей архитектуре один сверточный слой, показали более выскоую точность

классификации по сравнению с результатами сетей, имеющих два сверточных

слоя;

Рис. 1.3. Архитектура нейронной сети

Наивысший показатель валидационной точности имеет сеть с архитекту­

рой, представленной на рис. 1.3:

• входной слой (Input),

• Блок №1: сверточный слой, слоя нормализации пакетов (Batch Normalization),

функция активации ReLU,

• Блок №2: сверточный слой, слоя нормализации пакетов (Batch Normalization),

функция активации ReLU,

• слой выброса (Dropout),

• выравнивающий слой (Flatten),
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• полносвязный слой (Dense) с функцией активации softmax.

Итоговая точность распознавания эмоций на голосовых фонограммах с

применением сверточных нейронных сетей при помощи анализа мел-спектро­

грамм составила 80,2%.

1.4. Метод эмпирических мод (EMD)

В этом разделе рассмотрен алгоритм распознавания эмоций на аудиозапи­

си с применением метода эмпирических мод (EMD) [151]. Сочетание данного

подхода с энергетическим оператором Тигера-Кайзера (TKEO) дает информа­

тивную частотно-временную характеристику нестационарных сигналов [82]. Та­

кая совокупность методов дает возможность анализировать локальные особен­

ности голосовых фонограмм.

Звуковой сигнал раскладывается на колебательные компоненты, называе­

мые эмпирическими модами (IMF). Энергетический оператор Тигера-Кайзера

(TKEO) используется для оценки изменяющейся во времени огибающей ампли­

туды и мгновенной частоты сигнала, который может быть получен при помощи

амплитудно-частотной модуляции. Было выбрано подмножество эмпирических

мод (IMF), которое использовалось для извлечения признаков из речевого сиг­

нала для распознавания различных эмоций.

Далее извлекаются спектральные (MS) и частотные (MFF) характеристи­

ки модуляции, которые получаются при помощи кепстральных параметров.

Сочетание всех функций позволяет достичь высокой эффективности в распо­

знавании эмоций. Для задачи классификации был использован метод опорных

векторов (SVM).

В работе описаны функции расчета признаков спектральной (MS) и частот­

ной (MFF) модуляции, основанные на демодуляции (AM-FM) и отслеживании

формант. Они объединяются с кепстральными характеристиками: энергетиче­

ские кепстральные коэффициенты (ECC), частотно-взвешенные энергетические
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кепстральные коэффициенты (EFCC) и мел-кепстральные коэффициенты ре­

конструированного сигнала (SMFCC).

Эффективность функций улучшается при помощи нормализации голосо­

вых фонограмм. Машина опорных векторов (SVM) используется для классифи­

кации эмоций. Такой выбор был сделан по результатам работы [81].

В итоге сигнал был обработан следующим образом:

1) Декомпозиция сигнала (препроцессинг): разложение на эмпирические

моды (EMD) и применение к ним нелинейного энергетического оператора Ти­

гера-Кайзера (TKEO).

2) Вычисление признаков частотной и спектральной модуляции, энергети­

ческих кепстральных коэффициентов (ECC), частотно-взвешенных энергетиче­

ских кепстральных коэффициентов (EFCC) и мел-кепстральных коэффициен­

тов реконструированного сигнала (SMFCC).

3) Классификация эмоций при помощи метода опорных векторов (SVM)

1.4.1. Модуляция сигнала (AM-FM)

Для анализа голоса используется метод амплитудно-частотных модуля­

ции, которая представляет речевой сигнал как сумму формантных резонансных

сигналов. [105] описывает этот речевой резонанс 𝑟𝑖(𝑡) следующим образом:

𝑟𝑖(𝑡) = 𝑅𝑒
(︁
𝑎𝑖(𝑡)𝑒

𝑗𝜑𝑖(𝑡)
)︁

(1.2)

А речевой сигнал может быть представлен так:

𝑥(𝑡) =
𝑁∑︁
𝑖=1

𝑟𝑖(𝑡) + 𝑟𝑒𝑠(𝑡) (1.3)

где 𝑟𝑒𝑠(𝑡) — последние несколько компонентов, которые представляют со­

бой низкочастотные колебания, исключаемые из речевого сигнала [130], 𝑅𝑒 -

действительная часть, 𝜑𝑖(𝑡) - фаза, 𝑎𝑖(𝑡) – мгновенная амплитуда, 𝑓𝑖(𝑡) – мгно­
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венная частота 𝑖-й эмпирической моды:

𝜑𝑖(𝑡) = 2𝜋

∫︁
𝑓𝑖(𝑡)𝑑𝑡 (1.4)

В [121] речевой резонансный сигнал 𝑟(𝑡) извлекается из речевого сигнала

𝑥(𝑡) с применением фильтра Габора. Звуковой сигнал при помощи эмпириче­

ского разложения представляет из себя сумму мод 𝑟𝑖(𝑡). Затем применяется

энергетический оператор Тайгера Кайзера (TKEO) для демодуляции резонанс­

ных сигналов 𝑟𝑖(𝑡) в амплитудную 𝑎𝑖(𝑡) и частотную 𝑓𝑖(𝑡) огибающие. Далее

каждый элемент будет рассмотрен по отдельности.

1.4.2. Разложение на эмпирические моды

Рассматривается метод эмпирических мод, который может разложить лю­

бой нестационарный сигнал на набор внутренних колебаний, которые представ­

ляют собой однокомпонентные сигналы амплитудно-частотной модуляции. Их

извлечение нелинейно, но реконструкция сигнала линейна. Фактически добав­

ление всех мод позволяет линейно восстанавливать исходный сигнал без потери

и без искажения исходной информации.

Функция называется функцией эмпирической моды, если она удовлетворя­

ет следующим свойствам:

• количество экстремумов (максимумов+минимумов) в сигнале должно

быть равно или отличаться не более чем на единицу от количества пересечений

нуля;

• Среднее значение огибающих, определяемых локальными максимумами

и минимумами, всегда должно быть равно нулю.

Процедура декомпозиции для извлечения функций эмпирических мод на­

зывается процессом просеивания и описывается следующим образом:

Вход: речевой сигнал 𝑥(𝑡)

Выход: набор эмпирических мод (IMF).
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Шаг 1. Вычисление всех локальных экстремумов в сигнале 𝑥(𝑡): локальные

максимумы и минимумы;

Шаг 2. Построение верхней огибающей 𝐸𝑢(𝑡) и нижнюю огибающую 𝐸𝑙(𝑡),

соединив локальные максимумы и минимумы кубическим сплайном в заданном

сигнале 𝑥(𝑡) ;

Шаг 3. Вычисление среднего значения огибающей: 𝑚(𝑡) = 𝐸𝑢(𝑡)+𝐸𝑙(𝑡)
2 ;

Шаг 4. Получение новой последовательности 𝑟(𝑡), из которой удалена низ­

кая частота: 𝑟(𝑡) = 𝑥(𝑡) −𝑚(𝑡);

Шаг 5. Повторение шагов 1–4 до тех пор, пока 𝑟(𝑡) не станет удовлетворять

условиям эмпирической моды (IMF);

Шаг 6. Вычитание эмпирической моды(IMF) 𝑟(𝑡) из исходного сигнала

𝑟𝑒𝑠(𝑡) = 𝑥(𝑡) − 𝑟(𝑡);

Шаг 7. Повторение шагов 1–6 до тех пор, пока в остаточном сигнале 𝑟𝑒𝑠(𝑡)

не останется ни одоной эмпирической моды (IMF).

Процесс завершается, когда остаточный элемент 𝑟𝑒𝑠(𝑡) является констан­

той либо монотонной функцией.

Таким образом можно получить 𝑁 эмпирических мод (EMD) 𝑟1(𝑡), 𝑟2(𝑡),

..., 𝑟𝑁(𝑡) и остаточный сигнал 𝑟𝑒𝑠𝑁(𝑡). Следовательно, исходная последователь­

ность данных 𝑥(𝑡) может быть представлена в следующем виде:

𝑥(𝑡) = 𝑟𝑒𝑠𝑁(𝑡) +
𝑁∑︁
𝑖=1

𝑟𝑖(𝑡) (1.5)

В этом методе каждый входной сигнал разлагается на конечное число эм­

пирических мод, каждую из которых можно проанализировать отдельно, чтобы

получить признаки для классификации эмоций. В [127] авторы ограничивают­

ся первыми пятью коэффициентами при условии, что они дают достаточную

информацию об энергии и высоте тона. Как правило, после определенного по­

рядкового номера эмпирические моды не являются информативными.
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1.4.3. Энергетический оператор Тигера-Кайзера (ТКЕО)

Эмпирические моды сами по себе несут не очень много информации, но

применение к ним оператора энергии Тигера-Кайзера (ТКEO) позволяет оце­

нить изменяющуюся во времени огибающую амплитуды и мгновенную частоту,

что имеет определенный физический смысл.

Оператор энергии Тигера-Кайзера — это нелинейный оператор, вычисля­

ющий энергию однокомпонентных сигналов как произведение квадрата ампли­

туды и частоты сигнала. Мгновенные характеристики этих сигналов затем мо­

гут быть получены при помощи алгоритма дискретного разделения энергии

(DESA-2) [105].

Такая операция улучшает оценку мгновенных характеристик данных виб­

рации по сравнению с другими широко используемыми методами, например,

с преобразованием Гильберта. Метод, основанный на алгоритме декомпозиции

эмпирических мод с применением оператора Тигера-Кайзера (TKEO) называ­

ется преобразованием Тигера-Хуанга (THT) [71].

Ψ[𝑟𝑖(𝑡)] = [𝑟𝑖(𝑡)]
2 − 𝑟𝑖(𝑡)𝑟𝑖(𝑡) (1.6)

где 𝑟𝑖(𝑡) и 𝑟𝑖(𝑡) — первая и вторая производные по времени от 𝑟𝑖(𝑡) со­

ответственно. Для дискретного сигнала времени 𝑟𝑖(𝑛) производная [107] будет

выглядеть так:

Ψ[𝑟𝑖(𝑛)] = 𝑟2𝑖 (𝑛) − 𝑟𝑖(𝑛+ 1)𝑟𝑖(𝑛− 1) (1.7)

где n — дискретный индекс.

Следующие уравнения точно описывают мгновенную частоту 𝑓(𝑛) и мгно­

венную амплитуду 𝑎(𝑛) в любой момент времени эмпирической моды 𝑟𝑖(𝑛) [105]:

𝑓(𝑛) =
1

2
arccos

(︂
1 − Ψ[𝑥(𝑛+ 1) − 𝑥(𝑛− 1)]

2Ψ[𝑥(𝑛)]

)︂
(1.8)
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|𝑎(𝑛)| =
2Ψ[𝑥(𝑛)]√︀

Ψ[𝑥(𝑛+ 1) − 𝑥(𝑛− 1)]
(1.9)

В [120] обратили внимание, что приближенное значение оператора энер­

гии содержит в себе высокочастотную составляющую ошибки. Поэтому было

предложено устранить ее при помощи биномиального фильтра нижних частот.

1.4.4. Извлечение признаков

Далее будет описан процесс извлечения различных признаков из голосо­

вых фонограмм.

Мел-кепстральные коэффициенты реконструированного сигнала (SMFCC)

Кепстральные признаки учитывают физические особенности слуховой си­

стемы человека и вычисляются при помощи спектра сигнала.

Мел-кепстральные коэффициенты (MFCC) широко используется для рас­

познавания речевых эмоций [154]. Можно предположить, что речевой сигнал

является кратковременным стационарным процессом. В таком случае мел-кеп­

стральные коэффециенты содержали бы в себе основные информативные при­

знаки. Но на самом деле речевой сигнал имеет сложные и случайные измене­

ния, и наличие тренда сигнала создает большую погрешность в спектральном

анализе мощности в частотной области или поиске корреляций во временной

области.

Поэтому удаление сигнального тренда повысит информативность призна­

ков. Метод поиска мел-кепстральных коэффициентов после удаления сигналь­

ного тренда 𝑇 (𝑛) подробно описан в [96]. Такие численные параметры дают

более точное описание распределения энергии в частотной области. Вычисле­

ние мел-кепстральных коэффициентов реконструированного сигнала (SMFCC)

схематически показано на Рис. 1.4.

Тренд сигнала может быть вычислен как сумма эмпирических мод, удо­
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Рис. 1.4. Схема вычисления мел-кепстральных коэффициентов реконструированного сигнала

(SMFCC).

влетворяющих следующему условию:

𝑍𝐶𝑅𝑟𝑖

𝑍𝐶𝑅𝑟1

< 0.01(𝑖 = 2, . . . , 𝑛) (1.10)

где ZCR - темп пересечения сигналом нуля (показатель, характеризующий

частоту изменения сигнала с отрицательного на положительный и наоборот).

𝑍𝐶𝑅 =
1

𝑇 − 1

𝑇−1∑︁
𝑡=1

1R<0(𝑟𝑡𝑟𝑡−1) (1.11)

где 𝑟(𝑡) - сигнал длины Т, 1R<0 - индикаторная функция.

Впоследствии окончательный сигнал 𝑆(𝑛) получается путем вычитания

тренда 𝑇 (𝑛) из исходных данных 𝑥(𝑛) [97].

𝑇 (𝑛) =
∑︁
𝑖

𝑟𝑖(𝑛) (1.12)

𝑆(𝑛) = 𝑥(𝑛) − 𝑇 (𝑛) (1.13)

Мел-кепстральные коэффициенты реконструированного сигнала (SMFCC)

извлекаются из полученных восстановленных данных 𝑆(𝑛) с помощью алгорит­
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ма быстрого преобразования Фурье (FFT) и дискретного косинусного преобра­

зования (DCT).

Энергетические кепстральные коэффициенты (ECC) и частотно-взве­

шенные энергетические кепстральные коэффициенты (EFCC).

В [130] авторы подтверждают, что распределение спектральной энергии ме­

няется при разных эмоциях. Это означает, что энергетические частотные диапа­

зоны разных эмоциональных состояний могут пересекаться. Поэтому гораздо

важнее проанализировать распределение энергии в гильбертовом спектре (во

временной области).

Считается, что мгновенная энергия каждой эмпирической моды пропор­

циональна амплитуде и не зависит от мгновенной частоты. Но согласно физи­

ческому смыслу в энергетическую оболочку 𝑎(𝑡) входит не только мгновенная

энергия, но и мгновенная частота 𝑓(𝑡). На основе приведенных выше соображе­

ний исследователи разработали мгновенную взвешенную по частоте энергию

(EFCC) для улучшения характеристик ECC, представленных выше.

Стандартная реализация расчета кепстральных коэффициентов энергии

(ECC) и частотно-взвешенных кепстральных коэффициентов энергии (EFCC)

[97] показана на рисунке 1.5.

Первым этапом обработки является разложение речевого сигнала на эм­

пирические моды. Их мгновенная амплитуда (𝑎(𝑖, 𝑛)) и мгновенная частота

(𝑓(𝑖, 𝑛)) оцениваются с помощью энергетического оператора Тигера Кайзера на

втором этапе. На третьем шаге обработки регистрируется мгновенная амплиту­

да и частота коротких кадров с перекрытием (длительностью 250 мс, наложе­

нием 64 мс), что дает 𝑎𝑘(𝑖, 𝑛) и 𝑓𝑘(𝑖, 𝑛). Четвертым этапом обработки является

вычисление маргинального гильбертового спектра. Он предлагает меру общей

амплитуды каждой частоты. Поэтому спектр разбивается на 12 разных полос

частот и вычисляется мощность каждой. Затем рассчитывается натуральный

логарифм энергии поддиапазона и дополняется дискретным косинусным преоб­

разованием.
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Рис. 1.5. Схема вычисления кепстральных коэффициентов энергии (ECC) и частотно-взве­

шенных кепстральных коэффициентов энергии (EFCC).

Первые 12 коэффициентов DCT дают значения ECC и EFCC, используе­

мые в процессе классификации.

Рассчитать маргинальный гильбертовый спектр можно следующим обра­

зом:

ℎ𝑗(𝑓) =

𝐿𝑓∑︁
𝑛=1

𝐻(𝑓, 𝑛)1𝐵𝑗
(𝑓) (1.14)

где 𝐿𝑓 - длина кадра в отсчетах, а 𝐻(𝑓, 𝑛) — Гильбертов спектр. Он опреде­

ляется как мгновенная огибающая энергии в частотно-временном пространстве,

которая представляет собой квадрат величины огибающей амплитуды.

𝐻(𝑓, 𝑛) =
𝑁∑︁
𝑖=1

𝑎(𝑖, 𝑛)21{𝑓(𝑖,𝑛)}(𝑓) (1.15)

где 𝑖 - номер эмпирической моды, а 𝐵𝑗 - соответствующий поддиапазон.

𝐵𝑗 = [𝑓𝑐(𝑗 − 1), 𝑓𝑐(𝑗 + 1)] (1.16)

где 𝑓𝑐 центр частот.
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Индикаторная функция подмножества множества Ω определяется как:

1Ω(𝑥) =

⎧⎪⎨⎪⎩1, если 𝑥 ∈ Ω;

0, если 𝑥 /∈ Ω.
(1.17)

Расчет энергетических кепстральных коэффициентов (ECC) для непре­

рывной функции подробно описана в [130]:

𝐸𝐶𝐶(𝐵𝑗, 𝑆𝑖) =

∫︁
𝑓∈𝐵𝑗

ℎ𝑗(𝑓)𝑑𝑓, 𝑡 ∈ 𝑆𝑖, 𝑗 = 1, . . . , 12 (1.18)

где 𝐵𝑗 обозначает поддиапазон, 𝑆𝑖 - речевой кадр.

В данной работе эти характеристики вычисляются с использованием дис­

кретного речевого сигнала следующим образом:

𝐸𝐶𝐶𝑘(𝑗) =
𝑁∑︁
𝑖=1

1

𝐿𝐹

𝐿𝐹∑︁
𝑛=1

𝑎2𝑘(𝑖, 𝑛)1𝐵𝑗
(𝑓𝑘(𝑖, 𝑛)) , 𝑗 = 1, . . . , 12 (1.19)

Частотно-взвешенные энергетические кепстральные коэффициенты (EFCC)

Непрерывная функция вычисления данных компонентов описана в [130]:

𝐸𝐹𝐶𝐶(𝐵𝑗, 𝑆𝑖) =

∫︁
𝑓∈𝐵𝑗

𝑓(𝑡)ℎ𝑗(𝑓)𝑑𝑓, 𝑡 ∈ 𝑆𝑖, 𝑗 = 1, . . . , 12 (1.20)

где 𝐵𝑗 обозначает поддиапазон, 𝑆𝑖 - речевой кадр.

Для дискретного случая EFCC может быть вычислен следующим образом:

𝐸𝐹𝐶𝐶𝑘(𝑗) =
𝑁∑︁
𝑖=1

1

𝐿𝐹

𝐿𝐹∑︁
𝑛=1

𝑓𝑘(𝑖, 𝑛)𝑎2𝑘(𝑖, 𝑛)1𝐵𝑗
(𝑓𝑘(𝑖, 𝑛)), 𝑗 = 1, . . . , 12 (1.21)

где 𝐵𝑗 - поддиапазон, 𝑖 - эмпирическая мода, 𝑘 - речевой кадр.

Были извлечены первые 12 коэффициентов ECC и EFCC для голосовых

фонограмм. Для каждого из них были вычислены среднее значение, диспер­

сия, а также коэффициенты вариации, эксцесса и асимметрии. Каждый вектор

признаков ECC и EFCC состоит из 60 точек.
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Спектральные характеристики модуляции (MSF)

Спектральные характеристики модуляции (MSF), представленные в [150]

извлекаются для решения проблемы краткосрочных спектральных характери­

стик (MFCC) и для моделирования природы слухового восприятия человека.

Метод основан на имитации спектрально-временной обработки, выполняемой

в слуховой системе человека, и учитывает как обычную акустическую часто­

ту, так и частоту модуляции. Эти функции основаны на разложении речевого

сигнала слуховыми фильтрами и вычислении гильбертовой огибающей каждой

частотной полосы.

В данной работе эти признаки извлекаются с помощью метода модуля­

ции (AM-FM). Этапы выделения спектральных характеристик модуляции (MS)

изображены на рисунке 1.6 .

После использования энергетического оператора Тигера-Кайзера (TKEO)

к эмпирическим модам (IMF), фильтры модуляции дополнительно применяют­

ся к мгновенной амплитуде для выполнения частотного анализа.

Спектральный состав сигналов модуляции называется спектром модуля­

ции, а предлагаемые признаки называются спектральными признаками моду­

ляции (MS).

Рис. 1.6. Схема вычисления спектральных признаков модуляции (MS).

Энергия всех кадров в каждой спектральной полосе, дает характеристи­

ку 𝐸(𝑖, 𝑗). Энергия в каждой спектральной полосе определяется следующим
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образом:

𝐸(𝑖, 𝑗) =

𝑁𝑓∑︁
𝑘=1

𝐸𝑘(𝑖, 𝑗) (1.22)

Где 𝐸𝑘(𝑖, 𝑗) — энергия по каналам, 𝑁𝑓 — количество кадров для 1 6 𝑗 6 8.

Для каждого кадра 𝑘 значение 𝐸(𝑖, 𝑗) нормализуется к единице энергии перед

дальнейшими вычислениями:

∑︁
𝑖,𝑗

𝐸𝑘(𝑖, 𝑗) = 1 (1.23)

Затем для каждого кадра рассчитываются три спектральные меры Φ1,

Φ2, Φ3 [150]. Первая рассчитывается как среднее значение отсчетов энергии,

принадлежащих 𝑗-й полосе модуляции (1 6 𝑗 6 8):

Φ1,𝑘(𝑗) =

∑︀𝑁
𝑖=1𝐸𝑘(𝑖, 𝑗)

𝑁
(1.24)

Для кадра 𝑘 Φ2,𝑘(𝑗) — это спектральная плоскостность, которая определя­

ется как отношение среднего геометрического Φ1 к среднему арифметическому.

Таким образом, Φ2 определяется следующим образом:

Φ2,𝑘(𝑗) =
𝑁
√︀
𝐸𝑘(1, 𝑗)𝐸𝑘(2, 𝑗) . . . 𝐸𝑘(𝑁, 𝑗)

Φ1,𝑘(𝑗)
(1.25)

В текущем исследовании Φ2 вычисляется в логарифмическом масштабе

следующим образом:

log Φ2,𝑘(𝑗) =
1

𝑁

𝑁∑︁
𝑖=1

log𝐸𝑘(𝑖, 𝑗) − log Φ1,𝑘(𝑗) (1.26)

Последняя используемая мера Φ3 - это спектральный центроид, который

определяет центр масс в каждой полосе модуляции. Для 𝑗-й полосы модуляции

Φ3 определяется следующим образом:

Φ3,𝑘(𝑗) =

∑︀𝑁
𝑖=1 𝑓(𝑖)𝐸𝑘(𝑖, 𝑗)∑︀𝑁

𝑖=1𝐸𝑘(𝑖, 𝑗)
(1.27)
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где 𝑓(𝑖) - индекс 𝑖-го фильтра критической полосы, для упрощения можно

считать 𝑓(𝑖) = 𝑖.

Различные статистические данные, среднее значение, дисперсия, коэффи­

циент вариации, эксцесс и асимметрия извлекаются из энергии в каждой спек­

тральной полосе. Наряду с этими статистическими данными оцениваются сред­

нее значение и дисперсия спектральной энергии, спектральной плоскостности

и спектрального центроида, которые используются в качестве признаков.

Вычисления говорят о том, что эмоции грусти и спокойствия обладают

значительно большей низкочастотной акустической энергией, чем эмоция гне­

ва, [150]. Для эмоции гнева дисперсия еще больше. Однако менее выразитель­

ные эмоции, такие как грусть, демонстрируют более выраженные спектральные

формы низкочастотной модуляции, что предполагает более низкую скорость ре­

чи.

Характеристики частотной модуляции (MFF)

Исследования восприятия речи показали, что наиболее важная перцептив­

ная информация находится на низких частотах модуляции [28]. Их анализ мо­

жет быть полезен в распознавании эмоционального состояния на голосовых

фонограммах.

Метод модуляции (AM-FM) используется для анализа сигнала, далее бу­

дет исследовано частотное распределение энергии речевого сигнала в полосе

частот. Производится разложение на эмпирические моды, а мгновенная огиба­

ющая амплитуды и частотная функция каждой из них оцениваются с использо­

ванием TKEO. Затем они используются для получения краткосрочных оценок

средней мгновенной частоты и полосы пропускания по каждому кадру. Сред­

няя амплитуда, взвешенная по мгновенной частоте 𝐹𝑤, и средняя взвешенная

по амплитуде мгновенная ширина полосы частот 𝐵𝑤 описаны для непрерывного
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временного сигнала в [130]:

𝐹𝑤 =

∫︀ 𝑡0+𝑇

𝑡𝑜
𝑓(𝑡)𝑎2(𝑡)𝑑𝑡∫︀ 𝑡0+𝑇

𝑡0
𝑎2(𝑡)𝑑𝑡

(1.28)

𝐵2
𝑤 =

∫︀ 𝑡0+𝑇

𝑡0
[{𝑎̇/2𝜋}2 + {𝑓(𝑡) − 𝐹𝑤}2𝑎2(𝑡)]𝑑𝑡∫︀ 𝑡0+𝑇

𝑡0
𝑎2(𝑡)𝑑𝑡

(1.29)

где 𝑡0 и 𝑇 представляют собой начало и продолжительность анализируе­

мого кадра, 𝑓(𝑡) и 𝑎(𝑡) - мгновенная огибающая частоты и амплитуды каждого

сигнала (AM-FM), а 𝑎̇(𝑛) вычисляется для дискретного случая следующим об­

разом:

𝑎̇(𝑡) = 𝑎(𝑡+ 1) − 𝑎(𝑡) (1.30)

При помощи огибающей амплитуды и мгновенной частоты вычисляются

следующие характеристики сигнала: средняя мгновенная частота (𝐹 ), средняя

мгновенная ширина полосы (𝐵), взвешенная по средней амплитуде мгновен­

ная частота (𝐹𝑤) и средняя амплитуда взвешенной мгновенной ширины полосы

пропускания (𝐵𝑤). Их можно посчитать для дискретного случая следующим

образом:

𝐹𝑘(𝑖) =
1

𝐿𝐹

𝐿𝐹∑︁
𝑛=1

𝑓𝑖(𝑘, 𝑛) (1.31)

𝐵𝑘(𝑖) =

⎯⎸⎸⎷ 1

𝐿𝐹

𝐿𝐹∑︁
𝑛=1

(𝑓𝑘(𝑖, 𝑛) − 𝐹𝑘(𝑖)) (1.32)

𝐹𝑤
𝑘 (𝑖) =

∑︀𝐿𝐹

𝑛=1 𝑓𝑘(𝑖, 𝑛)𝑎2𝑘(𝑖, 𝑛)∑︀𝐿𝐹

𝑛=1 𝑎
2
𝑘(𝑖, 𝑛)

(1.33)

𝐵𝑤
𝑘 (𝑖) =

√︃∑︀𝐿𝐹

𝑛=1{𝑎̇𝑘(𝑖, 𝑛)/2𝜋}2 + {𝑓𝑘(𝑖, 𝑛) − 𝐹𝑤
𝑘 (𝑖)}2𝑎2𝑘(𝑖, 𝑛)∑︀𝐿𝐹

𝑛=1 𝑎
2
𝑘(𝑖, 𝑛)

(1.34)
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где 𝑖 представляет номер эмпирической моды, 𝐿𝐹 представляет количество

выборок на кадр, 𝑓𝑘 и 𝑎𝑘 представляют соответственно мгновенную частоту и

амплитудную частоту в конкретном кадре речи 𝑘. В этой работе среднее, мак­

симальное и минимальное из этих двух значений (𝐵,𝐵𝑤) и среднее значение

(𝐹 , 𝐹𝑤) были вычислены для каждого признака и использовались для класси­

фикации.

Для каждой эмпирической моды краткосрочная оценка частоты 𝐹𝑘(𝑖) рас­

считывается для каждого кадра.

Продолжительность анализируемого кадра голосовой фонограммы состав­

ляет 25 мс со сдвигом кадра 10 мс.

Эмоция гнева обычно смещается в сторону высоких частот (между 600 и

1300 Гц). а грусть - к низким частотам.

Итоговая точность распознавания эмоций на голосовых фонограммах с

применением метода эмпирических мод составила 74.6%.

1.5. Метод вейвлет-анализа

Коэффициенты вейвлет-пакета (WPC)

Вейвлеты можно определить как в [103]. Вейвлет-преобразование сигнала

𝑓 ∈ 𝐿2(𝑅) во время 𝑢 и в масштабе 𝑠 вычисляется путем корреляции 𝑓 с атомом

вейвлета по формуле :

𝑊𝑓(𝑢, 𝑠) =< 𝑓, 𝜓𝑢,𝑠 >=

+𝛼∫︁
−𝛼

𝑓(𝑡)
1√
𝑠
𝜓*

(︂
𝑡− 𝑢

𝑠

)︂
𝑑𝑡 (1.35)

Вейвлет-преобразование также может быть описано при помощи свертки:

𝑊𝑓(𝑢, 𝑠) =

+𝛼∫︁
−𝛼

𝑓(𝑡)
1√
𝑠
𝜓*

(︂
𝑡− 𝑢

𝑠

)︂
𝑑𝑡 = 𝑓 * 𝜓𝑠(𝑢) (1.36)

Пакетное вейвлет-преобразование (WPT) [103] затрагивает и низкие и вы­

сокие частоты. Это может быть реализовано с помощью многомерного банка
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фильтров [131]. Он рассчитывается при помощи наложения фильтров во вре­

менной области на субсигнал, полученный из частотных составляющих в каж­

дом субдиапазоне [104]. Многомерный банк фильтров вычисляется при помощи

разложения вейвлет-пакета.

𝜓𝑖
𝑗,𝑘(𝑡) = 2

𝑗
2𝜓𝑗(2𝑗𝑡− 𝑘), 𝑖 = 1, 2, 3, . . . (1.37)

где 𝑖 — параметры модуляции, 𝑗 — параметры масштаба, 𝑘 — параметры

трансляции, 𝜓𝑗 — вейвлет-функция, которую можно определить рекурсивно:

𝜓2𝑗(𝑡) =
√

2
+𝛼∑︁
−𝛼

ℎ(𝑘)𝜓𝑗(2𝑡− 𝑘) (1.38)

𝜓2𝑗+1(𝑡) =
√

2
+𝛼∑︁
−𝛼

𝑔(𝑘)𝜓𝑗(2𝑡− 𝑘) (1.39)

𝑗-уровневое разложение 𝑓(𝑡) можно определить следующим образом:

𝑓(𝑡) =

2𝑗∑︁
𝑖=1

𝑓 𝑖𝑗(𝑡) (1.40)

Коэффициенты вейвлет-пакета задаются в таком виде:

𝑓 𝑖𝑗(𝑡) =
+𝛼∑︁
−𝛼

𝑐𝑖𝑗,𝑘(𝑡)𝜓
𝑖
𝑗,𝑘(𝑡) (1.41)

𝑐𝑖𝑗,𝑘(𝑡) =
+𝛼∑︁
−𝛼

𝑓(𝑡)𝜓𝑖
𝑗,𝑘(𝑡)𝑑𝑡 (1.42)

Таким образом, сигнал может быть описан с помощью комбинации коэф­

фициентов пакета вейвлетов, а также их разности первого и второго порядка.

Исследована четырехуровневая и пятиуровневая вейвлет-пакетная декомпози­

ция.

В текущей работе был выбран метод опорных векторов (SVM) в качестве

классификатора.
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Таблица 1.1. Таблица итоговой точности распознавания эмоций на голосовых фонограммах

с применением различных методов

Метод Точность распознавания

Метод эмпирических мод 74,6%

Вейвлет-анализ 72,7 %

Предложенная архитектура 80,2 %

По результатам вычислений можно сделать вывод о том, что коэффици­

енты вейвлета-пакета эффективны для распознавания эмоций радости, грусти,

злости и отвращения, но неэффективны для распознавания нейтральных эмо­

ций.

Итоговая точность распознавания эмоций на голосовых фонограммах при

помощи вейвлет-анализа составила 72,7%.

1.6. Выводы к первой главе

Результаты первой главы опубликованы в работах [9, 47].

Предложена и программно реализована архитектура нейронной сети для

решения задачи определения эмоции на голосовой фонограмме с высокой точ­

ностью 1.1.

Благодаря поиску эффективной архитектуры для распознавания эмоций

на голосовых фонограммах при помощи анализа мел-спектрограмм сверточны­

ми нейронными сетями удалось достичь высоких показателей точности.

В дальнейших исследованиях планируется оценить возможность повыше­

ния точности классификации при обогащении аудиосигналов информацией об

уровне стресса исследуемых лиц.

Итоговая точность распознавания эмоций на голосовых фонограммах пред­

ставлена в таблице 1.1:
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Глава 2

Методы распознавания эмоций на видеозаписи

2.1. Краткий обзор существующих подходов

В данной главе рассматриваются подходы к распознаванию эмоций чело­

века по визуальным признакам лица. Применяется глубокое обучение много­

слойных нейронных сетей.

Существует огромное разнообразие алгоритмов, способных распознавать

эмоции человека по мимике лица [1, 4, 11]. Однако качество этих систем умень­

шается из-за следующих обстоятельств:

маленькая выборка для обучения, расхождение в пропорциях лица, наиг­

ранность эмоций, освещенность во время съемки, окклюзия, различный угол

поворота головы, внутриклассовое различие и межклассовое сходство, этниче­

ская принадлежность, пол, возраст.

Использование многослойных нейронных сетей направлено на повышение

точности определения эмоций на изображениях.

Наиболее точно на сегодняшний день эмоции человека были описаны По­

лом Экманом в работе [49], где каждая эмоция была представлена при помощи

кодирования лицевых движений, но данный подход сложно автоматизировать

[91, 90]. Это связано с тем, что он содержит 46 основных категорий и более 50

дополнительных, а эмоции являются комбинациями таких групп. Поэтому для

подготовки такие датасеты (пронумерованный набор изображений, фонограмм

или видеозаписей с указанием исследуемых признаков каждого элемента) обра­

батываются психологами вручную с учетом указанных обстоятельств [8].

Особый интерес представляет датасет Aff-Wild [87, 88, 89], который состоит

из фрагментов видеороликов платформы YouTube, они не являются предзапи­

санными в видеостудии. Это значит, что условия записи материалов максималь­
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но приближены к действительности.

Существует два принципиально разных подхода в распознавании эмоций:

с предварительным алгоритмическим извлечением визуальных признаков

и последующей машинной классификацией [23], с использованием глубоких ней­

ронных сетей без предварительного извлечения признаков [153].

Визуальные признаки могут быть извлечены при помощи выявления:

геометрических объектов лица (брови, нос, рот, глаза и др.) [138, 68] мето­

дами дескриптора line edge map, сравнения направленности градиентов [76, 60],

метода активной формы ASM [73], курвлет-преобразования [35], использования

структурных моделей [19] и др.;

текстурных особенностей методами фильтра Габора, дискретным вейвлет­

преобразованием [113] и др.;

глобальных и локальных объектов методами главных компонент [140], оп­

тического потока [159], морфологическими преобразованиями [6] и др.

Но при условии наличия достаточного датасета наиболее высокой точности

классификации удается достичь именно при помощи автоматического выявле­

ния признаков и классификацией глубокими нейронными сетями [6, 18, 136, 7].

Можно выделить три основных направления исследований в области рас­

познавания эмоций по мимике:

1. Объедениние групп мимических мышц в единицу действия (ЕД), в таком

случае эмоции можно выразить при помощи движений нескольких ЕД. Так

из входного изображения можно определить соответствующее эмоциональное

состоянии при помощи декодирования ЕД. Но мышечные движения в основном

небольшие, поэтом сложно достичь высокой точности в их обнаружении [156].

Это сильно ограничивает развитие такого подхода.

2. Выделение признаков соответствующих эмоций на лице. Данный под­

ход включает в себя три шага. На первом этапе необходимо найти лицо на

изображении с помощью выявления ориентиров в области лица. На втором эта­

пе происходит извлечение признаков из области лица с помощью гистограммы
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ориентированного градиента (HOG), локальных бинарных паттернов (LBP) и

вейвлет-методов Габора. На третьем этапе производится классификация при

помощи полученных параметров.

3. Использование методов глубокого обучения, в которых в отличие от тра­

диционных подходов, признаки анализируемого изображения создаются непо­

средственно в сверточных слоях [142, 77, 143].

Хотя методы с применением глубокого обучения работают зачастую лучше

обычных, но у них есть серьезные ограничения, связанные со временем обработ­

ки и потреблением памяти. Иногда в прикладных задачах приходится работать

на слабом оборудовании, поэтому необходимо изучить альтернативные методы

для распознавания по мимике семи основных эмоций (спокнойствие, радость,

удивление, печаль, страх, гнев и отвращение).

Метод локальных бинарных паттернов (LBP) достаточно эффективно справ­

ляется с задачей для описания текстур. Изменение выражения лица создает

различные текстуры отдельными группами мышц, что делает возможным при­

менение данного метода для выявления эмоциональных состояний. Объедине­

ние данного подхода с ORB (Oriented FAST and Rotated BRIEF) позволяет

обеспечить еще более высокую скорость вычислений [55].

Совместное применение аудио и видео систем может увеличить точность

распознавания эмоций [38], но требования к пользователю сильно возрастают

для корректного размещения записывающего оборудования.

2.2. Набор данных для классификации

В текущей главе в основном использовались наборы данных RAVDESS

(описан ранее) и Aff-Wild [88].

Набор данных Aff-Wild состоит из 298 видеороликов, общей продолжи­

тельностью более 30 часов. Основная задача, которую ставили перед собой ее

авторы - собрать спонтанное поведение лица в произвольных условиях записи.
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Все видеоролики были собраны на веб-сайте обмена видео Youtube по клю­

чевому слову «реакция». Такие фрагменты показывают, как люди реагируют

на различные стимулы (раздражители). Это может быть последствием неожи­

динного поворота в сюжете фильма, обратная связь на необычную еду, впечат­

ления после экстримальных событий. В данных видеороликах присутствуют,

как положительные, так и отрицательные эмоции.

Каждый ролик аннотирован по шкале валентности (позитив-негатив) и

возбуждения (расслабленность - тонус) по методике, описанной в [43]. Значе­

ния каждого показателя изменялись от -1 до 1. Для удобства работы метки

проставлялись с помощью джойстика. В этом наборе данных представлно 200

субъектов, из них 130 мужчин и 70 женщин. Корректность аннотирования до­

стигалась при помощи инструктажа в устной форме и выдачи инструкции в ви­

де многостраничного документа с объяснением процедуры. Описание включало

в себя краткий список хорошо идентифицированных эмоциональных сигналов

для возбуждения и валентности. Перед началом комментирования данных, каж­

дый аннотатор просматривал видео целиком, чтобы знать порядок реакций и

эмоций в текущем фрагменте.

Выбор набора данных играет важную роль. Благодаря этой работе для

исследования предоставлен строго аннотированный и разнообразный материал

для обучения нейронных сетей.

Рассмотрим следующую задачу классификации:

𝑋 - множество видеозаписей 𝑥;

𝑥𝑖 = {𝑥𝑖1, . . . , 𝑥𝑖𝑙} - видеозапись продолжительностью 𝑡, состоящая из 𝑙

кадров 𝑥𝑖𝑗

, где 𝑙 - длительность видеозаписи в кадрах,

𝑥𝑖𝑗 - матрица целых чисел размера 𝑤 × ℎ × 𝑐, где 𝑤 - ширина кадра, ℎ -

высота кадра, 𝑐 - цветность кадра (𝑐 = 3 для цветного, 𝑐 = 1 для черно-белого);

𝑌 = {Спокойствие, Радость, Грусть, Злость, Страх, Удивление, Отвраще­

ние} - множество классов из семи эмоций.
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Существует неизвестная целевая зависимость - отображение 𝑦* : 𝑋 → 𝑌 ,

значения которой известны на объектах набора данных

𝑋𝑚 = {(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)}, где 𝑚 - размер набора данных

Требуется построить алгоритм 𝑎 : 𝑋 → 𝑌 , способный классифицировать

произвольный объект 𝑥 ∈ 𝑋

2.3. Метод локальных бинарных паттернов

В данной главе представлена структура алгоритма распознавания выраже­

ния лица. Лица обнаруживаются и извлекаются при помощи библиотеки Dlib

из-за ее высокой скорости обработки, далее применяется метод локальных би­

нарных паттернов LBP [55].

Метод локальных бинарных паттернов (LBP) может зафиксировать мел­

кие текстурные детали при помощи мелкомасштабного дескриптора. Такой под­

ход устойчив к изменениям освещения на видеозаписи и справляется с задачей

кодирования мелких визуальных деталей на лице.

Для применения данного метода требуется извлечь лицо из кадра. Для

обнаружения лиц была выбрана библиотека Dlib лиц из-за ее высокой скорости

обработки. Выбранные методы содержат детектор ориентиров лица с предвари­

тельно обученной архитектурой [85, 78], которая выделяет 68 точек, описанные

в таблице 2.1.

В этом методе создается дерево регрессии для нахождения этих ориенти­

ров лица непосредственно по интенсивности пикселей без извлечения призна­

ков; таким образом, процесс обнаружения может быть достаточно быстрым,

чтобы преодолеть проблемы с точностью и качеством, связанные с анализом в

реальном времени.

Обычно эмоции в основном передаются через глаза, нос, брови и некото­

рые области лица, поэтому другие части лица, такие как уши и лоб, могут

быть исключены из дальнейшего анализа. Этот алгоритм обнаружения лица
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Таблица 2.1. Таблица соответствия выделенных библиотекой dlib точек и областей лица

Область лица Номера точек

челюсть 1-17

левая бровь 18-22

правая бровь 23-27

левый глаз 37-42

правый глаз 43-48

нос 28-36

внешняя граница губы 49-60

внутренняя граница губы 61-68

подходит для получения точных областей лица, а точки 1–27 используются для

извлечения области лица из исходных изображений.

Локальные бинарные шаблоны (LBP). LBP могут эффективно описывать

текстурную информацию изображения [114, 115, 116]. Оператор LBP определя­

ется для окрестностей 3х3. Он принимает каждый пиксель за центральный и

оценивает 8 значений вокруг выбранного на основе заданного порога. Результи­

рующий фрагмент изображения с двоичным значением формирует локальный

дескриптор изображения [129].

Оператор LBP принимает следующую форму:

𝐿𝐵𝑃 (𝑥𝑐, 𝑦𝑐) =
7∑︁

𝑛=0

2𝑛𝑠(𝑖𝑛 − 𝑖𝑐) (2.1)

где 𝑐 - центральный пиксель, 𝑖𝑐 и 𝑖𝑛 - значения серого цвета у 𝑐 и у 8-ми

его соседей с порядковым номером 𝑛,

𝑠(𝑢) =

⎧⎪⎨⎪⎩1, если 𝑢 > 0;

0, если 𝑢 < 0.
(2.2)
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Если оператор LBP содержит не более одного перехода 0-1 и один пере­

ход 1-0 в двоичном коде, то существует универсальный шаблон. Равномерный

шаблон содержит примитивную структурную информацию для краев и углов.

Длина вектора признаков для одной ячейки составляет 256. Размер обла­

сти лица составляет 130 × 130, а лицо LBP имеет размер 128 × 128.

Итоговая точность распознавания эмоций на видеозаписях с применением

метода локальных бинарных паттернов (LBP) составила 58,7%.

2.4. Метод сверточных нейронных сетей

Сначала осуществляется предварительная обработка. Этот этап предпод­

готовки информации позволяет минимизировать перечисленные ранее причи­

ны ошибок. В первую очередь выполняется обнаружение области лица, обрезка

изображения и масштабирование для подведения под нужный размер. Затем

производится изменение контрастности для уменьшения ошибок, возникающих

из-за большой разницы освещения, и выделение общих визуальных особенно­

стей лица. Под этими особенностями понимаются компоненты лица, такие, как

губы, нос, рот, брови и т. д., а также немаловажный признак – текстура ко­

жи. Этот этап нужен для более точной постановки задачи перед алгоритмом

классификации.

Среди известных подходов обнаружения лиц на изображении существуют

две категории.

1. Методы, построенные на конкретном наборе составленных правил, ос­

нованных на выделении независимых свойств изображений лиц. Здесь имеет

место два этапа построения:

установка явных признаков, характерных для изображений лица, обработ­

ка найденных признаков.

2. Методы, в которых задействован вычислительный вектор признаков,

разделяющий изображение на два типа: лицо и не лицо. Выбор метода зави­
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сит от установленных ограничений и условий в процессе выполнения задачи.

Выделяются следующие возможные ограничения:

пространственные характеристики положения лиц;

наличие или отсутствие ограничений на возможные искусственные помехи

на лице;

количество лиц на изображении;

условия освещенности объектов;

цветность изображения;

приоритет в минимизации ложных обнаружений или в количестве обнару­

женных лиц;

масштаб лиц и разрешение изображения.

Для анализа видеопотока была выбрана библиотека для проектирования

нейросетей - Theano. Это библиотека, которая используется для разработки

систем машинного обучения как сама по себе, так и в качестве вычислительно­

го бекэнда для более высокоуровневых библиотек, в данном случае - Lasagne.

Также применяется Nolearn как дополнительная и вспомогательная библиотека

машинного обучения.

Вычисления проводились для различных наборов данных. Например, в

RAVDESS [100] каждый видеоматериал разбивался на части по 0.5 с, и при

обработке они перемешивались. Для датасета СК+ [101] из каждой директории

брали 3-5 последних кадров, они отбирались многократно и случайным образом,

а затем была проведена аугментация в виде поворота кадра в случайный угол

на 10°, для того чтобы достичь баланса в классификации.

Для датасета Aff-Wild из видео выбирались 4-16 кадров случайного отрез­

ка, а сами видеоматериалы определялись также многократно и случайным об­

разом, после проводилась аугментация для достижения баланса. Дальнейшая

работа заключалась в фиксации лица и его переформировании в конкретное

изображение лица в формат 256x256, чтобы пропустить его через сверточную

нейронную сеть.
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После прохождения нейронной сетью обучения требуется тестирование ее

полученной архитектуры. Происходит это посредством обработки нейронной

сетью новых данных. Для этого была сделана выборка из датасета RAVDESS.

Для работы над видеоматериалами были так же взяты выборки из CK+ и Aff­

Wild. На основе этой выборки была проведена оптимизация гиперпараметров

для получения более точного результата.

Целевая функция использовала кортеж гиперпараметров и возвращала

связанные с ними потери. Использовался случайный перебор всех комбинаций

на выборку их случайным образом при помощи библиотеки Keras Tuner, а имен­

но с применением алгоритмов случайного поиска и HyperBand.

2.5. Синтез нового набора данных

В рамках проведения экспериментов были получены следующие результа­

ты тестирования нейронной сети для видеофиксации.

Датасет RAVDESS, точность – 69.35%. Классификация по эмоциям:

• грусть,

• злость,

• нейтральное состояние,

• отвращение,

• радость,

• спокойствие,

• страх,

• удивление.

Датасет CK+: точность – 82.3%. Классификация по эмоциям:
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• грусть,

• злость,

• отвращение,

• презрение,

• радость,

• страх,

• удивление.

Далее был синтезирован набор данных Aff-Wild-Em (Рис. 2.1), включаю­

щий в себя следующее сопоставление

𝑐𝑖 ∈ Happy для (0.3 < 𝑥 6 1) и (0.3 < 𝑦 6 1)

𝑐𝑖 ∈ Calm для (0.3 < 𝑥 6 1) и (−1 6 𝑦 < −0.3)

𝑐𝑖 ∈ Sad для (−1 6 𝑥 < −0.3) и (−1 6 𝑦 < −0.3)

𝑐𝑖 ∈ Scare для (−1 6 𝑥 < −0.3) и (0.3 < 𝑦 6 1)

𝑐𝑖 ∈ Neutral для (−0.3 6 𝑥 6 0.3) и (−0.3 6 𝑦 6 0.3)

Набор данных Aff-Wild-Em: точность – 60.7%. Классификация по состоя­

ниям: Классификация по состояниям (эмоциям): нейтральное состояние (Ней­

тральность), возбужденное позитивное (Радость), возбужденное негативное (Страх),

расслабленное позитивное (Спокойствие), расслабленное негативное (Грусть).

Здесь в каждой из трех групп вводятся неотрицательные коэффициенты

(вероятности), сумма которых равна единице. Цель распознавания - нахожде­

ние максимального коэффициента.

Остановимся на результатах датасета Aff-Wild. Он является единственным

из представленных, в котором материал для анализа содержит изображения в

различных ракурсах. Из этого делается следующий вывод: в датасетах CK+

и RAVDESS наличие схожих кадров лиц неизбежно привело бы к ухудшению

показателей результата.
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Рис. 2.1. Схема подготовки набора данных Aff-Wild для задачи классификации

На предыдущем этапе разработки была создана и обучена нейросеть, кото­

рая показывает хорошую точность в условиях, близким к идеальным: при пра­

вильном освещении, фоне, расстоянии от камеры до лица. Но при ухудшении

условий точность результатов падает. Поэтому следующей задачей является со­

здание нейросети, которая обучена уже на данных, приближенных к реальным.

Для обучения был выбран датасет Aff-Wild, который участвовал в преды­

дущем этапе разработки, но в качестве датасета результативной выборки. Сама

организация процесса обучения выглядит следующим образом.

Обучаем первичную сеть на простой задаче, удаляя первый класс. При

этом датасет сбалансируется, так как в исходной версии было много нейтраль­

ных кадров с нулевой результативностью. На этом этапе кадры обрабатываются

по отдельности без последовательности. Точность на этом этапе составляет 72

Из обученной в предыдущем этапе нейросети убираем последние слои, дой­

дя до слоя укрупнения (maxpool) с предыдущего блока слоев. Полученную ней­

росеть делаем первичной. После чего пропускаем через эту нейросеть датасет

RAVDESS и сохраняем найденный промежуточный результат.

Таким образом получаем промежуточный датасет для обучения нейросе­

тей по определению эмоций и их силы. В результате такой комбинации архитек­
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тур нейросети будут достаточно точны при пропускании через них материалов,

приближенных к реальным условиям, потому что первичная нейросеть уже уме­

ет с ними работать, а студийные условия выступают лишь как частный случай.

Нейросети должны объединять в себе точность, скорость работы и про­

стоту реализации. Работа с изображением все так же предполагает работу со

сверточными нейронными сетями в силу их спецификации. Точность сети мож­

но предварительно оценить, исходя из результатов теста cifar-10. В тесте уби­

рается первый слой, а после через нейросеть пропускаются картинки размером

32х32, разбитые на 10 классов.

Подходящие под все три критерии сети обладают большим количеством

простых слоев и относятся к одному из двух видов:

полносвязные (dense), в которых результат свертки объединяется с исход­

ными данными;

остаточные (residual), в которых результат свертки (или нескольких) сум­

мируется с исходными данными.

Особенность обеих архитектур состоит в том, что градиент ошибки, явля­

ющийся фактором обучения, не угасает от слоя к слою, а равномерно обучает

все слои сети. Кроме того, обе архитектуры используют после каждого слоя

(либо перед каждым слоем) нормализацию внутри партии. Это значит, что из

исходных данных вычитается среднее, а отклонение делается равным единице.

Этот процесс заметно стабилизирует и ускоряет обучение и заодно повышает

точность, однако замедляет работу примерно на 30

Выбран вариант нейросети с нарастанием. Используются тонкие свертки

с нелинейностью elu и нормализацией результата, потому что исходные данные

уже нормализованы, при добавлении новых данных остаются нормализованны­

ми, и нет смысла повторять вычисления.

Также для удобства реализации создан слой плотной свертки, в котором

последовательно объединены:

тонкая свертка с ядром 1х1,
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основная свертка с ядром 3х3 и нелинейностью,

нормализация по партии,

объединения с исходными данными.

Две первые операции эквивалентны обычной свертке, но требуют на по­

рядок меньше вычислений, а значит и времени. Для нормализации обучаются

параметры 𝛽 и 𝛾, и итоговое значение будет

𝑟𝑒𝑠𝑢𝑙𝑡 =
(𝑐𝑜𝑛𝑣 − 𝑐𝑜𝑛𝑣𝑚𝑒𝑎𝑛)

𝑐𝑜𝑛𝑣𝑠𝑡𝑑
𝛾 + 𝛽 (2.3)

где 𝑐𝑜𝑛𝑣𝑚𝑒𝑎𝑛 - среднее по осям партии, длине и ширине свертки, 𝑐𝑜𝑛𝑣𝑠𝑡𝑑 –

стандартное отклонение по осям партии, длине и ширине свертки.

В отличие от стандартной архитектуры, здесь удалены полносвязные слои,

образующие итоговый набор классов. Вместо них при достижении слоем разме­

ров менее 5х5 происходит усреднение внутри слоев.

Видео читается покадрово при помощи библиотеки Scikit-video. Для удоб­

ства работы написан итератор, который перебирает элементы контейнерного

класса без необходимости пользователю знать реализацию определенного кон­

тейнерного класса. Он определяет характеристики видео из заголовка и затем

читает видео посекундно. Лишние кадры удаляются, а на оставшихся итератор

находит лицо при помощи библиотеки Dlib, и изменяет его размер до 256х256

при помощи библиотек Scikit-image или CV2. Полученные изображения объеди­

няем в партию и обрабатываем первичной нейросетью. Полноценно архитекту­

ра сети выглядит следующим образом:

первые слои сети - нормализация внутри партии и обнуление (dropout) с

вероятностью 0.1.

далее следует свертка с ядром 5х5 и шагом 2.

4-8 плотных сверток с ядром 3х3 и 15 каналами.

укрупнение размера промежуточного изображения.

слой нормализации.
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слой обнуления.

свертки 1х1 с числом каналов, равным половине входящих.

последний блок, который впоследствии будет отбрасываться.

обнуление с вероятностью 0.3.

свертка размером 90х1х1.

6 плотных сверток с ядром 1х1.

усреднение слоев.

нормализация по партии.

усреднение каналов до 5 созданных классов.

Контрольная выборка была взята из расширенного датасета RAVDESS, в

которой три актера произносили одну фразу с разными эмоциональными оттен­

ками. Итоговая нейросеть показала точность в 91%, тем самым можно сделать

вывод об улучшении качества классификации на 21% по сравнению с предва­

рительными итогами.

Результаты исследования в этой главе были взяты за основу SaaS платфор­

мы оценки поведения человека по видеопотоку в режиме реального времени,

которая была включена в реестр участников проекта создания и обеспечения

функционирования инновационного центра «Сколково» под номером 1123236 на

основании решения Некоммерческой организации Фонд развития Центра раз­

работки и коммерциализации новых технологий о присвоении статуса участни­

ка проекта создания и обеспечения функционирования инновационного центра

«Сколково».

2.6. Выводы ко второй главе

Результаты второй главы опубликованы в работах [2, 25].

Предложена и программно реализована архитектура многослойной ней­

ронной сети для решения задачи определения эмоции человека на видеозаписи,

подготовленной в нестудийных условиях, точность классификации которой ука­
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Таблица 2.2. Таблица итоговой точности распознавания эмоций на видеозаписях с примене­

нием различных методов

Aff-Wild-Em RAVDESS

Local Binary Patterns - 58,7%

Предложенная архитектура - 69,4%

После смены набора данных 60,7% 91,0 %

зана в таблице 2.2.

Рассматривается возможность повышения точности распознавания с до­

бавлением к текущим данным информации об уровне стресса говорящего, ко­

торые можно получить при помощи полиграфа.
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Глава 3

Методы классификации в исследованиях на

полиграфе

3.1. Краткий обзор существующих подходов

Полиграф является медико-биологическим прибором для одновременного

измерения динамики физиологических показателей определенных психофизио­

логических реакций.

Согласно психофизиологическому феномену, сознание индивида неразрыв­

но связано с физиологическими процессами, протекающими в его организме.

Следовательно, изменение психологического состояния, а именно динамику уров­

ня стресса, можно отследить при помощи полиграфа.

Центры ВНС контролируются подкорковыми ядрами мозга, поэтому со­

знательно человек не может контролировать их деятельность без специальной

подготовки. В данном случае исключение составляют, например, йоги. Одна­

ко даже им для изменения своего физиологического состояния необходимо ис­

пользовать медитативные методики, которые легко диагностируется визуально

(внешний вид и поведение), либо по характерным речевым тенденциям.

Полиграф считывает следующие психофизиологические показатели:

• Динамика дыхательных циклов;

• Электрокожное сопротивление (кожно-гальваническая реакция);

• Артериальное давление;

• Перефирическое кровонаправление (фотоплетизмограмма);

• Двигательная активность (тремор).

Как известно, полиграф работает так: имеется круг вопросов из некото­

рой предметной области. К испытуемому индивиду подключаются датчики для

вышеуказанных измерений. Принимается ответ: либо «да», либо «нет». Все во­
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Рис. 3.1. Скриншот полиграммы в интерфейсе профессионального компьютерного полиграфа

«Финист». Каналы съема психофизиологических характеристик отмечены следующими цве­

тами: грудно дыхание - синий, дифрагмально дыхание - бирюзовый, кожно-гальваническая

реакция - коричневый, пьезоплетизмограмма - бордовый, фотоплетизмограмма - красный,

тремор - зеленый цвет

просы повторяются не менее 3-х раз. Полиграфолог анализирует полученные

функции с помощью системы трехбалльной оценки и окончательно констатиру­

ет о справедливости ответа [16].

Суть такой системы заключается в том, что реакциям на каждый вопрос

теста выставляются баллы в следующем порядке:

• (сильная) максимальная по выраженности и близкие к ней реакции по­

лучают по 2 балла,

• (средняя) вторая по выраженности реакция и близкие к ней - 1 балл,

• (слабая) все остальные реакции - 0 баллов.

Критерии визуальной оценки силы реакции на вопросы по каждому пока­

зателю отличаются. Они подробно описаны в профильной литературе. Реакция

на каждый вопрос обсчитывается отдельно по респираторному каналу, кардио­

каналу и электро-дермальному каналу. В итоге получается 3 числа – по одному

на показатель. Для принятия решения суммируются баллы по 3 каналам по
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всем повторениям.

Например, если в результате трех повторений вопроса получилось 11 бал­

лов, то можно говорить о высокой ситуативной значимости реакции и возмож­

ном сокрытии информации, если 2 балла – то имеет место слабая реакция (это

указывает на то, что индивид не испытывает стресс и ему нечего скрывать).

Для однозначности понимания терминологии далее в этой главе балльная

оценка реакции заменяется на равнозначный процесс классификации силы ре­

акции на слабую, среднюю и сильную.

По каждому каналу регистрации психофизиологических характеристик

можно выделить следующие особенности их балльной оценки полиграфологами

[5, 16].

Канал кожно-гальванической реакции (КГР)

Электрокожное сопротивление - разность потенциалов между двумя участ­

ками на поверхности кожи. Канал кожно-гальванической реакции в полиграфе

регистрирует именно такую биоэлектрическую активность на поверхности ла­

дони или на двух пальцах руки.

Изменения в данном канале при реакциях обусловлены снижением элек­

трического сопротивления на поверхности кожи вследствие выделения желез,

реагирующих на изменение эмоционального состояния и уровня стресса.

Анализ информации о структуре и механизмах возникновения и регуляции

кожно-гальванической реакции, а также ее информативных признаков позволя­

ет сделать следующие выводы:

• динамика проявления кожно-гальванической реакции может являться кри­

терием уровня стресса и эмоционального напряжения;

• интенсивность кожно-гальванической реакции зависит от новизны стиму­

ла, свойств нернвной системы, уровня мотивации исследуемого и его функ­

ционального состояния.
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Рис. 3.2. Схематическое изображение реакции в канале КГР

На Рис. 3.2 изображено схематическое изображение реакции и характери­

стики, используемые для последующего анализа в канале кожно-гальваниче­

ской реакции, а именно:

• отрезок А-Б: время запаздывания реакции;

• отрезок Б-В: длина восходящей части сигнала (сила активирующих про­

цессов возбуждения);

• отрезок В-Г: длина нисходящей части сигнала (интенсивность активации

тормозных процессов);

• отрезок 𝑡1: время реакции, за которое она достигает локального максиму­

ма (характеризует подвижность процессов возбуждения);

• отрезок ℎ1: максимальная амплитуда сигнала относительно средней ли­

нии (характеризует силу ответной реакции центральной нервной системы

исследуемого лица на стимул);

• площадь участка 𝑆: интегральный показатель, определяющийся амплиту­

дой (ℎ1) и общей длительностью реакции;
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• отрезок ℎ2 амплитуда отрицательной части колебания ()определяет сте­

пень тормозных процессов в центральной нервной системе).

Канал «Дыхание»

Дыхание обеспечивает одну из основных функций организма человека:

функцию газообмена между организмом и окружающей средой, то есть поступ­

ление кислорода в организм и удаление углекислого газа.

В состоянии стресса потребление кислорода в организме человека проис­

ходит интенсивнее, чем в состоянии покоя. Это обусловлено тем, что стресс

мобилизует функциональные резервы организма человека. И для адаптации

к стрессогенным условиям в организме активизируются дополнительные фи­

зиологические процессы. Соответственно, в норме, увеличение уровня стресса

ведет за собой изменение характеристик дыхания.

Данное положение позволяет сделать вывод, что дыхание является пока­

зателем степени эмоционального напряжения, эмоционального стресса исследу­

емого лица. Это обусловливает необходимость использования показателей ды­

хания при оценке степени стресса и эмоционального напряжения исследуемого

лица при проведении проверок с использованием полиграфа.

При проведении полиграфных проверок производится регистрация пока­

зателей дыхания, определяющегося изменением объема легких на вдохе и на

выдохе.

Показатели данного физиологического параметра регистрируются при по­

мощи двух датчиков, опоясывающих грудную клетку и реагирующих на измене­

ние силы их натяжения. Таким образом фиксируется грудное и диафрагмальное

дыхание.

Для оценки силы реакции в канале дыхания учитывают:

• динамику амплитуды колебаний сигнала на 3 дыхательных циклах;

• отклонение средней линии сигнала;
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Рис. 3.3. Информативные признаки, используемые при ручном анализе канала дыхания.

• задержки дыхания;

Важно учитывать, что ряд изменений дыхательных циклов буду иметь

ситуационный характер, такие как: ослабление дыхания после одного цикла

глубокого вдоха/выдоха, глотание, приготовление к даче ответа, дыхательный

цикл при ответе, попытка противодействия.

На Рис. 3.3 представлена хронология изменений определения критериев

информативных признаков дыхания.

Канал плетизмограммы.

Канал плетизмограммы отвечает за фиксацию динамики показателей сер­

дечной деятельности в зависимости от фазы кардиоцикла, а также оптической

плотности ткани, с помощью регистрации амплитуды колебаний объема крови

в сосудах путем просвечивания участка ткани. Съем сигнала осуществляется с

пальца руки.

Дополнительная запись плетизмограммы производится при помощи пьезо­

датчика. Он регистрирует микроизменения давления кожи от пульсации крови

в подушечке пальца.

Оценка плетизмограммы позволяет сделать оценку функционального со­

стояния организма. Сердце неизбежно реагирует на изменение эмоционального

состояния и уровня стресса, что проявляется в динамике кровенаполняемости

сосудов и их эластичности.
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Для оценки силы реакции в канале плетизмограммы учитывают:

• динамику изменения амплитуды колебаний сигнала;

• повышение/понижение огибающих сигнала;

• частоту колебаний;

• время возвращения избыточного давления крови к исходному значению;

К данному моменту применяют только прямые методы обсчета полиграмм

[59, 12, 15]. В результате вычисляются и сравниваются следующие характери­

стики:

• длина линии сигнала верхнего (грудного) и нижнего (диафрагмального)

дыхания,

• количество дыхательных циклов,

• максимальная амплитуда КГР,

• площадь под графиком сигнала КГР,

• смещение средней линии плетизмограммы,

• и другие характеристики.

К сожалению, индивидуальные физиологические особенности каждого че­

ловека привносят неравномерные искажения по одному или нескольким сигна­

лам. Прямые методы обсчетов не позволяют сделать автоматическую подстрой­

ку к таким изменениям, поэтому точность таких подходов является недоста­

точной для самостоятельного принятия решения по результатам проведенного

психофизиологического исследования. Далее ставится задача исправить этот

недостаток при помощи нейронных сетей и машинного обучения.
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Применение полиграфа требует высокой квалификации специалиста, тре­

бующей учет различных факторов при подготовке и проведении проверки, но

в то же время нет аналогов по точности и удобству применения в задачах вы­

явления скрываемой информации.

Понимание механизма эмоциональной обратной связи и расчет балльной

оценки по проведенному тестированию может помочь создать в дальнейшем

инструментарий для подготовки автоматического «второго мнения» для поли­

графолога.

Интересным направлением развития является интеграция полиграфа с до­

полнительными биометрическими модальностями, показывающими хорошую

чувствительность в близких задачах, а именно с трехмерной картой лица [86] и

зрачковой реакцией [139].

3.2. Подготовка набора данных

Каждая реакция представляет 12 с записанной полиграммы с частотой

сигнала 20 Гц, т.е. 240 точек по каждому каналу:

• КГР (электрическая активность кожи),

• фотоплетизмограмма,

• пьезоплетизмограмма,

• грудное дыхание,

• диафрагмальное дыхание.

Соответственно, рассматриваются 3 следующих независимых задачи клас­

сификации:

1) Для канала дыхания:

𝑋𝑏𝑟𝑒𝑎𝑡ℎ - множество зарегистрированных по каналам дыхания (грудного и

диафрагмального) полиграфом реакций на вопросы, состоящее из векторов:
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𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖480), 𝑥𝑖𝑗 ∈ Z;

𝑌 = {«Слабая реакция», «Средняя реакция», «Сильная реакция»};

{(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)} - обучающая выборка

Требуется построить алгоритм 𝑎 : 𝑋𝑏𝑟𝑒𝑎𝑡ℎ → 𝑌 , способный классифициро­

вать произвольный объект 𝑥 ∈ 𝑋𝑏𝑟𝑒𝑎𝑡ℎ

2) Для канала кожно-гальванической реакции (КГР):

𝑋𝑘𝑔𝑟 - множество зарегистрированных по каналу КГР полиграфом реак­

ций на вопросы, состоящее из векторов:

𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖240), 𝑥𝑖𝑗 ∈ Z;

𝑌 = {«Слабая реакция», «Средняя реакция», «Сильная реакция»};

{(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)} - обучающая выборка

Требуется построить алгоритм 𝑎 : 𝑋𝑘𝑔𝑟 → 𝑌 , способный классифициро­

вать произвольный объект 𝑥 ∈ 𝑋𝑘𝑔𝑟

3) Для канала плетизмограммы:

𝑋𝑝𝑔 - множество зарегистрированных по каналам плетизмограммы (фото

и пьезо датчики) полиграфом реакций на вопросы, состоящее из векторов:

𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖480), 𝑥𝑖𝑗 ∈ Z;

𝑌 = {«Слабая реакция», «Средняя реакция», «Сильная реакция»};

{(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)} - обучающая выборка

Требуется построить алгоритм 𝑎 : 𝑋𝑝𝑔 → 𝑌 , способный классифицировать

произвольный объект 𝑥 ∈ 𝑋𝑝𝑔

Разметка данных. По каждой реакции группа профессиональных поли­

графологов проставляет силу реакции на вопрос (слабая, средняя, сильная) в

соответствии с описанными выше правилами.

Так было обработано 90 психофизиологических исследований с разными

испытуемыми и получено 8 000 классифицированных по каждому каналу от­

резков.
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3.3. Сравнительное тестирование архитектур

Рассматриваются встроенные архитектуры библиотеки scikit-learn [119, 118].

Сначала выбираем подготовленные “сырые” необработанные данные поочеред­

но как в равном количестве, так и в несбалансированном отношении 7:3. Приме­

няем следующие алгоритмы классификации данных, реализованные в указан­

ной выше библиотеке. Они создают для каждого из трех показателей соответ­

ствующую архитектуру для расчета результатов полиграфного тестирования.

SVМ (support vector machine) — набор схожих алгоритмов обучения с

учителем, использующихся для задач классификации и регрессивного анали­

за [64, 65].

GPC (gaussian process) - случайный процесс Гаусса (набор случайных ве­

личин, индексированных по времени или пространству), такой, что каждый

конечный набор этих случайных величин имеет многомерное нормальное рас­

пределение, т. е. каждая их конечная линейная комбинация обычно распреде­

лена.

GNB (gaussian naive bayes) — простой вероятностный классификатор, осно­

ванный на применении теоремы Байеса со строгими предположениями о неза­

висимости и нормальном распределении признаков в наборе данных.

AdaBoost (с параметрами: количество оценщиков – 2500, коэффициент обу­

чения - 0.001) – адаптивный классификатор в том смысле, что последующие

слабые ученики настраиваются в пользу тех экземпляров, которые были непра­

вильно классифицированы предыдущими классификаторами.

MLP (multi-layer perceptron) — класс упреждения искусственной нейрон­

ной сети.

Gradient Boosting [61] - метод машинного обучения для регрессии, клас­

сификации и других задач, который создает модель прогнозирования в виде

ансамбля слабых моделей прогнозирования, обычно деревьев решений.

DecisionTree — средство поддержки принятия решений, использующееся в
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машинном обучении, анализе данных и статистике.

RandomForest — алгоритм машинного обучения, заключающийся в приме­

нении комитета решающих деревьев.

ExtraTrees [21] - ансамблевый алгоритм машинного обучения, который объ­

единяет прогнозы из многих деревьев решений.

В итоге получено 27 моделей, по одной на каждый показатель и на каждый

алгоритм классификаций. Они получают на вход прямые данные с полиграфа,

а на выходе выдают класс, соответствующий силе реакции: слабая, средняя или

сильная.

Выбираем три наиболее точных классификатора по каждому каналу. Пред­

положим, что при оценке определенной реакции на вопрос с вероятностью 100%

первые два алгоритма получили класс «Слабая реакция», а третий - класс

«Сильная реакция». Для адекватного принятия решения, особенно в случа­

ях несогласованности между классификаторами, применяем надстройку в виде

VotingClassificator[72], которая присваивает весовые коэффициенты каждому из

них. Итоговый результат будет рассчитан по формуле

max(𝑤1𝑝11 + 𝑤2𝑝21 + 𝑤3𝑝31, 𝑤1𝑝12 + 𝑤2𝑝22 + 𝑤3𝑝32, 𝑤1𝑝13 + 𝑤2𝑝23 + 𝑤3𝑝33) (3.1)

где 𝑤𝑖 - весовой коэффициент i-го классификатора, 𝑝𝑖𝑗 – вероятность при­

надлежности реакции к классу j, полученная при помощи классификатора i.

Пусть в указанном выше примере коэффициенты равны 0.2, 0.35 и 0.45

соответственно. По этим результатам принимается следующее решение: класс

«Слабая реакция» - вероятность 55%, класс «Сильная реакция» - вероятность

45%. Поэтому в такому случает выбирается класс «Слабая реакция». Аналогич­

но рассматриваются другие ситуации для выбора оптимального классификато­

ра.

Точность классификации силы реакции по трем классам на архитектуре

VotingClassificator, включающей в себя три наилучших алгоритмов, составила
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52%, а из пяти – 59%.

При повторном анализе файлов полиграмм было отмечено, что классы

"слабая"и "сильная"реакции, представляющие собой минимальные и макси­

мальные проявления дестабилизации организма соответственно, являются наи­

более различимыми и визуально и численно. В то же время среди экземпляров

целевого класса "средней"реакции мера различимости мала.

При последующем анализе первоначальных вариантов классификаторов

был выявлен следующий ряд их недостатков:

• Метод опорных векторов естественным образом дает меньшую результа­

тивность в силу требований к высокой мере различимости поставляемых дан­

ных;

• Гауссовский процесс, чаще применяемый для решения задач регрессии,

в рамках задачи классификации требует сопроводительный материал в виде,

например, статистических распределений или набора корреляционных данных,

а не только, непосредственно, образцов сигнала;

• Гауссовский наивный байесовский классификатор подходит для провер­

ки гипотез, однако, при потенциальном добавлении новых категорий, не пред­

ставленных в оригинальном наборе данных – таким данным будет выставлена

нулевая вероятность в момент прогнозирования. Кроме того, данный класси­

фикатор также имеет требования к высокой различимости категорий между

собой;

• Алгоритм AdaBoost крайне требователен к качеству данных;

• Схожие требования (в силу наличия высокого числа параметров и пол­

носвязности) к качеству набора данных имеет и алгоритм MLP. Помимо этого,

данный классификатор является устаревшим, по сравнению с новыми вариаци­

ями методов;

• При внесении изменений в набор данных (например, при добавлении

новых образцов) внутренняя структура дерева решений, полученная от алго­

ритма Decision Tree, может полностью измениться, что влечет за собой неста­
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бильность, как при процессе обучения, так и прогнозирования;

• Классификатор на основе алгоритма Gradient Boost склонен к переобу­

чению, кроме того, данный вариант классификатора крайне чувствителен к

наличию краевых случаев в наборе данных;

• Алгоритм Random Forest является подобием “черного ящика”, что дает

меньше контроля над поведением системы, построенной на его основе. Помимо

этого, данный алгоритм – один из самых требовательных к вычислительной

мощности аппаратуры, на которой выполняются эксперименты или полноцен­

ное развертывание;

• Extra Tree – это ансамблирующий метод для деревьев решений, следова­

тельно, также не является лишенным недостатков, указанных при рассмотре­

нии алгоритма Decision Tree;

3.4. Нормализация данных

Необходимо упомянуть, что данные при обучении с использованием ука­

занных выше архитектур подавались в различных вариантах: без нормализа­

ции, нормализированные на всем наборе данных, масштабированные на всем

наборе данных, нормализированные в рамках одного повторения одного блока

вопросов одной полиграммы.

По результатам проведенных численных экспериментов наиболее высокую

точность классификации удалось получить с применением нормализации в рам­

ках одного повторения одного блока вопросов одной полиграммы.

Структура каждой полиграфной проверки выглядит следующим образом:

Тест №1: предъявление №1, вопросы №1, №2, ..., №12

Тест №1: предъявление №2, вопросы №1, №2, ..., №12

Тест №1: предъявление №3, вопросы №1, №2, ..., №12

(возможный перерыв)

Тест №2: предъявление №1, вопросы №1, №2, ..., №12
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Тест №2: предъявление №2, вопросы №1, №2, ..., №12

Тест №2: предъявление №3, вопросы №1, №2, ..., №12

Согласно методологии полиграфных проверок [16], признаки силы реак­

ции меняются от предъявления к предъявлению даже в рамках одного бло­

ка вопросов (теста). Индивидуальные особенности испытуемых сохраняются на

протяжении всей проверки.

На основании этого был сделан вывод о том, что нормализация должна

проходить по наиболее стабильному этапу проверки. Поэтому был применен

метод z-масштабирования по каждому предъявлению:

𝑧𝑖𝑗𝑘𝑙 =
𝑥𝑖𝑗𝑘𝑙 − 𝜇𝑖𝑗𝑘

𝜎𝑖𝑗𝑘
(3.2)

где 𝑖 - идентификатор испытуемого (исследования), 𝑗 - номер теста, 𝑘 - но­

мер предъявления, 𝑙 - номер вопроса, 𝜇𝑖𝑗𝑘 и 𝜎𝑖𝑗𝑘 - среднее значение и стандартное

отклонение значений психофизиологических показателей на соответствующем

предъявлении.

3.5. Применение архитектуры трансформера

Для повышения точности остановимся подробнее на реализации классифи­

катора для двух классов при помощи архитектуры трансформера, измененной

в соответствии с задачей. По аналогии с рекуррентными нейронными сетями

(РНС) трансформеры предназначены для обработки последовательностей, та­

ких, как текст на естественном языке, и решения таких задач, как машинный

перевод и автоматическое реферирование. В отличие от РНС, трансформеры не

требуют обработки последовательностей по порядку. Например, если входные

данные — это текст, то трансформеру не требуется обрабатывать конец текста

после обработки его начала.

В классическом варианте трансформер представляет собой две части –

кодировщик и декодировщик. В данном случае была использована структура,
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Рис. 3.4. Результаты кластеризации набора данных по каналу дыхания методом стохастиче­

ского вложения соседей с t-распределением (t-SNE): экспертная разметка (слева) и резуль­

таты классификации предложенным трансформером (справа).

состоящая в части кодировщика из чередующихся слоев внимания (внимание на

основе скалярного произведения) и многослойного перцептрона, а также деко­

дировщика (простого классификатора). Обе части трансформера реализованы

стандартными средствами библиотеки Keras.

Данные на вход подаются в размерности (26; 240), т.е. единовременно по­

дается 26 образцов данных размером 240 значений. Затем данные кодируются

при помощи одноразмерного (1D) PatchEncoder с шириной (8; 2), т.е. линейно

трансформируются проецированием на вектор указанной выше размерности.

Кодированные данные поступают на группу чередующихся слоев внима­

ния и перцептронов, а затем поступают на слой SeqPool для субдискретизации.

Этап подвыборки последовательности нормируется (LayerNormalization) сред­

ствами библиотеки Keras и данные с него затем поступают на полносвязный

слой в 600 нейронов с активацией SeLu. Результат работы кодировщика на этом

этапе укрупняется слоем FeaturePooling до двух групп.

Главные характеристики:

размер набора данных (batch size): 60,

количество блоков (чередование внимания и перцептрона): 6,

размерность слоя внимания: 312,
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Рис. 3.5. Результаты кластеризации набора данных по каналу кожно-гальванической реакции

методом стохастического вложения соседей с t-распределением (t-SNE): экспертная разметка

(слева) и результаты классификации предложенным трансформером (справа).

выброс слоя внимания: 0.1 (10

функция трансформации ядра: softmax,

количество наборов матриц весов (запросов, ключей, значений): 6.

Текущая архитектура скомпилирована с использованием оптимизатора Adam

(коэф. обучения 0.01) и функции потерь SquaredHinge (квадратичная кусочно­

линейная функция потерь). Подгонка осуществлялась на протяжении 50 эпох с

применением ранней остановки, если валидационная точность не увеличивается

на протяжении 12 эпох и уменьшением коэффициент обучения на пяти эпохах.

Точность обучения на два класса («сильная» и «слабая» реакции на задан­

ный вопрос) составляет для показателей:

плетизмограммы – 86.8%,

кожно-гальванического сопротивления – 95.3%,

дыхания – 72.7%.

Также были предприняты попытки обучить классификатор трансформера

сразу на три класса, однако они показали заметно худшую точность и большой

процент ошибок в сравнении классов «Средняя реакция»-«Слабая реакция» и

«Средняя реакция»-«Сильная реакция». Используемый метод заметно умень­

шает долю неясных средних реакций в пользу выраженных слабых и сильных.
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Рис. 3.6. Результаты кластеризации набора данных по каналу фото и пьезо плетизмограммы

методом стохастического вложения соседей с t-распределением (t-SNE): экспертная разметка

(слева) и результаты классификации предложенным трансформером (справа).

Метод стохастического вложения соседей с t-распределением.

Стохастическое вложение соседей (SNE) впервые было введено в [69]. Дан­

ный метод размещает объекты в пространстве более низкой размерности с

условным сохранением расстояния между соседями.

Благодаря описанным выше свойствам SNE может создавать достаточно

хорошую визуализацию, но алгоритм имеет большой недостаток в виде сложной

функции потерь.

В [102] был представлен метод стохастического вложения соседей с t-рас­

пределением. Его целью является преобразование многомерного набора данных

𝑋 = (𝑥1, . . . , 𝑥𝑛) в 𝑌 = (𝑦1, . . . , 𝑦𝑛) с уменьшением размерности объектров. Дан­

ный метод является более оптимизированным и обеспечивает более высокое ка­

чество визуализации за счет снижения тенденции к скоплению точек вместе в

центре.

Функция потерь в TSNE отличается от его предшественника. В данном

случае применяется симметричная версия SNE для уменьшения влияния про­

блемы выбросов.

Метод SNE преобразует многомерную евклидовую дистанцию в вероят­

ность, описывающую сходство точек.
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Ассимметричный вариант расчета SNE задается следующим образом;

𝑞𝑖𝑗 =
𝑒−||𝑦𝑖−𝑦𝑗 ||2∑︀
𝑘 ̸=𝑖 𝑒

−||𝑦𝑘−𝑦𝑗 ||2
(3.3)

где 𝑞𝑖𝑗 — попарное сходство в пространстве более низкой размерности. Та­

кие же вероятности по изначальным объектам 𝑝𝑖𝑗 задаются следующим выра­

жением

𝑝𝑖𝑗 =
𝑒−||𝑥𝑖−𝑥𝑗 ||2/2𝜎2∑︀
𝑘 ̸=𝑖 𝑒

−||𝑥𝑘−𝑥𝑗 ||2/2𝜎2 (3.4)

Эти уравнения называются симметричными, так как:

𝑝𝑖𝑗 = 𝑝𝑗𝑖, 𝑞𝑖𝑗 = 𝑞𝑗𝑖 для ∀𝑖, 𝑗 (3.5)

Другая уникальность TSNE заключается в применении t-распределения

Стьюдента со степенью свободы 𝑣 = 1. Оно имеет тяжелый хвост в простран­

стве малой размерности. Совместные вероятности для низкоразмерного отобра­

жения 𝑞𝑖𝑗 можно посчитать следующим образом:

𝑞𝑖𝑗 =

(︀
1 + ||𝑦𝑖 − 𝑦𝑗||2

)︀−1∑︀
𝑘 ̸=𝑖 (1 + ||𝑦𝑖 − 𝑦𝑗||2)−1 (3.6)

Конечной целью метода TSNE является представление 𝑝𝑖𝑗 через 𝑞𝑖𝑗 как

можно точнее, поэтому функция потерь задается выражением:

𝐶 = 𝐾𝐿(𝑃 ||𝑄) =
∑︁
𝑖

∑︁
𝑗

𝑝𝑖𝑗 log
𝑝𝑖𝑗
𝑞𝑖𝑗

(3.7)

Метод градиентов применяется для минимизации функции потерь:

𝜕𝐶

𝜕𝑦𝑖
= 4

∑︁
𝑗

(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗)
(︀
1 + ||𝑦𝑖 − 𝑦𝑗||2

)︀−1 (3.8)
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Данное уравнение можно интерпретировать как сумму равнодействующей

силы, тянущей 𝑦𝑖 в направлении 𝑦𝑗 или отталкивающей его в зависимости от

того, является ли объект 𝑗 соседом 𝑖.

Градиентный спуск инициализируется выборкой точки 𝑌 (0) = (𝑦1, . . . , 𝑦𝑛)

случайным образом из (𝑁)(0, 10−4𝐼). Импульс добавляется для ускорения оп­

тимизации и избежания застревания в локальном оптимуме.

𝑌 (𝑡) = 𝑌 𝑡−1 + 𝜁
𝜕𝐶

𝜕𝑌
+ 𝛼(𝑡)(𝑌 𝑡−1 − 𝑌 𝑡−2) (3.9)

где 𝑌 (𝑡) — решение на итерации 𝑡, 𝜁 — скорость обучения, 𝛼(𝑡) — импульс

на итерации 𝑡.

Для визуализации и оценки результатов работы FeaturePooling данные бы­

ли обработаны нейронной сетью без последнего слоя. Данные с ручной размет­

кой для каждой из характеристик нормируются и кластеризуются в t-SNE и

сравниваются с результатами работы трансформера. На Рис. 3.4, 3.5, 3.6 можно

заметить, что классифицированные машиной точки «Средняя реакция» не раз­

бросаны хаотично, а образуют сплошные непрерывные линии после обработки

трансформером.

Кроме того, как видно по точки категории «Средняя реакция» намного ре­

же попадают в кластеры «Слабая реакция» и «Сильная реакция» по сравнению

с ручной разметкой. Это означает наличие возможности повышения точности

обучения на три класса.

По результатам проведенного исследования можно сделать следующие вы­

воды:

• Увеличение числа блоков в архитектуре дает умеренную точность (до 4го

блока зависимость сильная, после 8го – низкая). В отличии от зависимости

точности и количества в оценке изображений.

• Нестабильные признаки образуют большое количество нейронов со зна­

чением, близким к нулю. Поэтому метод стохастического градиентного
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спуска (SGD) показывает высокую эффективность на 1-2 эпохах.

• Для обучения архитектур потребовалось 5 эпох для сверточных сетей,

20 для трансформера. «Укрупнение» входных данных ускоряет обучение

трансформера.

• Для предотвращения переобучения в обязательном порядке следует ис­

пользовать методы автоблокировки (понижение скорости через 5 эпох,

остановка через 20).

3.6. Выводы к третьей главе

Результаты третьей главы опубликованы в работах [10, 48].

Предложен метод нормализации психофизиологических характеристик, по­

лученных при помощи полиграфа, учитывающий индивидуальные особенности

испытуемого.

Рис. 3.7. Пример расчета балльной оценки при помощи предложенного метода в профессио­

нальном компьютерном полиграфе «Финист».

Создан модуль для автоматической классификации силы реакции челове­
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Таблица 3.1. Таблица итоговой точности автоматической классификации силы реакции на

полиграммах

Канал регистрации Voting3, 3 кл. Voting5, 3 кл. Трансформер, 2 кл.

Дыхание 45,6% 49,3% 72,7%

КГР 52,1% 59,3% 95,3%

ФПГ 46,9% 53,7% 86,8 %

ка на предъявляемые стимулы при помощи оценки регистрируемых полигра­

фом параметров (дыхание, сердечно-сосудистая и электродермальная актив­

ность).

В настоящий момент данные нейронные сети интегрированы в программ­

ное обеспечение профессионального компьютерного полиграфа «Финист». По­

лучены результаты по эффективности для оценки факторов риска кандидатов

при трудоустройстве.
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Заключение

1. Предложена и программно реализована архитектура нейронной сети

для решения задачи определения эмоции на голосовой фонограмме с высокой

точностью.

2. Предложена и программно реализована архитектура многослойной ней­

ронной сети для решения задачи определения эмоции человека на видеозаписи,

подготовленной в нестудийных условиях.

3. Предложен метод нормализации психофизиологических характеристик,

полученных при помощи полиграфа, учитывающий индивидуальные особенно­

сти испытуемого.

4. Создан модуль для автоматической классификации силы реакции че­

ловека на предъявляемые стимулы при помощи оценки регистрируемых поли­

графом параметров (дыхание, сердечно-сосудистая и электродермальная актив­

ность).
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