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ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. В настоящее время большое внимание уде-
ляется решению задач оптимизации управления мобильными роботами. Автоматизация
колесных мобильных роботов является предметом многих исследований. Но, несмотря
на фундаментальные и прикладные исследования, задачи по управлению ими до конца
не решены. Задачи изучения траекторий мобильного робота и расчета управления акту-
альны в связи с возрастающими требованиями к точности таких систем, необходимостью
синтеза оптимального управления, обеспечения плавных динамических перемещений.

Одним из ключевых классов задач оптимального управления, возникающих в робо-
тотехнике, являются задачи с фазовыми ограничениями, которые задают допустимые
области изменения состояния системы в каждый момент времени (например, положе-
ния, скорости, ориентация). Такие ограничения могут быть связаны с необходимостью
избегать столкновений, сохранять устойчивость движения, ограничивать диапазоны ко-
ординат и скоростей.

Особую сложность представляют задачи оптимального управления, в которых тра-
ектория системы многократно касается границы фазового ограничения, что приводит
к возникновению скользящих режимов, разрывов в сопряжённых переменных и потере
гладкости оптимального управления. Существующие аналитические методы, такие как
принцип максимума Понтрягина, требуют сложной интерпретации в таких случаях, а
численные подходы сталкиваются с проблемами устойчивости, сходимости и адекватного
отражения структуры множителей Лагранжа. В свою очередь, численные методы ча-
сто испытывают трудности со сходимостью, особенно при высокой размерности задачи и
наличии множественных активных ограничений.

Разработка эффективных алгоритмов численного анализа и синтеза оптимальных тра-
екторий в условиях фазовых ограничений, включая корректную обработку входа на гра-
ницу и выхода с неё, представляет собой актуальную научную проблему, лежащую на
стыке теоретической кибернетики, вычислительной математики и информационных тех-
нологий.

Оптимальное управление в режиме реального времени – это важнейшее направление
в современной теории и практике управления, направленное на реализацию оптимальных
решений непосредственно в ходе функционирования динамической системы, с учётом те-
кущих данных и изменяющихся условий. Такой подход особенно актуален для систем, где
задержки в принятии решений могут привести к снижению эффективности, нарушению
безопасности или полному отказу.

К ключевым особенностям оптимального управления в реальном времени относятся:
быстродействие алгоритмов; учет ограничений; адаптивность; интеграция с сенсорами и
системами связи.

Таким образом, исследование методов решения задач оптимального управления с фа-
зовыми ограничениями, возникающих в робототехнике, является актуальной научной
проблемой, имеющей важное значение для проектирования и реализации современных
автономных систем. А оптимальное управление в режиме реального времени представ-
ляет собой синергию математической теории, вычислительных алгоритмов и инженерной
практики, играет ключевую роль в создании интеллектуальных, безопасных и высоко-
производительных систем, отвечающих вызовам современного мира, и остаётся одной из
приоритетных областей в развитии автоматики, робототехники и цифровых технологий.

Диссертационная работа направлена на решение актуальной научной проблемы –
получение точного решения задачи оптимального управления с фазовыми ограничения-
ми, применительно к мобильному роботу, для последующего использования этого реше-
ния при управлении роботом в режиме реального времени.

Цель диссертационного исследования – разработка методов решения задачи оп-
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тимального управления с ограничениями применительно к робототехническим устрой-
ствам с возможностью использования в режиме реального времени.

Для достижения поставленной цели решаются следующие задачи.
– Аналитический обзор методов решения задач оптимального управления мобильными

роботами и существующих подходов к их практической реализации.
– Теоретическое обоснование метода регуляризации для задачи оптимального управ-

ления с фазовыми ограничениями для мобильных роботов.
– Разработка алгоритма и численная реализация метода регуляризации через постро-

ение аппроксимирующей последовательности регулярных ε-задач для решения задачи
оптимального движения мобильного робота с передним приводом при наличии фазовых
ограничений.

– Теоретический подход к решению задачи о перемещении мобильного робота при
фазовых ограничениях глубины 2.

– Разработка алгоритма и численное решение задачи о перемещении мобильного ро-
бота в рамках непрямого подхода на основе модифицированного принципа максимума
Понтрягина при фазовых ограничениях глубины 2.

– Математическая формализация принципа разделения траекторий для задач опти-
мального управления с фазовыми ограничениями при ненулевой начальной скорости, тео-
ретическое обоснование принципа.

– Разработка алгоритма, обоснование его сходимости и численная реализация принци-
па разделения траекторий с фазовыми ограничениями при ненулевой начальной скорости.

– Построение математической модели для управления мобильным роботом в реальных
условиях.

– Разработка алгоритмов определения параметров математической модели, генерации
траекторий движения мобильного робота, определения функции выбора на основе сгене-
рированной траектории с помощью адаптивного функционала.

– Разработка метода решения задачи оптимального управления с фазовыми ограни-
чениями для реального мобильного робота с учетом навигационной информации.

– Разработка программных комплексов для нахождения оптимальной траектории и
управления робототехническими устройствами и проведение математического и имита-
ционного моделирования движения робототехнических объектов.

Объектом исследования является оптимальное движение мобильного робота в
плоскости с препятствиями.

Предметом исследования служат численные методы для разработки методов ре-
шения задач оптимального управления с фазовыми ограничениями, применительно к ро-
бототехническим устройствам.

Методы исследования. В диссертационной работе использовались методы теории
оптимального управления, математического анализа, дифференциальных уравнений, ли-
нейной алгебры, методы численного моделирования, методы машинного обучения и чис-
ленные методы оптимизации.

Научная новизна настоящего исследования заключается в разработке и теоретиче-
ском обосновании новых методов управления робототехническими системами при нали-
чии фазовых ограничений, а также в создании эффективных алгоритмических и про-
граммных средств их реализации.

1. Проведен теоретический анализ метода регуляризации для задачи оптимального
управления с фазовыми ограничениями для мобильных роботов. На основе анализа полу-
чены аналитические выражения для меры множителя Лагранжа и разработан алгоритм
решения задачи управления мобильным роботом. Данный подход позволил получать точ-
ные решения задачи оптимального управления мобильным роботом при наличии фазо-
вых ограничений. Точные решения использовались при построении управления в режиме
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реального времени как «ядро» управления, а методы машинного обучения – как слой
адаптации и устойчивости к неопределённостям.

2. Разработан, теоретически обоснован и численно проверен метод стрельбы для на-
хождения решения задачи о перемещении мобильного робота при фазовых ограничениях
глубины 2. Метод применялся к задаче с динамикой управления ньютоновского типа.
Предложенный метод позволил находить точные решения, которые впоследствии исполь-
зовались для улучшения структуры пропорционально-интегрально-дифференцирующего
регулятора, применяемого при нахождении траекторий мобильного робота в режиме ре-
ального времени.

3. Разработан метод поиска касательных, которые используются в принципе разделе-
ния траекторий на прямолинейные участки и движение по границе фазового ограничения
для поиска моментов переключения между разными видами траекторий. Идея заключа-
лась в построении графа вершинами, которого были точки переключения, а ребрами –
траектории. Метод позволил находить оптимальную траекторию при наличии большого
количества препятствий. Проведено теоретическое исследование и обоснование метода.

4. Разработаны подходы к решению задачи оптимального управления с фазовыми
ограничениями для нелинейных робототехнических систем, включающих новые методы
формирования допустимых траекторий движения, учитывающих ограничения на обоб-
щенные координаты, скорости, ускорения и управляющие воздействия. В отличие от
существующих решений, предложенные методы обеспечивают высокую точность управ-
ления и устойчивость при снижении вычислительной сложности за счёт использования
адаптивных стратегий прогнозирования и коррекции траектории.

5. Разработаны новые методы интеграции управления с технологиями машинного обу-
чения и восприятия окружающей среды, что позволило реализовать адаптивное поведе-
ние робота в условиях частичной информации о состоянии объекта и внешней среды:
новый метод идентификации модели мобильного робота, метод генерации траекторий с
помощью нейронных сетей и метод определения функции выбора интегрального управ-
ления на основе сгенерированной траектории с помощью модели с использованием адап-
тивного функционала. Это дало возможность повысить автономность и устойчивость ро-
бототехнических систем при выполнении задач в неструктурированных условиях.

6. Разработан гибридный алгоритм, который с помощью модифицированного мето-
да модели предиктивного управления, предлагает новую структуру функции выбора для
учета оптимального управления, а с помощью метода одновременной локализации и кар-
тографии использует навигационную информацию. Этот метод ориентирован на реаль-
ное время и ограниченные вычислительные ресурсы бортовых контроллеров роботов, но
позволяет учитывать фазовые ограничения, обеспечивая при этом гладкость переходных
процессов и минимизацию энергетических затрат.

Достоверность научных результатов диссертационной работы подтверждает-
ся совпадением теоретических выводов и экспериментальных данных, полученных на ма-
тематических моделях и опытных образцах в Робототехническом центре ФИЦ ИУ РАН,
а также подтверждается экспертизой научных статей, опубликованных в ведущих науч-
ных российских и международных изданиях, апробацией и обсуждением результатов на
международных и российских научных конференциях и семинарах.

Теоретическая и практическая значимость работы. Представленные в диссер-
тационной работе результаты имеют как теоретическое, так и практическое значение.
Полученные в работе новые методы, изложенные в главах 1, 2, 3, теоретически обоснова-
ны, их можно применять к различным моделям мобильных роботов. Кроме того, метод
регуляризации, представленный в главе 1, может быть модифицирован многими новыми
способами. Полученное методом регуляризации точное решение используется как «эта-
лон» для методов машинного обучения. Рассмотренный в главе 2 метод стрельбы так-
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же дает точное решение задачи ньютоновского типа, которое служит «эталоном» для
ПИД-регулятора. Эти иccледования применяются в образовательном процессе. Методы,
разработанные в главе 4, могут быть использованы на реальных роботах для объезда ро-
ботом указанной местности по заранее спланированной территории с целью, например,
составления карты местности. Все алгоритмы реализованы в виде программных модулей
и используются в исследованиях, проводимых в Робототехническом центре ФИЦ ИУ РАН
по государственному заданию № FFNG-2024-0010.

Соответствие диссертации паспорту научной специальности. В соответствии
с формулой специальности 1.2.3 «Теоретическая информатика, кибернетика» (физико-
математические науки) диссертация посвящена разработке и исследованию методов ре-
шения задач оптимального управления с фазовыми ограничениями, возникающими в ро-
бототехнике, что соответствует следующим пунктам паспорта специальности: п. 6 «Мате-
матическая теория оптимального управления, включая оптимального управления в усло-
виях конфликта» и п. 9 «Математическая теория исследования операций».

Основные положения, выносимые на защиту
– Теоретическое обоснование метода регуляризации для задачи оптимального управ-

ления с фазовыми ограничениями для мобильных роботов, метода стрельбы для нахож-
дения решения задачи о перемещении мобильного робота при фазовых ограничениях глу-
бины 2 и метода поиска касательных в задаче быстродействия для колесного мобильного
робота.

– Разработка метода регуляризации, основанного на принципе максимума Понтряги-
на и регулярных приближениях исходной задачи оптимального управления с фазовыми
ограничениями для мобильных роботов.

– Разработка метода стрельбы для нахождения решения задачи о перемещении мо-
бильного робота с динамикой управления ньютоновского типа при фазовых ограничениях
глубины 2.

– Разработка метода поиска касательных для нахождения моментов переключения
между прямолинейными участками траекторий и участками, идущими по границе фазо-
вых ограничений в задаче быстродействия для колесного мобильного робота.

– Разработка метода поиска управления мобильным роботом в режиме реального вре-
мени, включающего идентификацию модели мобильного робота, генерацию траекторий
и определение функции выбора управления на основе сгенерированной траектории с по-
мощью модели робота.

– Численные методы реализации гибридного алгоритма, который предлагает новую
структуру функции выбора для учета оптимального управления и навигационной ин-
формации.

– Комплексы программ, реализующие представленные в диссертационном исследова-
нии методы решения задач оптимального управления с фазовыми ограничениями, возни-
кающими в робототехнике.

Апробация результатов. Результаты диссертационного исследования докладыва-
лись и обсуждались на международных и всероссийских конференциях, семинарах и сим-
позиумах: Международный симпозиум «Надежность и качество». Пенза (2016); II Меж-
дународная научно-практическая конференция, посвящённая 105-летию со дня рождения
адмирала флота СССР дважды героя Советского Союза Сергея Георгиевича Горшко-
ва, Елец (2018); Академия управления МВД России, Москва (2018); III Международ-
ная научно-практическая конференция, посвящённая 110-летию со дня рождения акаде-
мика Н.А. Пилюгина, Елец (2019); European Control Conference 2020, ECC (2020); 7th
International Conference on Control, Decision and Information Technologies, CoDIT (2020);
14-th International conference “Intellectual Systems” (INTELS’20) (2020); IV Международ-
ная научно-практическая конференция «Фундаментально-прикладные проблемы безопас-
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ности, живучести, надёжности, устойчивости и эффективности систем», Елец (2020);
18th IFAC Workshop on Control Applications of Optimization, CAO (2022); Международ-
ный симпозиум «Надежность и качество», Пенза (2022); 15-th International conference
«Intellectual Systems» (INTELS’22) (2022); IX Международной научно-практической кон-
ференции «Системы управления, сложные системы: моделирование, устойчивость, ста-
билизация, интеллектуальные технологии», Елец (2023); Всероссийская конференция с
международным участием «Прикладные проблемы системной безопасности», Елец (2023);
Всероссийская научно-практическая конференция «Прикладная физика и инжиниринг:
актуальные проблемы». Елецкий государственный университет им. И.А. Бунина (2024);
16-th International conference «Intellectual Systems» (INTELS’24) (2024); 11th International
Conference on Control, Decision and Information Technologies, CoDIT (2025).

Грантовая поддержка. Научные исследования в рамках диссертационной работы
поддержаны следующими грантами: РФФИ 18-29-03061-мк «Исследование методов синте-
за обучающихся систем интеллектуального управления робототехническими устройства-
ми при фазовых и структурных ограничениях в технологии цифровой экономики», 2018-
2020 (исполнитель, рук. Прокопьев И.В.), РНФ 19-11-00258 «Теоретическое и численное
исследование задач оптимального управления с фазовыми ограничениями», 2019-2021
(исполнитель, рук. Карамзин Д.Ю.). Результаты, представленные диссертации в главе
3 в части обоснования и исследования принципа разделения траекторий, исследования
разрабатываемого численного метода касательных и проведения вычислительных экспе-
риментов на модели мобильного робота были получены в рамках проекта Министерства
науки и высшего образования Российской Федерации 075-15-2024-544 «Математические
модели и численные методы как основа для разработки робототехнических комплексов,
интеллектуальных технологий конструирования».

Публикации по теме диссертации. Основные результаты диссертационного ис-
следования опубликованы в 29 научных публикациях, из них 7 публикаций в изданиях,
включенных в перечень рецензируемых журналов, рекомендованных ВАК, включая 6
публикаций в изданиях, отнесенных к категориям К-1 или К-2 из Перечня ВАК, 10 – в
научных изданиях, индексируемых Web of Science и Scopus, 12 – в трудах конференций и
изданиях, включенных в базу РИНЦ.

Личный вклад. Все положения, выносимые на защиту, изложенные в диссертации,
принадлежат лично автору. В совместных работах автор принимал непосредственное уча-
стие в формировании направления исследования, теоретических обоснованиях, в выводе
формул для вычислений, в программной реализации, и преобладающее участии в выборе
экспериментальных задач и проведении вычислительных экспериментов. В работах [1-3,
10, 12, 13, 23, 24] соискателю принадлежит математическая формализация методов, прове-
дение численных экспериментов для выбора наиболее подходящего метода, подбор пара-
метров для практических экспериментов, непосредственное участие в проведении экспе-
риментов, анализ полученных результатов. В работах [4, 15, 26, 27] соискателем проведе-
на серия численных экспериментов для определения наилучшего метода для определения
управления и построения траектории движения робота для дальнейшего использования
выбранного метода при построении алгоритма решения задачи, а также математическая
формализация предлагаемого метода. В работах [5, 8, 9, 11, 12, 21, 22] соискатель при-
нимал участие в разработке метода и доказательстве ключевой теоремы, лично выводил
формулы, необходимые для построения алгоритма, проводил численные эксперименты
с предложенным методом. В работах [6, 19, 25] соискателю принадлежит математиче-
ская формализация методов, участие в проведении экспериментов и анализе полученных
результатов. В работах [7, 17, 29] соискателю принадлежит постановка задачи поиска ка-
сательных для нахождения оптимальной траектории в задаче быстродействия, участие
в доказательстве предложений и проведении экспериментов. Личная работа соискателя
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[16] посвящена методу разделения траекторий и выполнена соискателем самостоятельно.
В личных работах [18, 20] соискателем предложены и обоснованы методы решения задач
оптимального управления. В работе [28] соискатель участвовал в проведении численных
экспериментов.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав,
заключения, библиографического списка и приложений. Содержание работы изложено
на 354 страницах, включает 11 таблиц, 122 рисунка и 3 приложения.

СОДЕРЖАНИЕ РАБОТЫ

Во введении приведены обоснования актуальности темы исследования, сформули-
рованы цель и задачи, раскрыта научная новизна и практическая значимость работы,
приведены защищаемые положения, представлена структура диссертации. Обзор методов
решения задач оптимального управления мобильными роботами и подходов к их реализа-
ции, основные обозначения, используемые в работе, и сокращения и аббревиатуры также
приведены во введении.

Область управления динамическими системами с фазовыми ограничениями представ-
ляет собой активно развивающееся и востребованное направление современной матема-
тической теории управления, обусловленное широким спектром приложений, особенно в
робототехнике.

Исторически задачи поиска управляющих воздействий восходят к задачам вариаци-
онного исчисления. В становление и развитие этой теории прямой или косвенный вклад
внесли многие ученые, в числе которых выделяются работы С.Н. Бернштейна, Н.Н. Бо-
голюбова, Дж. Варги, К. Вейерштрасса, Р.В. Гамкрелидзе, Д. Гильберта, В.Ф. Кротова,
М.А. Лаврентьева, Ж.-Л. Лагранжа, А. Лебега, А.М. Лежандра, Э. Макшейна, А.М. Раз-
мадзе, Б. Римана, В. Ритца, В.М. Тихомирова, Л. Тонелли, Л. Эйлера, К. Якоби, L.C.
Young и других. Однако на практике применение классических методов вариационного
исчисления часто затруднено из-за наличия ограничений на управляющие параметры, а
также возможных разрывов первого рода как у самих управляющих функций, так и у
их производных. Учитывая важность таких ограничений в реальных задачах, возникает
необходимость в создании подходов, способных корректно учитывать данные особенности.

В 1960-х годах был сформулирован принцип максимума Понтрягина, который требует
лишь слабых предположений о дифференцируемости и оказывается особенно эффектив-
ным для задач с ограничениями.

Появление принципа максимума стало поворотным моментом в развитии теории оп-
тимального управления и стимулировало рост числа исследований и публикаций.

Задачи оптимального управления с фазовыми ограничениями изучались многими ис-
следователями у нас в стране и зарубежом. Такие задачи, например, изучали А.В. Арутю-
нов, С.М. Асеев, Р.В. Гамкрелидзе, А.В. Дмитрук, А.Я. Дубовицкий, В.А. Дубовицкий,
М.И. Зеликин, Д.Ю. Карамзин, А.Б. Куржанский, А.С. Матвеев, А.А. Милютин, Н.П.
Осмоловский, Е.С. Половинкин, Г.В. Смирнов, Н.Т. Тынянский, М.М. Ferreira, Н. Halkin,
F.L. Pereira, R.B. Vinter и другие.

Большой вклад в развитие теории оптимального управления и её практического при-
менения внесли такие учёные, как М. Атанс, Р. Беллман, В.И. Благодатских, А. Брайсон,
Ф.П. Васильев, Р. Габасов, Р.В. Гамкрелидзе, Ф.М. Кириллова, Ф. Кларк, Н.Н. Кра-
совский, А.Б. Куржанский, Э. Ли, Л. Маркус, А.А. Милютин, Б.Ш. Мордухович, Ю.С.
Осипов, Л.С. Понтрягин, В.М. Тихомиров, П. Фалб, Хо Ю-ши, Ф.Л. Черноусько, R.B.
Vinter и многие другие.

В первой главе диссертационной работы исследуется общая задача оптимального
управления при наличии фазовых ограничений. С прикладной точки зрения актуаль-
ность данной работы заключается в необходимости иметь дело с экстремалями, которые
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не удовлетворяют требуемым условиям регулярности. В этом случае некоторые полезные
свойства множителей Лагранжа могут оказаться недоступными, если попытаться решить
эту задачу численно в рамках непрямого подхода, то есть с использованием принципа
максимума. Чтобы преодолеть эту трудность, в работе приведен и обоснован метод регу-
ляризации, основанный на регулярных приближениях исходной задачи.

В разделе 1.1 диссертационной работы изучается движение мобильного робота при
ограничениях, накладываемых на фазовые координаты. В качестве критерия оптималь-
ности рассматривается быстродействие. Задача о наибыстрейшем движении мобильного
робота при фазовых ограничениях, или задача о наибыстрейшем обходе роботом пре-
пятствия, в упрощенном неинерциальном кинематическом случае может быть описана
следующей задачей оптимального управления:

J(p, u, T ) := T → min,
ẋ1 = p · cosα,
ẋ2 = p · sinα,
α̇ = u,
x(0) = A, x(T ) = B, α(0) = α0,
p ∈ [−1, 1], u ∈ [−1, 1],
x21 + x22 ≥ 1.

(1)

Здесь x = (x1, x2) ∈ R2 – основная фазовая переменная, p, u ∈ R – скалярные пара-
метры управления, A = (a1, a2), B = (b1, b2) – заданные точки на плоскости, лежащие
вне единичного круга. Задача рассматривается на отрезке времени [0, T ]. Конечный мо-
мент времени T не фиксирован, и более того, необходимо найти наименьшее возможное
такое время T , за которое можно, начиная движение из точки A, попасть в точку B с
помощью каких-либо допустимых управлений p(t), u(t). При этом робот не должен заез-
жать на единичный круг на плоскости, который считается препятствием. Переменная α –
это дополнительная фазовая переменная, отвечающая углу поворота мобильного робота,
который определяет линию приложенного тягового усилия. Угловая скорость поворота
робота управляется функцией u(t), а продольная скорость – функцией p(t). Обе функции
считаются измеримыми. Робот оснащен обратным ходом, что соответствует отрицатель-
ным значениям p. Начальное значение угла поворота α0 задано. Его конечное значение
свободно. Две переменные u и p являются управляющими параметрами, которые счита-
ются независимыми, поскольку управляющая пара (p, u) принимает значения из квадрата
[−1, 1]× [−1, 1].

В задаче (1) реализуется так называемая простейшая унициклическая модель движе-
ния, которая дополняется возможностью разворота робота на месте, т.е. движением при
p = 0. На практике она может приближенно соответствовать упрощенной модели трехко-
лесного робота с передним приводом. Если добавить ускорение в задаче (1), то эта модель
при определенных поправочных коэффициентах дает реальное движение такого робота
(тогда продольная и угловая скорости становятся фазовыми переменными, а управление –
крутящим моментом, который обеспечивают двигатели, вращающие и разворачивающие
переднее колесо).

Решение задачи (1) с помощью принципа максимума осложнено рядом трудностей. Во-
первых, любая допустимая траектория, соприкасающаяся с границей единичного круга,
не будет регулярной по Р.В. Гамкрелидзе. Действительно, в любой точке границы имеет
место x1 cosα+x2 sinα = 0, а значит, градиент функции Γ(x, p, u) := −2p(x1 cosα+x2 sinα)
– скалярного произведения правой части динамической системы на градиент фазоогра-
ничения – по (p, u) равен нулю. Более того, по этой же причине в задаче (1) заведомо не
будут выполняться даже и более слабые, чем условия регулярности, известные условия
управляемости относительно фазовых ограничений. (Такая ситуация весьма распростра-
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нена в технических системах, где обычно количество фазовых переменных превышает
количество переменных управления.) Поэтому борелевская мера-множитель Лагранжа,
отвечающая за фазовое ограничение, может иметь сингулярную составляющую. В связи
с этим, т.е. в связи с отсутствием регулярности и наличием сингулярной составляющей
меры, не представляется возможным свести условия принципа максимума к соответству-
ющей краевой задаче, решение которой привело бы к решению задачи управления. Здесь,
в частности, возникает проблема нахождения точек выхода на границу и схода с границы
фазового ограничения.

Кроме того, применение принципа максимума затруднено наличием особого режима
по угловой скорости u. Робот не всегда будет следовать с максимальной по модулю уг-
ловой скоростью, т.е. при |u| = 1. Однако на участках, где |u| < 1, условие максимума,
очевидно, не информативно. Возникает проблема нахождения точек выхода на особый
режим управления и схода с него.

Оба явления, т.е. отсутствие регулярности относительно фазового ограничения и осо-
бый режим управления по угловой скорости, имеют совершенно разную природу. Тем не
менее, одним из возможных решений и в первом и во втором случае является подходя-
щая регуляризация исходной задачи. В работе предлагается с помощью малого параметра
ε > 0 определенным образом возмутить исходную задачу (1), так чтобы возмущенная за-
дача стала регулярной в упомянутом выше смысле.

В разделе 1.2 приводятся некоторые факты из теории принципа максимума для задач
быстродействия с фазовыми ограничениями. В подразделе 1.2.1 приводится постановка
задачи.

Рассмотрена задача быстродействия с фазовыми ограничениями в общем виде

T → min,

ẋ = f(x, u),
x(0) = A, x(T ) = B,
u(t) ∈ U для п.в. t ∈ [0, T ],
g(x(t)) ≤ 0 ∀ t ∈ [0, T ].

(2)

Здесь, t ∈ [0, T ] – время, x – фазовая переменная в Rn, u – переменная управления в Rm.
Управляющая функция u(·) измерима.

Множество U имеет вид

U := {u ∈ Rm : ϕ(u) ≤ 0},

где ϕ – заданная вектор-функция. Точки A и B определяют начальную и конечную по-
зиции (краевые условия). Допустимая траектория x(·) является абсолютно непрерывной
функцией, удовлетворяет дифференциальному ограничению ẋ(t) = f(x(t), u(t)) для п.в.
t ∈ [0, T ], начальному и конечному краевому условию, и также неравенству g(x(t)) ≤ 0
∀ t ∈ [0, T ], которое задает фазовые ограничения. Число T определяет конечный момент
времени движения – оно не фиксировано, но подлежит минимизации.

Отображения

f : Rn × Rm → Rn, ϕ : Rm → Rr, и g : Rn → R

предполагаются достаточно гладкими (точнее, f, ϕ ∈ C1, g ∈ C2).
В подразделе 1.2.2 приводятся основные условия регулярности и невырожденности

для рассматриваемых задач.

Определение 1 Фазовые ограничения называются регулярными, если для любого x ∈
Rn существует вектор d = d(x) ∈ Rk такой, что〈

∇gj(x), d
〉
> 0 ∀ j : gj(x) = 0.
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Рассмотрим функцию
Γ(x, u) :=

〈
∇g(x), f(x, u)

〉
.

Определение 2 Процесс (x∗, u∗, T ∗) называется регулярным относительно фазовых
ограничений, если для любых t ∈ [0, T ∗] и u ∈ Closu∗(t) точка u регулярна, в то вре-
мя как существует вектор d = d(u, t) ∈ ker∇ϕi(u), i ∈ I(u), такой что〈

∇uΓ
j(x∗(t), u), d

〉
> 0 ∀ j : gj(x∗(t)) = 0,

где ∇u — частичный градиент относительно u, а Closu – многозначное отображение,
ставящее в соответствие точке на прямой замыкание по мере функции в этой точке.

Такое понятие регулярности было впервые предложено в книге Р.В. Гамкрелидзе и
позднее получило дальнейшее развитие в ряде работ, см., например, работы А.В. Арутю-
нова, Д.Ю. Карамзина, Ф.Л. Перейры. В подразделе 1.2.3 приводятся основы классиче-
ского принципа максимума Понтрягина для задач оптимального управления с фазовыми
ограничениями.

Рассмотрена расширенная функция Гамильтона-Понтрягина

H̄(x, u, ψ, µ) :=
〈
ψ, f(x, u)

〉
− µΓ(x, u),

где ψ, µ – переменные из Rn и R соответственно.

Теорема 1 Предположим, что регулярный относительно фазовых ограничений про-
цесс (x∗, u∗, T ∗) является оптимальным в Задаче (2). Тогда существуют множи-
тели Лагранжа: число λ ∈ [0, 1], абсолютно непрерывная векторная функция ψ ∈
W1,∞([0, T ∗];Rn), и непрерывная скалярная функция µ ∈ C([0, T ∗];R) такие, что

– Нетривиальность

λ+ |ψ(t)− µ(t)∇g(x∗(t))| > 0 ∀ t ∈ [0, T ∗];

– Сопряженное уравнение

ψ̇(t) = −H̄ ′x(x∗(t), u∗(t), ψ(t), µ(t)) для п.в. t ∈ [0, T ∗];

– Условие максимума

max
u∈U

H̄(x∗(t), u, ψ(t), µ(t)) = H̄(x∗(t), u∗(t), ψ(t), µ(t)) для п.в. t ∈ [0, T ∗]

,
– Условие трансверсальности

max
u∈U

H̄(x∗(T ∗), u, ψ(T ∗), µ(T ∗)) = λ.

Кроме того, функция µ(·) не убывает, и∫ T ∗

0

g(x∗(t))dµ(t) = 0.

Эта теорема была получена в работе Arutyunov A.V., Karamzin, D.Yu. // SIAM Journal
on Control and Optimization, 2015 в более сильных предположениях (конечное число точек
стыка экстремльной траектории). При этом само утверждение является уточнением клас-
сического результата, полученного Р.В. Гамкрелидзе. Уточнение касается непрерывности
меры-множителя µ(·).
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Принцип максимума из Теоремы 1 предоставляет так называемую полную систему
уравнений для нахождения оптимального процесса, в котором количество уравнений фор-
мально равно количеству неизвестных. При условии регулярности, указанном в опреде-
лении 2 на границе фазового ограничения можно выразить µ через другие экстремаль-
ные значения. Вне границы фазового ограничения, то есть внутри области, функция µ
постоянна. Поэтому, используя свойство непрерывности, меру-множитель µ можно выра-
зить в терминах состояния, совместного состояния и функции управления, то есть через
x∗, ψ, u∗. В то же время коэффициент непрерывности удобен для определения точек со-
единения. Если одновременно с этим с помощью условия максимума получается выразить
и экстремальное управление, то условия принципа максимума сводятся к решению соот-
ветствующей краевой задачи, которая может быть решена стандартными методами.

В работе введено априорное условие регулярности в терминах функций f, ϕ и g, кото-
рое бы гарантировало регулярность любого допустимого процесса.

Условие Р) Для всех x ∈ Rn, u ∈ U таких, что g(x) = Γ(x, u) = 0, имеет место, что точка
u регулярна, и

Γ′u(x, u) /∈ lin
{
∇ϕi(u), i ∈ I(u)

}
.

В контексте задач быстродействия, его естественно дополнить следующим замечани-
ем.

Замечание 1 Пусть 0 ∈ int f(x, U) ∀x. Тогда Условие Р) достаточно проверять на
множестве {

x ∈ Rn, u ∈ U : g(x) = Γ(x, u) = 0, f(x, u) 6= 0
}
.

Тогда Условие Р) гарантирует регулярность любого оптимального процесса задачи. Это
наблюдение связано с тем, что в необходимых условиях оптимальности условие Р)
является достаточным для проверки только оптимального процесса, а также с тем,
что выполняется следующее простое утверждение.

Это модифицированное Условие Р) используется при анализе движения мобильного
робота.

В разделе 1.3 диссертационной работы рассмотрен метод регуляризации исходной
задачи.

В подразделе 1.3.1 рассмотрена возмущенная задача

J(u, v, T ) := T +

∫ T

0

|v|2dt→ min,

ẋ = f(x, u) + εv,
x(0) = A, x(T ) = B,
ϕ(u) ≤ 0, g(x) ≤ 0.

(3)

Здесь, v = (v1, v2, .., vn) – дополнительное n-мерное управление.
Фазовые ограничения предполагаются регулярными в смысле определения 1, в то вре-

мя как регулярность оптимального процесса в задаче (2), указанном в определении 2 мо-
жет не выполняться. Ограничения на управление ϕ(u) ≤ 0 регулярны, если регулярны
все точки множества U . Эти предположения (которые естественны для ряда прикладных
задач) ниже считаются a priori выполненными.

Доказано следующее

Предложение 1 Предположим, что фазовые ограничения регулярны, и регулярны все
точки u ∈ U . Тогда любой допустимый процесс задачи (3) регулярен относительно
фазовых ограничений для всех ε > 0.
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Ответ на вопрос о существовании решения в возмущенной задаче сформулирован в
следующей теореме, теорема доказана.

Теорема 2 Предположим, что:

(a) множество U компактно;

(b) множество f(x, U) выпукло при всех x;

(c) имеет место оценка |f(x, u)| ≤ const(1 + |x|) ∀u ∈ U ;

(d) в исходной задаче (2) существует допустимый процесс.

Тогда существует решение (xε, uε, vε, Tε) задачи (3) в классе траекторий x ∈
W1,2([0, T ]) и управлений u ∈ L∞([0, T ]), v ∈ L2([0, T ]) такое, что xε ⇒ x0, ‖vε‖L2 → 0
при ε→ 0, где x0 – одно из решений исходной задачи (2).

В классе траекторий из W1,2([0, T ]) также справедлив принцип максимума. Его
несложно вывести по аналогии с доказательством Теоремы 2, применив к ε,N -задаче
принцип максимума для траекторий класса W1,∞([0, T ]) и перейдя в полученных услови-
ях к пределу при N →∞.

В подразделе 1.3.2 рассмотрена регуляризация задачи управления трехколесным
мобильным роботом.

Соответствующее возмущение (1) требуется по следующим двум причинам: а) невы-
полнение условия Р) и б) наличие сингулярного режима управления относительно u. В
этом разделе предлагается ε-регуляризация данных (1), цель которой такое возмущение
исходной задачи, чтобы в возмущенной задаче условие Р) выполнялось, в то время как
условие максимума становится информативным над ε-допустимым множеством управле-
ния. Последнее свойство решает задачу сингулярного управления.

Зафиксируем малое число ε > 0 и рассмотрим ε-задачу

J(p, u, v, w, T ) := T → min,
ẋ1 = p · cosα + εw1 + εv1,
ẋ2 = p · sinα + εw2 + εv2,
α̇ = u,
x(0) = A, x(T ) = B, α(0) = α0,
p2 + w2

1 + w2
2 ≤ 1, u2 + v21 + v22 ≤ 1,

x21 + x22 ≥ 1.

(4)

Здесь w = (w1, w2) ∈ R2 и v = (v1, v2) ∈ R2 – дополнительные переменные управления,
отвечающие за регуляризацию задачи.

Доказано следующее

Предложение 2 Любое решение задачи (4) является регулярным относительно фазо-
вых ограничений.

Задача (4) является ослаблением задачи (1), поэтому любой допустимый процесс
задачи (1) будет допустимым для задачи (4), если положить v = w = 0. Кроме то-
го, решение задачи (4) существует. Рассмотрим любое решение и обозначим его как
(xε, αε, pε, uε, vε, wε, Tε). Нетрудно заметить, что решения ε-задачи приближают решения
задачи (1), так как верно следующее прямое утверждение.
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Лемма 1 Для любой числовой последовательности εk → 0 существует решение
x∗, α∗, T ∗ задачи (1) и подпоследовательность εki такие, что xεki ⇒ x∗, αεki ⇒ α∗, и
Tεki → T ∗. Если решение задачи (1) единственно, то εki = εk.

Таким образом, установлено, что если требуется найти численно хотя бы одно (какое-
либо) решение задачи (1), то при малом ε > 0 таким решением может служить решение ε-
задачи (4), которое в свое очередь можно найти приближенно с помощью решения условий
принципа максимума Понтрягина, поскольку ε-задача регулярна ввиду предложения 2
и тем самым условия принципа ε-максимума могут быть сведены к соответствующей
краевой задаче.

В подразделе 1.3.3 описанная схема возмущения применена к задаче о движении мо-
бильного робота (1). При этом понятно, что задача (3) представляет собой некоторую об-
щую схему возмущения относительно фазового ограничения, но не учитывает возможных
особых режимов. Однако, очевидно, что не все время в пути робот будет разворачиваться
с максимальной по модулю угловой скоростью и поэтому анализ особого режима по уг-
ловой скорости является критически важным для модели (1). Проблема особых режимов
можно решить по аналогии с помощью дополнительной регуляризации задачи и введения
дополнительных переменных управления. Другим подходом может служить возмущение
минимизируемого функционала с помощью малой интегральной добавки.

В диссертационной работе используется именно второй подход как альтернатива пер-
вому подходу, рассмотренному в подразделе 1.3.2.

В завершение теоретической части отмечено, что радиус окружности задающей фа-
зовое ограничение, может быть выбран произвольным образом, т.е. не обязательно быть
единичным. В таком случае, немного меняется формула для µ, где появляется ради-
ус окружности r. Тем не менее с точки зрения вычислений, случай именно единичной
окружности интересен тем, что он является пограничным в следующем смысле. Ясно,
что робот может двигаться одновременно с максимальными угловой и продольной скоро-
стями только по единичной окружности. Если как-либо изменить радиус, то это уже не
так: при r > 1 угловая скорость не максимальна, а при r < 1 – продольная.

В разделе 1.4 приведен алгоритм решения задачи методом регуляризации. К возму-
щенной задаче применяем численный метод. Используем решение этой задачи для задан-
ного ε в качестве начального приближения к решению возмущенной задачи с меньшим
значением ε. Решение этой задачи для наименьшего из рассмотренных значений ε считаем
приближением к решению исходной задачи (1).

Принцип максимума для этой задачи сводится к краевой задаче с использованием фор-
мул из подраздела 1.3.3. Краевая задача принципа максимума решается методом стрельбы
в обратном времени (т.е. перебор значений параметров, определяющих решение краевой
задачи, производится при t = T ). В качестве начального времени для расчета берется
T = 0, в то время как движение осуществляется в обратном направлении.

В разделе 1.5 приведены результаты численного решения возмущенной задачи опти-
мального управления с использованием принципа максимума, описанного в разделе 1.3.

Используя алгоритм из раздела 1.4, решена возмущенная задача для A =
(−2,−0, 5), B = (2, 0), α0 = 0 и для уменьшения значений ε с 1 до 0, 005.

По результатам экспериментов сделан вывод, что при уменьшении ε время в пути
монотонно увеличивается до значения Tε ≈ 4.32, и, таким образом, это значение близко к
минимальной стоимости исходной задачи; оптимальное решение регуляризованной задачи
для ε = 0.01 достаточно близко к предельному, соответствующему ε = 0 и, следовательно,
можно рассматривать как разумное приближение к оптимальному решению задачи (1).

Оптимальные траектории в плоскости (x1, x2) показаны на рис. 1 для ε = 1, 0.1 и 0.01.
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Рис. 1: Траектории в плоскости (x1, x2), соответствующие оптимальному решению возмущенной
задачи для ε = 1 (синий), 0,1 (зеленый) и 0,01 (красный).

Для ε = 0.01 координаты (x1, x2) и α представлены как функция времени на рис. 2.
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Рис. 2: Эволюция переменных x1(t) (красный), x2(t) (зеленый) и α(t) (синий) соответствует
оптимальному решению возмущенной задачи для ε = 0.01.

Соответствующие управляющие функции u и p, а также v1 и v2 показаны на рис. 3.
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Рис. 3: Эволюция функций управления u(t) (красный), p(t) (синий), v1(t) (желтый) и v2(t) (зе-
леный) соответствует оптимальному решению возмущенной задачи для ε = 0.01.

По результатам экспериментов для разных значений ε можно сделать следующие за-
ключения: траектории робота, отвечающие решениям задачи оптимального управления
при разных значениях ε, отличаются друг от друга мало, а режимы управления, обеспе-
чивающее такое движение, различаются существенно.

Также следует отметить характер изменения µ при уменьшении ε (при движении по
границе, так как при движении вне границы величина меры-множителя Лагранжа не
меняется). При ε = 0.9 между точкой входа и схода с границы µ(t) – практически ли-
нейная функция. При ε = 0.5 и 0.2 заметно характерное нелинейное поведение – вблизи
точки захода и схода с границы функция быстро меняется, оставаясь близкой к линейной
при удалении от этих точек. Такая нелинейность (рост градиента) особенно заметна при
ε = 0.1. Однако, при ε = 0.05 линейность уже полностью восстанавливается. Это означа-
ет, что предельная мера-множитель Лагранжа, которая отвечает принципу максимума в
исходной задаче (1), по всей вероятности непрерывна.
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В разделе 1.6 приведены другие примеры применения метода регуляризации к мо-
дели мобильного робота.

В подразделе 1.6.1 рассмотрена следующая постановка задачи, описывающая дви-
жение гусеничного мобильного робота.

В подразделе 1.6.2 рассмотрена постановка задачи, описывающая движение одно-
колесного велосипеда.

В разделе 1.7 принцип максимума сравнивается с методами машинного обучения с
целью ответа на вопрос: почему в работе использован «классический» принцип максиму-
ма, а не «современные» методы.

Сделан вывод, что принцип максимума Понтрягина и обучение с подкреплением –
не конкуренты, а дополняющие друг друга парадигмы. Первый обеспечивает гарантии,
интерпретируемость и эффективность, второй – адаптивность, гибкость и способность к
обучению. В современной робототехнике будущее – за их интеграцией: использование ана-
литических методов как «ядро» управления, а RL – как слой адаптации и устойчивости
к неопределённостям.

В разделе 1.8 сделаны выводы по главе 1. В главе 1 диссертационной работы разрабо-
тан метод регуляризации, чтобы преодолеть явление, вызванное нерегулярностью и пред-
ложено построение аппроксимирующей последовательности регулярных ε-возмущенных
задач.

В главе 2 диссертационной работы предложен метод вычисления с заданной точно-
стью точных экстремалей в задаче оптимального управления (задача быстродействия)
движением уницикличной модели робота при наличии фазовых ограничений глубины 2.
Для этого используется принцип максимума Понтрягина второго порядка в отношении
ограничений состояния.

В точках выхода на границу и схода с нее учтены соответствующие оценки скачка
производной множителя. Рассмотрен вопрос о непрерывности экстремального управле-
ния. Вычисление выполнено для простейшей типовой задачи, которая в тексте называется
задачей о кратчайшей кривой 2-го порядка.

В разделе 2.1 рассмотрена так называемая динамика управления ньютоновского ти-
па, т.е. следующая система дифференциальных уравнений{

ẋ(t) = f1(x(t); y(t));
ẏ(t) = f2(x(t); y(t);u(t)),

(5)

которая моделирует движение заданного объекта.
Здесь x(t) ∈ Rn и y(t) ∈ Rn – заданные траектории состояний; u(t) ∈ Rm – функция

управления. Простейший случай управления динамикой задается системой{
ẋ(t) = y(t);
ẏ(t) = u(t).

Это случай классического движения согласно закону Ньютона с управлением ускоре-
нием u(t).

Рассмотрен временной интервал [0;T ], где конечный момент времени T не фиксирован
и рассматривается как параметр. Точки A;B ∈ Rn и x(0) = A и x(T ) = B. Ускорение
ограничено: |u| ≤ c для некоторого c > 0.

Решение системы дифференциальных уравнений (5) представляет собой не только
классическую задачу теории управления, но и чрезвычайно актуальную проблему в со-
временной науке и технике. Эта система описывает динамику объекта второго порядка,
где управление осуществляется через ускорение, и находит широкое применение в робо-
тотехнике, автоматизированных системах и киберфизических устройствах.
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Сложность этой задачи существенно возрастает, если учесть фазовые ограничения
переменной x. Пусть на пути есть препятствие, которое нужно обойти рассматриваемо-
му объекту в процессе движения. Тогда фазовая траектория подчиняется ограничению,
заданному множеством уровней некоторого отображения

g(x(t)) ≤ 0, ∀t ∈ [0, T ], (6)

которое моделирует упомянутое препятствие. В таком случае решение задачи неочевидно.
Главный вопрос заключается в том, как найти точки соединения, то есть точки входа и
выхода на границы ограничения, а также соответствующий закон управления.

Ограничение (6) известно как фазовое ограничение глубины 2 по отношению к системе
(5).

Рассмотрим следующую задачу на плоскости R2:

ẋ1(t) = v(t) cosα(t) + V1(x(t)),
ẋ2(t) = v(t) sinα(t) + V2(x(t)),
α̇(t) = ω(t),
v̇(t) = uL(t) + uR(t),
ω̇(t) = uL(t)− uR(t),
(uL(t))2 + (uR(t))2 ≤ 1,
g(x(t)) ≤ 0.

(7)

Здесь x = (x1, x2) – положение робота на плоскости; α – угол поворота; v – продольная
скорость; ω – угловая скорость; uL – крутящий момент, приложенный к левой гусенице,
а uR – крутящий момент на правой гусенице. В этой модели предполагается, что сумма
крутящих моментов пропорциональна продольному ускорению, а их разность – угловому
ускорению. Эта система представляет собой упрощенную модель мобильного робота на
гусеничном ходу без трения, движущегося в плоскости стационарного векторного потока
V с некоторым препятствием.

Ограничения на uL и uR, заданные единичной окружностью, соответствуют так назы-
ваемому режиму управления с низким выходом или экономией энергии батареи. В более
общем виде геометрические ограничения можно определить следующим образом:

(uL(t))p + (uR(t))p ≤ 1,

где p ≥ 1, и случай p = 1 не исключается. Число p в такой модели является пределом
допустимой выходной мощности. При p = 1, имеется линейное распределение токов, а
выходная мощность является минимально возможной. При p = 2 распределение квадра-
тичное, а выходная мощность больше.

Основная идея, возникающая здесь, заключается в применении модифицированного
принципа максимума, адаптированного для задач оптимального управления с фазовыми
ограничениями глубины 2.

В разделе 2.2 приводится постановка задачи оптимального управления с фазовыми
ограничениями глубины 2. 

T → min;
ẋ(t) = f1(x(t); y(t)),
ẏ(t) = f2(x(t); y(t);u(t)),
x(0) = A,
x(T ) = B,
(y(0), y(T )) ∈ S,
u(t) ∈ U для п.в. t ∈ [0, T ],
g(x(t)) ≤ 0 ∀t ∈ [0, T ].

(8)
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Здесь x ∈ Rn – положение переменной состояния, y ∈ Rn – скорость переменной состояния
и u ∈ Rm – переменная управления. Предполагается, что движение объекта начинается в
точке A и, в кратчайшее время, необходимо попасть в конечную точку B, удовлетворяя
граничным условиям для скорости, заданной множеством S. В то же время положение
не должно покидать заданную область, определяемую множеством уровней отображения
g(x). Таким образом, моделируется гарантированное отсутствие столкновения с нежела-
тельным объектом.

Множества S и U предполагаются замкнутыми. Отображение

f = (f1, f2), где f1 : R2n → Rn, f2 : R2n × Rm → Rn,

которое является правой частью, и отображение g : Rn → R, которое определяет фа-
зовые ограничения, предполагаются достаточно гладкими. Допустимое управление u(·)
рассматривается как функция из пространства L∞([0, T ];Rm) со значениями в U . Допу-
стимая траектория ξ(·) = (x(·), y(·)) непрерывна по Липшицу и удовлетворяет дифферен-
циальному уравнению

ξ̇(t) = f(ξ(t), u(t))

для п.в. t ∈ [0, T ], граничные условия, задаются точками A, B и множеством S, а также
неравенством g(x(t)) ≤ 0 ∀t ∈ [0, T ].

Четверка (x(·), y(·), u(·), T ) называется допустимым процессом в задаче (8), когда
выполнены условие попадания в конечную точку, условия на управление и фазовые
ограничения, то есть когда x(·), y(·) и u(·) допустимы на [0, T ]. Допустимый процесс
(x̄(·), ȳ(·), ū(·), T∗) называется оптимальным, если число T является наименьшим возмож-
ным на множестве всех допустимых процессов. Это раскрывает понятие так называемого
глобального минимума. Далее предполагается, что задача (8) обладает по крайней мере
одним оптимальным процессом (x̄(·), ȳ(·), ū(·), T∗).

В разделе 2.3 сформулирован модифицированный принцип максимума Понтрягина
для задачи (8) в терминах функции Гамильтона-Понтрягина второго порядка.

Определение 3 Говорят, что процесс управления (x̄(·), ȳ(·), ū(·), T∗) в задаче (8) удовле-
творяет принципу максимума при условии, что существуют множители Лагранжа:
вектор-функция ψ = (ψ1, ψ2) ∈ W1,∞([0, T∗]; (R2n)∗), число λ ≥ 0, и скалярная функция
µ ∈ W1,∞([0, T∗];R) такие, что µ̇(t) убывает, в то время как µ(T∗) = µ̇(T∗) = 0, и вы-
полняются следующие условия:{

ψ̇1(t) = −H′x(x̄(t), ȳ(t), ū(t), ψ(t), µ(t)),

ψ̇2(t) = −H′y(x̄(t), ȳ(t), ū(t), ψ(t), µ(t)) для п.в. t ∈ [0, T∗],(
ψ2(0) + µ(0)Γ′1y(A, ȳ(0)),−ψ2(T∗)

)
∈ NS(p̄),

max
u∈U
H(x̄(t), ȳ(t), u, ψ(t), µ(t)) = H(x̄(t), ȳ(t), ū(t), ψ(t), µ(t)) для п.в. t ∈ [0, T∗],

max
u∈U
H(B, ȳ(T∗), u, ψ(T∗), 0) = λ,∫ T∗

0

g(x̄(t))dµ̇(t) = 0,

λ+ |ψ(0)| > µ(0). (9)

Здесь p̄ = (ȳ(0), ȳ(T∗)), NS(p) – предельный нормальный конус к S в точке p; µ̇ – произ-
водная множителя; W1,∞ – пространство функций, непрерывных по Липшицу. Понятно,
что в силу наложенных условий функция µ̇ неотрицательна, а функция µ возрастает и
неположительна. Следовательно, последнее неравенство (9) означает, что все множители
не обращаются в нуль одновременно.

Доказано следующее утверждение.
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Теорема 3 Предположим, что процесс управления (x̄(·), ȳ(·), ū(·), T∗) в задаче (8) опти-
мален. Тогда он удовлетворяет принципу максимума.

В разделе 2.4 рассмотрены условия 2-регулярности и C1-непрерывности для множи-
теля.

Реализация вычислительных усилий и алгоритма требует некоторых дополнительных
ограничений на данные задачи.

Основное условие регулярности, которое накладывается на фазовое ограничение, за-
ключается в следующем.

Определение 4 Фазовые ограничения называются 2-регулярными, если для всех x, y ∈
Rn и u ∈ U таких, что g(x) = Γ1(x, y) = Γ2(x, y, u) = 0, выполняется соотношение

(Γ2)
′
u(x, y, u) /∈ imP (u)ϕ′(u).

Понятие 2-регулярности является глобальным предположением, которое легко прове-
рить априори для заданных данных. Этот факт важен с точки зрения приложений. В
то же время, следует отметить, что такое условие регулярности довольно сильное и мо-
жет не выполняться во многих представляющих интерес случаях (например, всегда, если
существует u0 ∈ U : |I(u0)| ≥ m). Таким образом, понятие 2-регулярности может быть
ослаблено с глобального типа до локального. Однако локальный тип условия обычно не
может быть проверен априори, а только в ходе вычисления экстремалей.

Можно оценить скачок производной множителя следующим образом. Точка пересече-
ния τ ∈ T0, такая, что g(x̄(τ+ε)) < 0 для всех достаточно малых ε > 0, называется точкой
выхода за границу. Если g(x̄(τ − ε)) < 0 для всех достаточно малых ε > 0, то называет-
ся точкой пересечения границы. Для данной функции ω(t) положим ω(τ+) = limt→τ+ и
ω(τ−) = limt→τ− , его правый и левый пределы в τ соответственно.

Определение 5 Процесс управления (x̄(·), ȳ(·), ū(·), T∗) называется 2-регулярным отно-
сительно фазовых ограничений, если существуют числа δ > 0 и σ > 0 такие, что

(x̄(·), ȳ(·), ū(·)) ∈M(δ) ∀t ∈ Y0(δ).

Числа δ и σ являются параметрами адаптивного вычислительного метода, предлага-
емого далее. Понятие 2-регулярности процесса управления имеет локальный характер и
оно не поддается априорной проверке, в отличие от понятия 2-регулярности из Определе-
ния 2, которое является глобальным и легко подтверждается или отбрасывается заранее.

В разделе 2.5 приведен алгоритм метода стрельбы для задачи оптимального управ-
ления с фазовыми ограничениями глубины 2.

Шаг 1. Начало. Стреляем из начальной точки вперед во времени из сферы S3:
|ψ1(0)|2 + |ψ2(0)|2 = 1. Установить µ(0) = µ̇(0) = 0. Тогда µ(t) является убывающей
отрицательной конечной функцией.

Шаг 2. Выход на границу в точке t0. Проверить условие пересечения границы в
некоторой точке t0 по следующим критериям

g(x̄(t0)) = Γ1(x̄(t0), ȳ(t0)) = 0⇔ |x̄(t0)| = R, 〈x̄(t0), ȳ(t0)〉 = 0,

то есть, 2 уравнения, которые могут быть дополнены еще одним уравнением

Γ2(x̄(t0), ȳ(t0), ū(t0)) = 0⇔ |ȳ(t0)|2 + 〈x̄(t0), ū(t0)〉 = 0,

при α(t0) 6= 0. Действительно, это связано с непрерывностью экстремального управления
(лемма 4). Здесь t0 – точка пересечения границы.
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В этой точке имеет место оценка, записанная в следующем виде

∆µ̇ ≤ C
√
|ψ1(t0)− µ̇(t+0 )x̄(t0) + µ(t0)ȳ(t0)|2 + |ψ2(t0)− µ(t)x̄(t0)|2,

где постоянная C найдена по формуле

C =
2Keκ1τ∗

2τ∗ −Kκ2τ 2∗ eκ1τ∗
,

где τ∗ = min{s∗, ε∗, σ}, а
κ1 = max

t∈[0,T∗]

∣∣f ′ξ(x̄(t), ȳ(t), ū(t))
∣∣ ,

κ2 = max
t∈[0,T∗]

∣∣(Γ2)
′
ξ(x̄(t), ȳ(t), ū(t))

∣∣ ,
κ3 = max

t∈[0,T∗]
|f ′u(x̄(t), ȳ(t), ū(t))| .

.
Если это неравенство не выполняется, то текущий выстрел отбрасывается.
Шаг 3. Следование по границе. Вычислить µ(t), используя полученную форму-

лу, и проверить, удовлетворяет ли эта функция известным свойствам. Тогда траектория
выстрела проходит вдоль границы.

Шаг 4. Выход с границы. Организовать дополнительную стрельбу с границы следу-
ющим образом. На каждом шаге на границе мы продолжаем µ(t) как линейную функцию
с углом отклонения, вычисленным по формуле

∆µ̇ ≤ C
√
|ψ1(t0)− µ̇(t−0 )x̄(t0) + µ(t0)ȳ(t0)|2 + |ψ2(t0)− µ(t)x̄(t0)|2.

Шаг 5. Попадание в цель. Те углы с которыми можно поразить цель x(τ) = B
при стрельбе для некоторого значения τ > 0 с заданной точностью ε0 и τ < Tadm, и
такие, при которых выполняется ψ2(T∗) = 0, 〈ψ1(T∗), ȳ(T∗)〉 = λ ≥ 0, рассматриваются
как экстремальные вместе с вычисленной траекторией x(t) и управлением u(t), в то время
время τ задается в качестве текстового значения экстремального времени TEXT .

Таким образом, экстремали могут быть вычислены. После выбора экстремали можно
найти решение, найдя минимально возможное TEXT .

В разделе 2.6 приведены результаты применения метода стрельбы к двумерной за-
даче Ньютона об оптимальном времени с заданным на плоскости фазовым ограничением

T → min,

ẋ(t) = y(t),

ẏ(t) = u(t),

x(0) = A, x(T ) = B,

y(0) = 0,

|u(t)| ≤ a,

|x(t)| ≥ R,

(10)

где x, y, u ∈ R2, t ∈ [0, T ]. Основная идея состоит в том, чтобы двигаться по закону Ньюто-
на и обойти препятствие в виде окружности радиуса R на плоскости. Решение этой задачи
можно также назвать кратчайшей кривой второго порядка. Внешняя часть окружности
может быть эквивалентно определена неравенством 1

2
|x(t)|2 ≥ R2

2
. Это полезно для неко-

торого упрощения выражений.
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В диссертационной работе были проведены численные эксперименты с предложенным
методом и были получены следующие результаты, рис. 4.

Рис. 4: Вычисленное решение масштабированной задачи (10) при R = 1 с точностью 0, 0375:
слева показана оптимальная траектория робота, а справа – эволюция вдоль этой траектории
меры-множителя Лагранжа µ(t).

В разделе 2.7 сравнивается принцип максимума и ПИД-регулятор (пропорциона-
льно-интегрально-дифференциальный регулятор) применительно к задаче ньютоновского
типа.

ПИД-регулятор – это устройство в системе автоматического управления с обратной
связью, которое формирует управляющий сигнал с целью точного и качественного под-
держания заданного значения контролируемого параметра.

Математическая реализация ПИД-регулятора для системы второго порядка сводит-
ся к введению интегральной переменной и анализу устойчивости замкнутой системы
третьего порядка. Успешное управление возможно при корректном выборе коэффициен-
тов Kp, Ki, Kd, удовлетворяющих условиям устойчивости. Представленная формализация
позволяет не только реализовать регулятор на практике, но и провести строгий анализ
его динамических свойств.

Хотя принцип максимума и ПИД-регулятор основаны на разных подходах, связь меж-
ду ними может быть установлена на уровне целей управления: принцип максимума дает
оптимальную траекторию при заданном критерии (например, быстродействие или мини-
мум энергии). ПИД-регулятор применяется как приближённая реализация оптимального
управления в окрестности рабочей точки, особенно если оптимальный закон гладкий.

Таким образом, ПИД-регулятор можно рассматривать как эмпирическую реализа-
цию идей оптимального управления, а принцип максимума даёт теоретическую основу
для синтеза более совершенных законов, которые могут включать, или улучшать ПИД-
структуру.

В разделе 2.8 делаются выводы по главе 2. Показана практическая применимость
принципа максимума для задач с динамикой управления ньютоновского типа. Полу-
чен новый способ исследования задач оптимального управления – объединение теоре-
тического, оптимизационного принципа максимума и практического, инженерного ПИД-
регулятора. Именно такая идея использована при построении алгоритмов для решения
задачи управления мобильным роботом в реальном времени, см. главу 4.

В главе 3 диссертационной работы рассматривается задача оптимального управле-
ния мобильным роботом, движущимся в плоскости R2 от заданной начальной точки к
терминальной, с учётом фазовых ограничений. Предполагается, что робот получает ин-
формацию о своём положении от системы позиционирования с известной погрешностью
ε > 0, причём измерения поступают с фиксированным интервалом τ . Важно подчеркнуть,
что неточность измерений может привести к отклонению от рассчитанной траектории и,
как следствие, к промаху по цели.
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Для построения оптимальной по времени траектории используется принцип разделе-
ния допустимых траекторий, предложенный В.А. Березневым. Согласно этому принципу,
оптимальный путь состоит из отрезков прямых и дуг окружностей, касающихся границ
препятствий. На основе этих элементов строится связный граф, в котором вершины соот-
ветствуют точкам старта, финиша и касания, а рёбра — возможным участкам движения.
Кратчайший путь на этом графе, определяемый, например, алгоритмом Дейкстры, даёт
оптимальную траекторию в отсутствие возмущений.

Однако в реальных условиях движение робота сопровождается внешними и внутрен-
ними возмущениями, из-за которых он может отклоняться от заданной траектории. В
связи с этим в работе представлен новый алгоритм коррекции траектории, который га-
рантирует достижение конечной точки с погрешностью, не превышающей 2ε, при любых
ошибках измерений, ограниченных ε.

В разделе 3.1 рассмотрены основные принципы и важность разделения траекторий.
В разделе 3.2 приведен принцип разделения траекторий, алгоритм метода, его обос-

нование и результаты экспериментов.
Поведение робота, который должен переместиться из некоторой точки x(0) = x0 в тер-

минальную точку x(T ) = x̂ за минимальное время T , описывается дифференциальными
уравнениями второго порядка

ẍ(t) = f(t, x(t), ẋ(t), u(t)),

где x(t) ∈ R2 - искомая оптимальная траектория, а u(t) ∈ R2 - допустимый управляющий
параметр, который подчиняется условию

u− ≤ u(t) ≤ u+, u−, u+ ∈ R2.

Предполагается, что компонента u1(t) задаёт ускорение (положительное при наборе ско-
рости и отрицательное при торможении), а u2(t) - положение руля робота. Естественно
также предполагать, что скорость робота ограничена, т.е. для любого t выполняются
неравенства

0 ≤ ẋ(t) ≤ v̂. (11)

Условие непересечения траектории робота с круговыми препятствиями означает, что
для любых t кривая x(t) должна удовлетворять неравенству

‖x(t)− Ck‖ ≥ r+k , k ∈ 1, K,

где K - общее число препятствий, Ck - координаты центра k-го препятствия.
Через z(t) = (z1(t), z2(t)) будем обозначать неизвестные текущие координаты робота,

т.е. z(ti) = y(ti)+δi. Координаты z(t) предполагаются неизвестными в силу самых различ-
ных причин. Иными словами, робот может отклониться от траектории x(t) и двигаться в
направлении, при котором он не сможет достичь терминальной точки x̂. Следовательно, в
какой-то момент его движение должно быть скорректировано таким образом, чтобы мож-
но было гарантировать попадание по крайней мере в некоторую приемлемую окрестность
точки

Суть предлагаемого с этой целью алгоритма заключается в следующем. Если переда-
ваемые системой позиционирования координаты y(ti) не выходят за границы ε—полосы с
обеих сторон теоретической траектории робота x(t), нет необходимости в корректировке
его движения так как в этом случае есть вероятность, что объект не отклонился от за-
данной траектории, а уклонение y(ti) − x(ti) является следствием погрешности системы
позиционирования. Если же с учетом скорости v и интервала времени τ возможен выход
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точки y(ti+1) за пределы указанной полосы, то следует внести корректирующее траекто-
рию движения управление u = x̂− y(ti). Таким образом, пошаговый алгоритм принимает
следующий вид.

Шаг 1. Положить i = 0, ti = 0. Перейти к шагу 2.
Шаг 2. Положить i := i+1, ti := ti−1+τ , принять данные системы позиционирования

y(ti). Перейти к шагу 3.
Шаг 3. Если |y2(ti)|+vτ < ε, то перейти к шагу 2. В противном случае перейти к шагу

4.
Шаг 4. Перенастроить управление роботом на движение вдоль вектора u = x̂ − y(ti).

Перейти к шагу 5.
Шаг 5. Если |y1(ti)− x̂1| < ε, то остановиться. В противном случае перейти к шагу 2.

Таким образом, справедлива следующая

Теорема 4 Пусть управление осуществляется в соответствии с алгоритмом. Тогда
для любого t справедливо неравенство |z2(t)| < 2ε.

На рис. 5 показан пример оптимальной траектории (сплошная линия), построенной с
учётом кругового препятствия. Траектория состоит из

– прямого участка от старта до точки касания,
– дуги окружности вдоль границы препятствия,
– прямого участка до конечной точки.

Рис. 5: Пример оптимальной траектории при наличии одного фазового ограничения

Также на рисунке изображён процесс коррекции при неточных измерениях. Робот
движется по прямому участку, и каждые τ секунд получает оценку своего положения
y(ti) с погрешностью ‖δi‖ < ε. Эти измерения отмечены крестиками.

Зона, в которой отклонение считается допустимым («ε-полоса»), заштрихована се-
рым. Пока измерения остаются внутри полосы, коррекция не требуется. Однако, когда
прогнозируемое положение (учитывая скорость v и интервал τ) может выйти за преде-
лы полосы, активируется корректирующее управление u = x̂ − y(ti), и робот начинает
двигаться прямо к цели.

Согласно Теореме 4, такой алгоритм гарантирует, что истинное положение робота z(t)
всегда удовлетворяет условию |z2(t)| < 2ε, что обеспечивает попадание в окрестность
цели.

В разделе 3.3 описан предложенный в диссертационной работе метод поиска каса-
тельных для использования принципа разделения траекторий.

Математическая модель, описывающая движение такого робота, имеет следующий вид
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ẋ =
(u1 + u2)

2
cos(θ)

ẏ =
(u1 + u2)

2
sin(θ)

θ̇ =
(u1 − u2)

b

В качестве управляющих воздействий u1 и u2 выбраны скорости соответственно пра-
вого и левого колес. Управляющие воздействия образуют управляющий вектор u =
(u1, u2)

T ∈ U ⊆ R2, принадлежащий компактной области двумерного пространства, кото-
рая определяет ограничения на управляющие воздействия:

|ui| ≤ umax, i = 1, 2.

Замечание 2 В тех случаях, когда необходимо учитывать реальные размеры робота,
можно для простоты считать, что робот сам ограничен в горизонтальных размерах
окружностью некоторого постоянного радиуса r.

Для нахождения касательных к окружности, проходящих через заданную точку, вос-
пользуемся следующим построением (рис. 6). Считаем, что точка P лежит вне круга
радиуса r с центром в точке C. Тогда существует две касательных, проходящих через
точку P и касающихся окружности в точках A и B, симметричных относительно прямой,
соединяющей центр круга C и точку P .

P C

B

ϕ

A

e

Рис. 6: Нахождение касательных к окружности, проходящих через заданную точку.

Тогда точки A и B можно найти как

A = C + rMT~e, B = C + rM~e,

где вектор ~e = P−C
d

, а M – матрица поворота

M =

[
cosϕ − sinϕ
sinϕ cosϕ

]
.

В соответствии с моделью, на прямых участках пути максимальная скорость движения
vmax = umax. Время движения по соответствующему отрезку составляет

tmin =
l

umax

.

На дугах окружностей максимальная скорость определяется следующим образом.
Пусть робот движется по окружности против часовой стрелки. Тогда максимальное зна-
чение управляющего воздействия u1 равно umax. При этом угловая скорость робота равна
угловой скорости движения его центра по соответствующей окружности, при этом

v =
(u1 + u2)

2
; ω =

(u1 − u2)
b

; v = ωr. (12)
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Отсюда следует, что при u1 = umax и максимальная скорость при движении по дуге
составляет

u2 = umax
2r − b
2r + b

; vmax = umax
2r

2r + b
.

Соответственно, время движения по дуге окружности радиуса r с углом ϕ составит

tmin =
l

vmax

=
rϕ

vmax

=
rϕ(2r + b)

2rumax

=
ϕ(2r + b)

2umax

(13)

Время, которое робот тратит для поворота на месте на угол ϕ, можно определить из
последнего соотношения в (12). Максимальная возможная угловая скорость поворота

ωmax =
2umax

b

и, таким образом, минимальное время такого поворота составит

tmin =
ϕb

2umax

,

что, если сравнить с (13), соответствует движению по окружности нулевого радиуса.
Эти соотношения используются при расчете времени движения по ребрам графа.
Обратим внимание, что для рассматриваемой кинематической модели время движе-

ния как по прямым участкам, так и по дугам окружностей прямо пропорционально длине
пути и обратно пропорционально максимальному значению, ограничивающему управляю-
щие воздействия в системе. Это означает, что, за исключением поворотов на месте, самый
быстрый путь из начальной точки в конечную в случае, если точки лежат на границах
препятствий, будет совпадать с одним из локальных минимумов в задаче поиска крат-
чайшего пути в геометрическом смысле. Выбор такого локального минимума зависит от
геометрического параметра b. Доказано следующее

Предложение 3 Для кинематической модели движения двухколесного робота опти-
мальным по быстродействию путем будет локально кратчайший в геометрическом
смысле путь с добавлением поворотов в начальной и конечной точке.

В случае, если допускаются полигональные препятствия на пути робота, при этом
геометрически кратчайший путь проходит через угол полигона (рис. 7, а) или по грани
полигона (рис. 7, б), верно следующее

Следствие 1 В случае полигональных препятствий кратчайший путь также являет-
ся является одним из локальных минимумов в задаче поиска кратчайшего пути.

а) б�

Рис. 7: Кратчайший путь, обходящий полигональное препятствие. Время движения складыва-
ется из времени движения по левому участку, по правому участку и времени поворота.

Что касается невыпуклых препятствий, рассмотрим, например, локально кратчайший
геометрический путь, обходящий невыпуклую часть препятствия на рис. 8.
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Для нахождения оптимальной траектории с помощью построенного графа Γ исполь-
зовался алгоритм Дейкстры поиска кратчайших путей на графе из заданной начальной
вершины в его модификации, когда требуется определить кратчайший путь до другой
заданной вершины.

A B

Рис. 8: Кратчайший путь, обходящий невыпуклое препятствие. Время обхода считается так же,
как если бы это препятствие было заменено на его выпуклую оболочку.

Вычислительная сложность данного алгоритма для графа Γ, имеющего N вершин,
оценивается в O(N2) операций. Для графа, построенного в нашем случае, при числе
окружностей M число вершин графа будет равно (без учета блокирования отрезков, при
котором вершины не добавляются в граф) 2 + 2 (точка старта и точка финиша, а также
точки поворота), + 2M + 2M точек касания прямых, проходящих через точку старта,
с соответствующими точками поворота + 2M + 2M аналогичных точек для финиша, +
4M(M − 1) общих точек касания попарно для всех касательных к парам окружностей.
Таким образом, граф Γ имеет максимум N = 4 + 8M + 4M(M − 1) = O(4M2) вершин, а
вычислительная сложность пропорциональна O(16M4).

Проверка достижимости заданной конечной точки графа производится параллельно с
определением кратчайшего пути. Если в какой-то момент оказывается, что минимальная
длина для непосещенной вершины равна +∞, значит, все достижимые из точки стар-
та вершины уже посещены, и заданная точка финиша недостижима. На практике это
означает, что, если при нахождении кратчайшего пути на графе в результате работы
алгоритма Дейкстры длина пути до заданной точки равна +∞, значит, заданная точка
недостижима. При описанном способе построения графа переходов для непересекающих-
ся препятствий и если начальная и конечная точки не находятся внутри препятствия,
такая ситуация невозможна.

В разделе 3.4 приведен вычислительный эксперимент с методом касательных. Все
точки в программе задаются тремя значениями. Первые два соответствуют декартовым
координатам точки на плоскости. Третье значение определяет угол ориентации робота
при его прохождении через данную точку. Так, точка старта в качестве третьего значения
будет иметь начальную ориентацию робота, точка финиша – конечную ориентацию.

Пример работы программы приведен на рис. 9. Заданы следующие настройки:
– Точка старта: (x = 0, y = 0, ϕ = 0)
– Точка финиша: (x = 5, y = 5, ϕ = 0)
– Окружность 1: (xc = 1.5, yc = 1.5, r = 0.8)
– Окружность 2: (xc = 3.5, yc = 3.5, r = 0.8)
– Окружность 3: (xc = 1, yc = 4, r = 1.5)
– Окружность 4: (xc = 4, yc = 1, r = 1.5)
– Ограничение umax = 1

– Расстояние между колесами b = 1

В результате расчетов получены следующие значения для оптимальной траектории:
оптимальный путь определен как S → S0L → A0SL → A02LR → A20LR → A21RL → A12RL →
A1FL → F1L → F , общее время движения – 8, 856 единиц.
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Рис. 9: Оптимальная траектория для четырех препятствий.

Также в качестве примера приведем построение оптимального пути для большего ко-
личества препятствий. Найденный оптимальный путь приведен на рис. 10.
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Рис. 10: Оптимальная траектория для 23 препятствий.

В разделе 3.5 сделаны следующие выводы по главе 3. В главе 3 рассмотрена задача
оптимального управления для кинематической модели колесного робота и невыпуклыми
фазовыми ограничениями. Ключевым результатом является то, что в описанной поста-
новке задача сведена к поиску кратчайшего пути на графе. Такой поиск позволяет быстро
найти точное решение.

В главе 4 рассмотрены вопросы управления реальным мобильным роботом в реаль-
ном времени. Для решения задачи необходимо учитывать как статические, так и дина-
мические ограничения. Решение только классическими методами, затруднено большим
количеством вычислений, которые требуется проводить на борту робота, поэтому они не
могут быть реализованы на беспилотном объекте в процессе его эксплуатации. Однако
использование классических методов совместно с эвристическими методами или нейросе-
тями позволяет свести задачу поиска управления и траектории движения робота к задаче,
требующей меньшего числа вычислений, и реализовать поиск решения в режиме онлайн.

Другим важным вопросом, связанным с реальными роботами, является вопрос нави-
гации мобильного робота.

В разделе 4.1 рассмотрены существующие методы решения задач управления мо-
бильным роботом в реальном времени, а также этапы поиска управления и построения
траекторий. Для поиска управления мобильного робота в реальном времени необходи-
мо провести идентификацию модели, сгенерировать траектории, выбрать оптимальную
траекторию и настроить робот движению по оптимальной траектории.

В разделе 4.2 приведена кинематическая модель мобильного робота. Для проверки
теоретических данных проводились эксперименты на симуляторе, а также на реальном
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роботе (см. рис. 11 слева) в Робототехническом центре ФИЦ ИУ РАН (см. рис. 11 справа).
Робот имеет шасси геометрии Аккермана.

Рис. 11: Мобильный робот и Робототехнический центр ФИЦ ИУ РАН

В экспериментах к данной работе рассматривалось движение мобильного робота (рис.
11), заданное следующей системой дифференциальных уравнений

ẋ = u1 cos θ,
ẏ = u1 sin θ,

θ̇ = u1
H

tg u2,
(14)

где x, y – координаты центра задней оси мобильного робота; u1 – его линейная скорость;
θ – угол его поворота относительно оси x; u2 – угол поворота (положительный против
часовой стрелки); H – расстояние между передней и задней осями колес мобильного
робота.

В разделе 4.3 приведена постановка задачи, которая рассматривалась в исследова-
ниях, проведенных в данной работе.

Задан объект исследования, поведение которого описывается некоторой системой из
n обыкновенных нелинейных дифференциальных уравнений

ẋ = f(x, u),

где x ∈ IRn – вектор состояния объекта управления, u ∈ U ⊆ IRm – вектор управления,
x = [x1, x2, . . . , xn]T ; u = [u1, u2, . . . , um]T ; f(x, u) = [f1(x, u), . . . , fn(x, u)]T ; m ≤ n.

В общем случае предполагается, что для значений времени t, принадлежащих интер-
валу [0, t+], заданы соответствующие начальные условия

x(0) = x0 ∈ IRn

и время tf ∈ [0, t+] попадания в терминальные условия определяется из соотношения

x(tf ) = xtf ∈ IRn. (15)

Заданы статические

ϕi(x
j) ≤ 0, i = 1, . . . , r, j = 1, n, r ≤ m,

и динамические

γ(xp, xs) ≤ 0, p = 1, . . . , K − 1, s = p+ 1, K, r ≤ m

фазовые ограничения. Здесь r и K – соответствующее количество ограничений.
В рассматриваемых условиях задача состоит в том, чтобы определить такой управля-

ющий вектор u(x) и соответствующий вектор фазовых координат x(t), которые в течение
всей миссии достигали бы конечных условий (15) и обеспечивали экстремальное значение
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для некоторого фиксированного функционала, конкретного вида и физический смысл
которых определяется природой исследуемого объекта:

J =

∫ tf

0

dt = tf → min . (16)

Для учета ограничений добавим к функционалу штраф за нарушение ограничений:

J̃ = tf +
r∑
i=1

αiϑ(ϕ(x, y)) +
K∑
i=1

βiϑ(η(xp, x, y)).

Трасса для проведения экспериментов, расположенная в Робототехническом центре
ФИЦ ИУ РАН (рис. 11 справа), имеет сложную конструкцию. Она состоит из прямо-
линейных участков, подъема, спуска и криволинейных участков, замыкающих трассу в
единый неразрывный трек.

Такая трасса сложна для преодоления роботом в связи с разноплановостью конструк-
ции, поэтому для учета всех препятствий, встречающихся на треке, используются штраф-
ные функции, которые замедляют процесс прохождения по трассе, и поэтому они добав-
ляются в функционал качества.

В работе учитывались следующие штрафные функции (σi – весовые коэффициенты ,
i = 1, . . . , 3):

– отклонение от первого приближения оптимальной траектории

y1 = σ1 min
x̃,ỹ,θ̃
|Ω(x, y, θ)− Ω(x̃, ỹ, θ̃)|,

где Ω(x) – первое приближение оптимальной траектории с учетом заданных конечного и
начального состояний и статических ограничений;

– штраф за превышение допустимой скорости, на участках, где скорость ограничена

y2 = σ2ϑ(|u1| − v+),

где v+ – допустимая скорость на данном участке траектории, ϑ – функция Хевисайда

ϑ(a) =

{
0, a < 0,

1, a ≥ 0;

– положение высоты робота над плоскостью

y3 = σ3 arctg(
zi+1 − zi

∆z
),

где ∆z – шаг измерения.
Базовой функцией при синтезе функционала отбора использовалась сумма штрафов

F (Zk) = y1 + y2 + y3.

В разделе 4.4 представлен новый метод идентификации модели мобильного робо-
та: реализация процедуры идентификации с использованием регрессионных модельных
структур в сочетании с нейросетевой моделью.

В разделе 4.5 предложен метод синтеза функционала для нахождения квазиопти-
мальной траектории движения мобильного робота. Он состоит из следующих шагов: ге-
нерация траекторий и определение функции выбора.

В подразделе 4.5.1 приведен метод генерации траекторий. Для генератора траек-
торий зададим вектор, состоящий из начального и конечного состояния, начальной и
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конечной кривизны, а также скорости: xl = [x, y, ψ, k, ν]T , xF = [x, y, ψ, k, ν]T , что при-
водит к пятимерной таблице поиска векторов параметров. Разрешение и размерность
сохраненной таблицы является функцией хранения и вычислительной мощности робота
и, следовательно, зависит от платформы.

Глобальный планировщик создает предпочтительный путь для робота до цели от каж-
дого состояния. Пример генерации соседних траекторий приведен на рис. 12.

Рис. 12: Пример генерации соседних траекторий.

В подразделе 4.5.2 приведен метод определения функции выбора. В проведенных в
диссертационной работе исследованиях применялись следующие варианты: ручной, ана-
литический и с помощью сетевого оператора. При ручном выборе управление осуществ-
ляется в ручном режиме для получения набора данных.

При использовании аналитического метода на первом этапе с помощью методов чис-
ленной оптимизации строится первое приближение оптимальной траектории Ω(x) с уче-
том заданных конечного и начального состояний и статических ограничений. Для модели
объекта на борту решается несколько краевых задач по заданному функционалу и выби-
раются различные конечные состояния, не совпадающие с исходной задачей из условий
вычислительной возможности автономного решения задачи. Все сгенерированные траек-
тории сохраняются для дальнейшего анализа и выбора.

На втором этапе выполняется предсказание движения (численное интегрирование,
чтобы предсказать движение). Новизна такого метода заключается в том, что опреде-
ляется адаптивный функционал, т.е. при изменении условий внешней среды он меняет
параметры выбора.

При нахождении функции выбора с помощью сетевого оператора определялась струк-
тура функционала. С помощью вычислительного метода находилась функцию выбора,
обеспечивающая минимум отклонения от глобальной траектории, по которой должен дви-
гаться мобильный робот, избегая столкновения и другие ограничения вектора состояния
и управления.

В подразделе 4.5.3 приведен алгоритм синтеза функционала.
Шаг 1. Определение модели беспилотного транспортного средства.
Провести идентификацию модели с использованием регрессионных модельных струк-

тур.
Шаг 2. Выбор траектории.
Сненерировать траекторию методом MPPI. Выбрать интегральное управление по луч-

шей траектории.
Шаг 3. Определение функции выбора.
Считая функционал качества равным максимальному значению функции суммы всех

штрафов, полученных при достижении конечного состояния и определить функцию вы-
бора.
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В подразделе 4.5.4 приведены результаты применения предложенного метода гене-
рации к мобильному роботу (рис. 11 слева) с шасси геометрии Аккермана (14) в Робото-
техническом центре ФИЦ ИУ РАН (рис. 11 справа).

Беспилотное транспортное средство построено с использованием автомобильного шас-
си масштаба 1/10, весит 1,5 кг и способно развивать скорость до 10 м/с, также в модели
робота используются следующие параметры:

Параметр значение
радиус действия робота [m] 1
максимальная скорость [m/s] 50.0 / 3.6
максимальное ускорение [m/ss] 2.0
максимальная кривизна [1/m] 1.0

максимальная ширина дороги [m] 7.0

Вычисления выполнялись с помощью комплекта NVIDIA Jetson TX2. Измерение ло-
кальных координат движения БТС проводилось в Робототехническом центре ФИЦ ИУ
РАН. Идентификация модели проводилась с помощью регрессионных меоделей, так как
после проведения натурных экспериментов было установлено, что прямое управление че-
рез нейросеть получается неустойчивым. Функция выбора определялась методом сетевого
оператора.

На рис. 13 слева показаны траектории решения краевых задач вместе со схематиче-
ским изображением реальных условий, а на рис. 13 справа показаны траектории решения
краевых задач со схематическим изображением реальных условий вместе с оптимальной
траекторией.

Рис. 13: Траектории решения краевых задач и траектории решения краевых задач с выбранной
оптимальной траекторией

В разделе 4.6 приведен метод ASLAM-MPPI.
В подразделе 4.6.1 рассмотрена необходимость применения метода ASLAM-MPPI.
Расчет оптимальной траектории в сложных средах со статическими и динамически-

ми ограничениями требует оценки всего пространства возможных состояний и поиска
наилучшего решения.

В работе предложено решение этой проблемы с использованием алгоритма метода
активной одновременной локализации и картографирования на основе модели прогнози-
рующего интегрального пути для мобильных роботов ASLAM-MPPI (ASLAM, от англ.
method of Active Simultaneous Localization And Mapping; MPPI, от англ. Model Predictive
Path Integral method), который сочетает в себе контроль и планирование в отношении
целей действий и восприятия.
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В подразделе 4.6.2 приведен обзор метода SLAM. Метод одновременной локализа-
ции и картографирования (SLAM) – это задача, при которой автономный агент (робот)
строит карту окружающей среды и одновременно вычисляет свою траекторию относи-
тельно этой карты. Эта задача является одной из центральных в области мобильной
робототехники и компьютерного зрения.

В подразделе 4.6.3 изложен предложенный в диссертационной работе метод ASLAM-
MPPI – это модифицированный метод SLAM и его объединение с методом MPPI.

Алгоритм ASLAM-MPPI позволяет генерировать тысячи траекторий в реальном вре-
мени и выбирать ту, которая учитывает динамическое ограничение.

Алгоритм метода ASLAM-MPPI работает следующим образом:
– используя алгоритмы ASLAM, получаем локальное состояние БТС и карту занято-

сти с учетом динамических препятствий;
– алгоритм A-star вычисляет глобальную траекторию. Активный SLAM включает тер-

минальные состояния в круг значимых ориентиров, например, маркеров;
– алгоритм MPPI моделирует (прогнозирует) из начального состояния тысячи траек-

торий с учетом динамики БТС в направлении глобальной траектории. Окно прогнозиро-
вания зависит от расчетной скорости динамических препятствий;

– используя функцию стоимости, оптимальная траектория рассчитывается в соответ-
ствии с заданным критерием оптимальности;

– применяется управление, соответствующее оптимальной траектории;
– затем алгоритм повторяется;
– если локализация БТС превышает порог расхождения с прогнозом локального со-

стояния алгоритма ASLAM-MPPI, система локализации корректируется.
В подразделе 4.6.4 приведены результаты применения метода ASLAM-MPPI, кото-

рый был протестирован в Робототехническом центре ФИЦ ИУ РАН.
Нейронная сеть для метода ASLAM-MPPI включает 2 скрытых слоя с двумя нелиней-

ностями, что означает, что общая конфигурация сети составляет 6-32-32-4. Она принимает
в качестве входных данных 4 переменные состояния (угол наклона, продольную скорость,
поперечную скорость, курс), а также управляемое рулевое управление и управление ско-
ростью, и они выводят производную по времени от переменных состояния.

Нейронная сеть была обучена на данных, собранных на полигоне, в режиме ручного
управления БТС. Для обучения использовался метод стохастического градиентного спус-
ка. Обучение нейронной сети выполнялось с использованием инфраструктуры Центра
коллективного пользования «Высокопроизводительные вычисления и большие данные»
(ЦКП «Информатика») ФИЦ ИУ РАН (г. Москва). Результаты передавались на встроен-
ную вычислительную платформу, в качестве которой использовалась NVIDIA Xavier NX,
что позволило распараллелить нейронную сеть.

Метод ASLAM-MPPI показал в среднем более 7 кругов на трассе с горкой без сбоев.
Измерение абсолютной ошибки траектории SLAM метода показало одинаковую ошибку
на горке и на горизонтальной плоскости и составляет в среднем 0,99 процента от длины
пройденного пути. Длина дорожки, проходящей по горке, составила 23,3 м. Погрешность
отклонения более 0,03 м приводит к несчастным случаям на поворотах горки. Таким об-
разом, критерием качества и контроля метода ASLAM-MPPI является количество доро-
жек, проходящих через горку. В сложных условиях, когда пространственные ограничения
сильно сужают пространство допустимых перемещений, стратегия выбора пространства
состояний для оптимизации более эффективна, чем выборка в пространстве управления.
Эксперимент показал, что прохождение горки с минимальной ошибкой в первую очередь
зависит от системы локализации робота.

В подразделе 4.6.5 сделаны выводы об использовании метода ASLAM-MPPI.
В разделе 4.7 приведены новые методы навигации мобильного робота.

32



В подразделе 4.7.1 речь идет о навигации беспилотного транспортного средства с
помощью сетевого оператора и ARUCO-меток. Она необходима для подтверждения и
уточнения метода SLAM, т.к. одометрия со временем расходится и требуется уточнение
местоположения мобильного робота.

Для оценки состояния робота используются ArUco-метки (рис. 14 слева), и система
технического зрения, подсоединенная к машине через плату Raspberry Pi 3. С помощью
камеры, установленной на корпусе, робот распознает ArUco-метки, с помощью библиоте-
ки OpenCV определяет id каждой увиденной метки (рис. 14 в центре), точки q1 − −q4,
а также смещение относительно нее и рассчитывает угол θ. По установленной метрике
он определяет локальные координаты. Координаты углов маркера q1 − −q4 определяют
положение робота (рис. 14 справа).

Рис. 14: ArUco-метки, распознавание id ArUco-меток и определение локальных координат по
ArUco-меткам.

Для оценки качества найденного управления робот помещается в произвольную точку
поля так, чтобы в поле зрения камеры попала хотя бы одна ArUco-метка. Далее строится
траектория движения робота из произвольной точки в заранее установленную конечную
точку. Для аппроксимации траектории используем кубический сплайн.

Затем в начальную точку поля устанавливается робот. Запускается программа, с помо-
щью которой согласно модели находится траектория движения робота к цели – конечной
точке. Движение робота и расчет угла θ производится по ArUco-меткам.

Как показали многочисленные испытания, робот просчитывает траекторию, наибо-
лее близкую к аппроксимированной и проезжает по ней. На рис. 15 приведено несколько
траекторий движения робота. Красным цветом обозначена сплайн – аппроксимация тра-
ектории, найденная с помощью принципа максимума Понтрягина, а зеленой – траекто-
рия, построенная самим роботом. Отметим, что развороты робота для движения к цели
аппроксимация не учитывает.

Рис. 15: Траектории движения робота при навигации по ArUco-меткам.

Таким образом, получается, что из любой точки пространства, из которой робот видит
хотя бы одну ArUco-метку, он находит заданную конечную точку с помощью управления,
синтезированного методом сетевого оператора.
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В подразделе 4.7.2 речь идет о навигации по внутренней модели, т.е. о нахожде-
нии роботом своего местоположения при отсутствии связи. Цель исследований в данной
области – разработать метод идентификации динамики объекта управления (мобильного
робота) для создания его эталонной модели.

Для решения поставленной задачи разработан метод, который с помощью эталонной
модели позволяет идентифицировать динамику модели, а также корректировать систему
управления при возникновении сбоев. Метод использует систему на основе динамической
модели (например, внутренняя интеллектуальная модель), одометрия которой не подвер-
жена сбоям и недостаткам вышеуказанных систем.

При обнаружении внезапных препятствий система управления переключается в ре-
жим объезда препятствий. Во время объезда препятствий необходимо получить пози-
ционирование для возврата робота на заданную траекторию движения для выполнения
операции.

Оценка точности модели осуществлялась с помощью критерия среднеквадратического
отклонения σ, т.е. отклонения прогнозируемых значений от реальных в каждом цикле
прогноза:

σ =

∑
t∈P (yt − ȳt)2∑

t∈N ȳ
2
t

,

где N – число членов выборки; P – число членов прогноза; yt, ȳt – реальные и прогнози-
руемые величины.

Динамика беспилотного транспортного средства (внутренняя модель) была реализо-
вана на модели нейронной сети, включающей три скрытых слоя с двумя нелинейностями.

На рисунках 16 показана траектория движения реального робота (прерывистая ли-
ния) и его модели (сплошная линия). Траектория, представленная на рисунке 16 справа
проходила по горке со скоростью 1,5 м/с. Скорость по второй траектории составляла 2
м/с. Эталонная модель находилась с помощью принципа максимума Понтрягина.

Рис. 16: Траектория движения по трассам.

В заключении приведены основные результаты диссертации.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ

1. Проведен аналитический обзор методов решения задач оптимального управления
мобильными роботами и существующих подходов к их практической реализации.

2. Исследовано оптимальное движение трехколесного мобильного робота. Отмечено,
что прямое применение принципа максимума в модели трехколесного мобильного робота
не имеет смысла из-за отсутствия регулярности, а также из-за особого режима управления
относительно угловой скорости. Предложен метод возмущений для решения нерегуляр-
ных задач оптимального управления с фазовым ограничением, целью которого является
регуляризация исходной задачи. Такая тема представляется актуальной в связи с рядом
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прикладных задач, в частности, в робототехнике. Возмущенная задача, или ε-задача, уже
является регулярной относительно фазовых ограничений. Этот факт позволил применить
непрямой численный метод, основанный на классе алгоритмов стрельбы. Рассмотрен со-
ответствующий пример, касающийся движения мобильного робота. Разработана схема
регуляризации и предоставлены некоторые необходимые теоретические инструменты для
дальнейшей численной реализации. Численная процедура, построенная с помощью непря-
мого подхода, опирается на непрерывность множителей, которая имеет место в регуляр-
ных задачах. Этот метод был применен к тестовой задаче о безинерционном движении
трехколесного мобильного робота с передним приводом. Приведены результаты числен-
ного эксперимента.

Разработан метод регуляризации для решения задачи оптимального управления гусе-
ничным мобильным роботом с инерционным рулевым управлением при наличии фазового
ограничения, заданного единичной окружностью, чтобы преодолеть явление, вызванное
нерегулярностью динамики относительно фазового ограничения. Построена аппроксими-
рующая последовательности регулярных ε-возмущенных задач.

Разработан численный метод, основанный на принципе максимума Понтрягина, для
решения задачи оптимального управления одноколесным велосипедом при наличии фа-
зового ограничения. Представлены результаты численных экспериментов.

3. Разработан, теоретически обоснован и численно проверен метод стрельбы для на-
хождения решения задачи о перемещении мобильного робота при фазовых ограничениях
глубины 2. Метод применен к задаче с динамикой управления ньютоновского типа. С по-
мощью предложенного метода найдены точные решения, которые впоследствии исполь-
зовались для улучшения структуры пропорционально-интегрально-дифференцирующего
регулятора, применяемого при нахождении траекторий мобильного робота в режиме ре-
ального времени. Представлены результаты численных экспериментов.

4. Создан и реализован в виде законченной программы алгоритм автоматического
поиска оптимального пути между двумя заданными точками с набором фазовых ограни-
чений в виде кругов различного радиуса, которые не пересекаются между собой.

5. Разработан метод идентификации мобильных роботов с использованием регресси-
онных модельных структур (нейронных сетей) и дифференциальных уравнений, исполь-
зующий разработанную структурную схему системы управления мобильными роботами,
обладающую запасом живучести. Методом идентификации получена эталонная модель
мобильного робота, на основе которой разработан метод коррекции системы навигации.
Разработана программа идентификации беспилотного транспортного средства и програм-
ма коррекции системы навигации, которые апробированы на реальном мобильном роботе.

6. Представлен новый метод получения функции выбора на основе эволюционного
метода символьной регрессии. Рассмотрен пример применения предложенного метода к
конкретному роботу, движущемуся по плоскости с переменной высотой, динамически-
ми и статическими препятствиями и ограничениями скорости. Полевые эксперименты и
моделирование на тренажере демонстрируют новые возможности синтеза системы управ-
ления на основе сетевого оператора с использованием информации на выходе нейронной
сети, а также плагинов gazebo. Метод позволяет достигать целей с заданным критерием
качества. Рассмотрен пример применения предложенного метода к конкретному роботу,
перемещающемуся по полигону Робототехнического центра ФИЦ ИУ РАН.

7. Представлен новый метод активной одновременной локализации и картографиро-
вания на основе модели прогнозирующего интегрального пути и проведены полевые экс-
перименты на реальном БТС, продемонстрировав новые возможности, заключающиеся в
способности соответствовать динамике системы с ограничениями привода и минимизиро-
вать прогнозируемые затраты, в том числе конфликтующие на сложном полигоне. Метод
позволил БТС следовать оптимальной траектории в соответствии с заданным критерием
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качества, предотвращая сбои в системе локализации из-за выбросов или вырождения ин-
формации, что очень важно для безопасного использования БТС. Существенным вкладом
работы является разработка технологии метода активного SLAM для предотвращения
сбоев в системе локализации. Значительным результатом является решение практической
задачи реактивного планирования БТС на сложном полигоне, имитирующем производ-
ственную среду, на котором глобальная траектория проходила через горку со сложными
поворотами, по которой она не преодолевалась в ручном режиме БТС-управления без
обучения оператора.
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