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Введение

В последние десятилетия наблюдается стремительный рост объёмов обра­
батываемых данных, что сопровождается усложнением задач их интеграции, со­
поставления и анализа. На фоне развития технологий больших данных, распре­
делённых вычислений и методов искусственного интеллекта одной из ключевых
задач становится эффективное объединение идентичных или схожих объектов в
группы. Корректная группировка позволяет не только повысить качество анали­
тических систем, но и существенно оптимизировать процессы принятия решений
в бизнесе, логистике, здравоохранении и других отраслях.

Формирование групп идентичных объектов особенно усложняется в усло­
виях высокой динамичности данных. Постоянные изменения в характеристиках
объектов, появление новых и удаление уже имеющихся требуют от систем быст­
рой адаптации и переоценки связей между элементами. При этом классические
методы кластеризации, такие как K­means, требуют заранее заданного числа кла­
стеров и поэтому не могут быть непосредственно применены к задаче динамич­
ного формирования групп. Методы на основе плотности, такие как DBSCAN, так­
же имеют ограничения по масштабируемости и чувствительности к выбору пара­
метров. Это приводит к необходимости выбора метода, который способен эффек­
тивно обрабатывать данные с заранее неизвестной структурой и числом групп, и
его развитие для успешного применения в динамичных системах. Одним из ак­
тивно развивающихся направлений является исследование методов повышения
структурной согласованности в динамических графах. Современные обзоры по­
казывают, что для эффективного обнаружения сообществ в меняющихся сетях
необходимы подходы, способные учитывать временные аспекты, разрывы связей
и слияния сообществ. Тем не менее, подавляющее большинство существующих
решений ориентировано на слабую динамику или требуют значительных ресур­
сов для регулярного пересчёта кластерной структуры. Помимо задач структурно­
го группирования, критически важной становится проблема быстрого и эффек­
тивного расчёта признаков для оценки идентичности объектов. Во многих при­
кладных задачах такие признаки строятся на основе агрегатов событийных дан­
ных, извлекаемых с помощью аналитических SQL­запросов. Однако выполнение
сложных аналитических запросов в условиях больших данных зачастую стано­
вится узкимместом. Современные исследования демонстрируют, что применение
методов машинного обучения в оптимизаторах SQL­запросов позволяет добить­
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ся существенного повышения их производительности, хотя внедрение подобных
решений сопряжено с рядом технологических и практических трудностей.

Таким образом, представленное исследование находится на пересечении
нескольких направлений—теории структурной интероперабельности, динамиче­
ской кластеризации и оптимизации аналитических вычислений. В работе предла­
гается развитие метода динамичного формирования групп объектов по принципу
идентичности с учётом ограничений реального времени, высокой изменчивости
системы и необходимости поддержания высокой согласованности групп.

Целью данной работы является развитие метода динамичного формирова­
ния групп объектов по принципу идентичности в условиях больших и изменяю­
щихся данных, обеспечивающего высокую структурную согласованность групп
при учёте необходимости ускоренного вычисления признаков идентичности.

Для достижения поставленной цели необходимо было решить следующие
задачи:

1. Анализ существующих методов группировки объектов и выявление их
ограничений при работе с большими динамическими данными.

2. Исследование возможностей ускорения аналитических вычислений,
необходимых для построения признаков объектов, с применением мето­
дов машинного обучения для оптимизации выполнения SQL­запросов.

3. Разработка алгоритма формирования групп объектов, устойчивого к
ошибкам в определении идентичности и способного поддерживать со­
гласованную структуру в условиях высокой динамики данных.

4. Создание методики оценки качества сформированных групп с учётом
требований к однородности и полноте разбиения.

Таким образом, работа направлена на комплексное решение задачи дина­
мичного и структурно согласованного формирования групп идентичных объектов
с учётом особенностей выполнения вычислений в больших динамических систе­
мах.

Научная новизна:
1. Впервые проведён комплексный анализ применения методов машинно­

го обучения для оптимизации выполнения аналитических SQL­запросов
в условиях изменяющихся данных и высоких нагрузок, что позволило
выявить ограничения по их практической применимости в реальных си­
стемах обработки больших данных.
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2. Обоснован выбор сочетания бинарной классификации для оценки пар­
ной схожести объектов и алгоритма распространения меток (Label
Propagation Algorithm) для формирования групп как наиболее эффек­
тивной комбинации в задачах динамичного объединения семантически
идентичных объектов при ограниченных вычислительных ресурсах.

3. Предложен модифицированный двухэтапный алгоритм кластеризации
на основе LPA с калибровкой пороговых параметров на основе допусти­
мой доли ошибочных связей (5% и 20%), что позволяет повысить струк­
турную согласованность получаемых групп даже при наличии неполной
или шумной информации.

4. Доказана возможность эффективной адаптации предложенного метода
динамичной кластеризации для распределённых вычислительных си­
стем, что обеспечивает его масштабируемость и применимость к обра­
ботке больших объёмов данных.

5. Разработана комплексная методика количественной оценки качества
группировки объектов, включающая показатели однородности и полно­
ты, адаптированные для анализа результатов динамичной кластеризации
в условиях больших данных.

Научная и практическая значимость. Теоретическая значимость работы
заключается в развитии подходов к динамичному формированию групп объек­
тов по принципу идентичности в условиях больших и изменяющихся данных. В
работе обоснован выбор комбинации бинарной классификации и алгоритма рас­
пространения меток (LPA) как эффективного решения для задач динамической
кластеризации при ограниченных вычислительных ресурсах. Также предложена
модификация процесса кластеризации, обеспечивающая повышение структурной
согласованности групп за счёт калибровки пороговых параметров на основе ана­
лиза допустимой доли ошибок. Разработанная методика оценки качества группи­
ровки объектов, учитывающая показатели однородности и полноты, расширяет
инструментарий анализа динамических кластеризаций и может быть использова­
на в других задачах обработки больших данных.

Практическая значимость работы заключается в возможности применения
разработанных методов и алгоритмов для широкого круга прикладных задач, свя­
занных с обработкой больших динамических данных. К таким задачам относят­
ся: автоматизированное управление ассортиментом товаров, интеллектуальная
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агрегация предложений в маркетплейсах, анализ и сопоставление записей в ба­
зах данных, системы мониторинга состояния объектов, управление цифровыми
двойниками, задачи интеграции данных из разнородных источников, очистка дан­
ных от дубликатов и повышение их качества. Разработанный подход адаптирован
для распределённых вычислительных систем, что обеспечивает его масштабиру­
емость и позволяет эффективно работать с большими объёмами данных. Прове­
дённые эксперименты подтверждают практическую эффективность предложен­
ных решений на реальных задачах, демонстрируя высокое качество группировки
объектов и устойчивость методов к изменениям данных.

Основные положения, выносимые на защиту:
1. Проанализирован модифицированный подход на основе машинного обу­

чения для оптимизации аналитических SQL­запросов в СУБД:
(a) Выявлена сложность адаптации моделей машинного обучения

к изменяющимся данным и нагрузкам в условиях реального
времени.

(b) Выявлены высокие накладные расходы на поддержание ак­
туальности моделей при динамической смене структуры дан­
ных.

2. Предложен практико­ориентированный метод повышения качества дан­
ных через идентификацию семантически идентичных объектов:

(a) Предложена комбинированная архитектура, сочетающая мо­
дель бинарной классификации для оценки степени схожести
объектов и алгоритм распространения меток (LPA) для после­
дующего формирования групп.

(b) Обоснована возможность адаптации разработанного подхода
для распределённых вычислительных систем с использовани­
ем парадигмы MapReduce.

(c) Доказана практическая эффективность предложенного метода
на задаче поиска идентичных товарных предложений в усло­
виях реальных маркетплейсов.

3. Предложен модифицированный двухэтапный алгоритм кластеризации
на основе LPA:
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(a) Обоснован выбор алгоритма LPA как оптимального решения
для задачи формирования групп семантически идентичных
объектов.

(b) Предложена оригинальная модификация LPA с калибровкой
параметров на основе анализа доли ошибочных связей между
объектами (использованы пороговые значения 5% и 20%).

(c) Экспериментально подтверждена высокая эффективность
предложенного метода при решении практических задач
управления ассортиментом в условиях больших динамичных
данных.

4. Предложена комплексная методика оценки качества группировки объек­
тов:

(a) Предложен метод расчёта однородности кластеров как меры
внутреннего качества группировки.

(b) Предложен метод расчёта полноты группировки как меры со­
ответствия найденных групп истинной структуре данных.

Степень достоверности и апробация результатов. Достоверность резуль­
татов обеспечивается обширным анализом работ в области исследования, описа­
нием проведённых экспериментов, их воспроизводимостью, апробацией резуль­
татов на практике. Основные результаты диссертации докладывались на следу­
ющих конференциях: Интеллектуализация обработки информации (ИОИ­2022),
Москва, 2022; 66­я Всероссийская научная конференция МФТИ, Долгопрудный,
2024; Интеллектуализация обработки информации (ИОИ­2024), Гродно, 2024;
Интеллектуальные информационные технологии для индустрии, федеральная
территория ”Сириус” , 2025. Данная работа выполнена в рамках государствен­
ного задания номер 103­00001­25­02.

Публикации.Материалы диссертации опубликованы в 8 печатных работах,
из них 3 в журналах из списка ВАК и индексируемых в WoS, Scopus.

Личный вклад. Содержание диссертации и основные положения, выноси­
мые на защиту, отражают персональный вклад автора в опубликованные работы.
Подготовка к публикации полученных результатов проводилась совместно с со­
авторами, причём вклад диссертанта был определяющим. Все представленные в
диссертации результаты получены лично автором.
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Объем и структура работы. Диссертация состоит из введения, пяти глав и
заключения. Полный объём диссертации составляет 129 страниц с 33 рисунками
и 4 таблицами.
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Глава 1. Теоретические основы интероперабельности и структурной
согласованности

1.1 Идентичность и интероперабельность

В условиях возрастающей сложности и распределённости современных ин­
формационных систем критически важным становится не только их взаимодей­
ствие, но и способность точно идентифицировать и соотносить объекты и компо­
ненты. Проблема идентичности — корректного распознавания и сопоставления
одинаковых объектов в различных системах— выходит на первый план. Эта про­
блема имеет глубокие философские корни: Готфрид Лейбниц в XVII веке сформу­
лировал фундаментальные принципы идентичности, согласно которым (1) иден­
тичные объекты неразличимы по своим свойствам (закон неразличимости иден­
тичного), и (2) объекты, неразличимые по всем свойствам, являются идентичны­
ми (закон тождества неразличимых). Однако применительно к современным ин­
формационным системам эти строгие философские принципы требуют практиче­
ской адаптации: конкретные критерии идентичности определяются контекстом и
целями задачи, а полная неразличимость всех свойств часто недостижима.

При формировании групп идентичных объектов возникает фундаменталь­
ное требование: каждый объект в группе должен быть идентичен каждому (свой­
ство попарной идентичности). Это создаёт структуру, аналогичную клике в тео­
рии графов, где все вершины попарно соединены. В отличие от более слабых
структур типа связных компонент (где существует путь между любыми верши­
нами, но не обязательно прямое соединение), такая организация гарантирует аб­
солютную согласованность объектов в группе. Для верификации корректности
таких структур особенно продуктивным оказывается применение методов ана­
лиза интероперабельности — способности различных систем, компонентов или
организаций эффективно обмениваться данными, интерпретировать их и исполь­
зовать для согласованных действий. Данный подход основан на принципиаль­
ной связи между понятиями идентичности и интероперабельности: если идентич­
ность определяет требования к объектам (их неразличимость по заданным крите­
риям), то интероперабельность обеспечивает механизмы проверки выполнения
этих требований в условиях реального взаимодействия. Первоначально термин
«интероперабельность» (interoperability) возник в военной сфере в середине XX
века для обозначения совместной работы вооружённых сил разных стран. Впо­
следствии это понятие было адаптировано для информационных систем и стан­
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дартов информационных технологий. Согласно определению, приведённому в
ГОСТ Р 55062­2012 [1], интероперабельность— это «способность двух или более
систем или компонентов обмениваться информацией и использовать эту инфор­
мацию». В научной литературе и практике существует несколько точек зрения на
интероперабельность:

– Функциональная интероперабельность — способность систем выпол­
нять совместные операции, независимо от их внутренней реализации.

– Данные и семантика — акцент на том, чтобы данные не только передава­
лись, но и правильно интерпретировались принимающей стороной.

– Процессная интероперабельность — способность бизнес­процессов раз­
ных организаций эффективно взаимодействовать на основе согласован­
ных данных.

Таким образом, интероперабельность охватывает не только технический аспект
передачи информации, но и вопросы её понимания, осмысленной обработки и
координации действий.

Для более точного описания интероперабельности принято выделять уров­
ни интероперабельности [2] (рис. 1.1):

– Организационная интероперабельность связана с координацией бизнес­
процессов, политик и процедур между различными организациями или
подразделениями, что требует согласованности на уровне целей и про­
цессов.

– Семантическая интероперабельность направлена на обеспечение едино­
го понимания смысла данных всеми участниками взаимодействия. Это
требует согласования понятийных моделей, онтологий и схем данных.

– Техническая интероперабельность предполагает возможность обмена
данными между системами на уровне сетевых протоколов, форматов со­
общений и интерфейсов. Основное внимание здесь уделяется стандарти­
зации протоколов и совместимости программно­аппаратных средств.

– Оценивая потенциальную возможность установления интероперабельно­
сти той или иной степени в структуре взаимосвязанных элементов, можно
говорить о структурной интероперабельности [3]. Структурная интеропе­
рабельность фокусируется на согласованности связей между элемента­
ми системы. Здесь важны не столько сами передаваемые данные, сколько
способ организации элементов и их взаимосвязей. Структурная интеропе­
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Рисунок 1.1 — Общая структура интероперабельности в соответствии с ГОСТ Р
55062­2012

рабельность определяет, насколько устойчиво и последовательно устро­
ено взаимодействие между группами объектов.

Особое внимание в современных исследованиях уделяется структурной интеро­
перабельности в динамически меняющихся системах, где структура данных и их
связи могут изменяться с течением времени. В таких условиях проблема заклю­
чается не только в обеспечении первоначальной согласованности, но и в её под­
держании при постоянных изменениях состояния системы.

Интероперабельность играет критическую роль в самых разных прило­
жениях: от интеграции медицинских информационных систем и государствен­
ных реестров до работы маркетплейсов, банковских систем и промышленных
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интернет­платформ. Например, в сфере e­commerce высокая степень интеропе­
рабельности между продавцами, маркетплейсами и логистическими компаниями
обеспечивает эффективную обработку заказов, актуальность информации о това­
рах и своевременное выполнение поставок.

Таким образом, понятие интероперабельности стало фундаментальной кон­
цепцией для построения современных информационных систем и требует ком­
плексного изучения с учётом технических, семантических, организационных и
структурных аспектов. В рамках данного исследования особое внимание уделя­
ется структурной интероперабельности, как наиболее тесно связанной с задачами
динамичного формирования согласованных групп объектов.

1.2 Структурная интероперабельность: роль взаимосвязей между объектами

Структурная интероперабельность представляет собой один из наиболее
фундаментальных аспектов общей интероперабельности, так как она напрямую
связана с организацией связей между отдельными элементами системы. Если тех­
ническая интероперабельность обеспечивает возможность передачи данных, а се­
мантическая— их интерпретацию, то структурная интероперабельность отвечает
за целостность и согласованность взаимодействия элементов в рамках сложной
системы. Основной задачей структурной интероперабельности является обеспе­
чение устойчивости связей между объектами, что особенно критично в условиях
динамики данных. В любой сложной системе объекты редко существуют изоли­
рованно: они связаны между собой отношениями различной природы — от се­
мантической схожести и сопоставимости до прямых взаимодействий или принад­
лежности к одним и тем же категориям. Поэтому целостность структуры этих свя­
зей оказывает прямое влияние на функциональность и надёжность всей системы.
Ключевые принципы структурной интероперабельности включают:

– Связность элементов: объекты, между которыми установлены связи,
должны образовывать связные группы, в которых информация может сво­
бодно распространяться.

– Однородность связей внутри групп: связи между объектами внутри одной
группы должны обладать определённой степенью схожести или согласо­
ванности.



14

– Отделённость групп: объекты, принадлежащие различным группам,
должны иметь минимальное количество связей друг с другом для под­
держания чёткости границ групп.

В контексте больших данных и систем с высокой динамикой, проблема
структурной интероперабельности усложняется рядом факторов:

– Появление новых объектов и исчезновение старых.
– Изменение характеристик объектов и связей между ними.
– Ошибки в определении связей, вызванные неполнотой или неточностью
данных.

Все эти явления приводят к так называемым ассонансным структурам, в которых
идеальная согласованность нарушена: внутри предполагаемых групп могут су­
ществовать ошибочные связи, а между группами могут появляться слабые связи,
затрудняющие корректную идентификацию общностей.

В научной литературе структурная интероперабельность изучается как в
рамках общих проблем управления качеством данных [4], так и в специализиро­
ванных направлениях, таких как связь записей (Record Linkage) [5], разрешение
сущностей (Entity Resolution) [6] и обнаружение сообществ в графах (Community
Detection) [7]. Общим в этих направлениях является стремление выявить устой­
чивые, внутренне согласованные группы объектов в условиях неполной или из­
меняющейся информации.

При этом важно учитывать, что в задачах динамичного формирования групп
объектов структурная интероперабельность должна быть не только достигнута на
момент построения группировки, но и поддерживаться в процессе эволюции си­
стемы. Это требует разработки методов, которые могут адаптивно пересчитывать
структуру групп при изменении связей между объектами без полного пересмотра
всей структуры.

Таким образом, роль взаимосвязей между объектами становится централь­
ной в обеспечении структурной интероперабельности. Качественная организация
этих связей позволяет не только повысить точность и надёжность обработки дан­
ных, но и значительно упростить последующие этапы интеграции, анализа и при­
нятия решений в сложных информационных системах.
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1.3 Понятие структурной согласованности

Структурная согласованность является ключевым понятием при рассмотре­
нии задач, связанных с формированием и поддержанием устойчивых групп объ­
ектов в информационных системах. Если структурная интероперабельность отве­
чает за возможность взаимодействия между элементами системы, то структурная
согласованность отражает качество организации этих взаимодействий. В самом
общем виде структурная согласованность определяется как степень соответствия
фактической структуры связей между объектами некоторому идеальному или це­
левому состоянию структуры, которое характеризуется максимальной внутрен­
ней согласованностью групп и минимальными нарушениями между ними. Иде­
альная структура для задач группировки объектов соответствует следующим тре­
бованиям:

– внутри каждой группы объекты имеют плотные и устойчивые положи­
тельные связи, подтверждающие их принадлежность к одной общности;

– между различными группами отсутствуют (или минимальны) связи, что
обеспечивает чёткое разделение общностей и предотвращает их смеши­
вание;

– структура устойчива к локальным ошибкам в определении связей и спо­
собна сохранять общую согласованность при небольших изменениях дан­
ных.

В литературе подобная идеальная структура описывается понятием консонанс­
ной структуры— структуры, в которой внутри каждой группы элементы связаны
положительно, а между группами связи отсутствуют или являются отрицатель­
ными [4; 8]. В реальных условиях данные редко соответствуют этому идеалу, и
фактическая структура, как правило, имеет ассонансный характер: существуют
ошибочные связи между группами и недостающие связи внутри групп.

Ключевыми факторами, влияющими на степень структурной согласованно­
сти, являются:

– точность определения связей между объектами (например, правильная
оценка идентичности или схожести);

– шум в данных — наличие ошибок, пропусков или несовершенных изме­
рений;

– изменчивость данных — добавление, удаление или изменение характе­
ристик объектов и связей в динамике времени.
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Оценка структурной согласованности осуществляется с использованием
различных метрик качества кластеризации, таких как однородность, полнота, ин­
декс Рэнда с поправкой на случайность, оценка Фаулкса­Мэллоуза и других по­
казателей [9—13]. Эти метрики позволяют количественно определить, насколько
хорошо фактическая структура групп соответствует ожидаемому разбиению.

В контексте задач динамичного формирования групп объектов задача по­
вышения структурной согласованности заключается не только в построении из­
начально качественной структуры, но и в её корректной адаптации при изменении
данных. Особенно важными становятся методы, позволяющие оперативно обна­
руживать и устранять нарушения согласованности — например, разрывы внутри
групп или появление нежелательных связей между различными группами. Таким
образом, понятие структурной согласованности связывает между собой вопросы
точности определения связей между объектами и организацию их в устойчивые
группы, обеспечивая основу для эффективной работы сложных информационных
систем в условиях больших динамичных данных.

1.4 Критерии и методы оценки согласованности структуры

Оценка степени структурной согласованности является важной частью за­
дач группировки объектов в информационных системах. Корректная оценка каче­
ства групп позволяет судить о надёжности сформированной структуры, выявлять
ошибки и принимать решения о необходимости её пересмотра или корректиров­
ки. Для количественного анализа структурной согласованности разработан ряд
критериев, основанных как на внутренних свойствах групп, так и на сопоставле­
нии полученного разбиения с эталонным. Основные критерии оценки согласован­
ности структуры включают:

– Однородность (Homogeneity) отражает степень, в которой все элементы
внутри одной группы принадлежат к одному истинному классу. Груп­
па считается идеально однородной, если все её элементы действительно
идентичны или схожи по целевому признаку. Однородность важна для
оценки внутреннего качества группировки.

– Полнота (Completeness) показывает, насколько полно все объекты, при­
надлежащие одному истинному классу, были собраны в одну группу. Вы­
сокая полнота означает, что практически нет ”разброса” идентичных объ­
ектов по разным группам.
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– V­мера (V­measure) — гармоническое среднее между однородностью и
полнотой. Этот показатель позволяет одновременно учитывать стремле­
ние к высокой внутренней чистоте групп и к полноте охвата объектов.

– Индекс Рэнда с поправкой на случайность (Adjusted Rand Index, ARI) из­
меряет степень совпадения между истинным разбиением объектов и по­
лученным разбиением, учитывая вероятность случайных совпадений.

– Оценка Фаулкса­Мэллоуза (Fowlkes–Mallows Index, FMI) также учитыва­
ет пары объектов и оценивает, насколько пара объектов, помещённая в
одну группу в одном разбиении, помещена в ту же группу в другом раз­
биении.

Каждая из этих метрик имеет свою область применимости и особенности
интерпретации. Например, однородность может быть высокой даже при низкой
полноте (если группы содержат очень мало объектов), а высокая полнота может
сопровождаться низкой однородностью в случае объединения слишком разных
объектов.

Методы расчёта критериев основаны на анализе распределения объектов по
группам, числа пар объектов, сгруппированных вместе или раздельно в истинном
и полученном разбиениях, сопоставления структуры связей между объектами с
ожидаемым паттерном связности.

Для динамичных систем особую важность приобретает оценка стабильно­
сти структурной согласованности во времени. Это требует не только анализа ка­
чества разбиения в фиксированный момент, но и отслеживания изменений согла­
сованности при поступлении новых данных или обновлении характеристик объ­
ектов.

В литературе также рассматриваются подходы к восстановлению или улуч­
шению структурной согласованности, включая методы перепроверки сомнитель­
ных связей, перестройки локальных участков графа или пересчёта кластерной
структуры с использованием дополнительных источников данных [7; 14]. Таким
образом, критерии и методы оценки согласованности структуры обеспечивают
необходимую основу для формального анализа качества группировки объектов и
позволяют диагностировать текущую структуру.
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1.5 Постановка задачи динамичного формирования согласованных групп
объектов

В условиях постоянно изменяющихся данных классическая задача форми­
рования групп идентичных объектов усложняется динамичностью самой систе­
мы. Появление новых объектов, удаление существующих, изменение характери­
стик—всё это требует от алгоритмов группировки не только способности строить
качественные группы на начальном этапе, но и механизмов поддержания согла­
сованности структуры на протяжении жизненного цикла системы.

Постановка задачи заключается в следующем. Имеется множество объек­
тов:

It = {i1, i2, . . . , iNt
},

существующее на момент времени t, где каждый объект характеризуется множе­
ством признаков:

Dt = {di1, di2, . . . , diNt
}.

Требуется для каждого момента времени t построить разбиение объектов на груп­
пы:

Ct = {c1, c2, . . . , cnt
},

такое, что:
– внутри каждой группы ck находятся объекты, идентичные или практиче­
ски идентичные по заданной мере семантической близости;

– между различными группами отсутствуют связи, свидетельствующие об
идентичности объектов;

– структура групп устойчива к локальным ошибкам в данных и может быть
адаптивно обновлена при изменении характеристик объектов или поступ­
лении новых данных.

Основные особенности задачи:
– Отсутствие априорного знания о числе групп. Количество групп nt за­
ранее неизвестно и должно определяться автоматически на основе струк­
туры данных.

– Динамика системы. Набор объектов и их характеристики изменяются
во времени, что требует переоценки группировок без полного пересчёта
всех данных.
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– Необходимость высокой вычислительной эффективности. Методы
должны обеспечивать приемлемое время обработки при больших объё­
мах данных.

– Учёт ошибок и шумов. Ошибочные связи между объектами и неточно­
сти характеристик неизбежны и должны учитываться в моделях.

– Поддержание высокой структурной согласованности. Критерии одно­
родности и полноты должны оставаться на высоком уровне в процессе
эволюции данных.

Формальная цель заключается в построении алгоритма, который, используя
модель оценки семантической близости объектов и алгоритмы кластеризации на
графах, обеспечивает:

– высокую однородность внутри групп;
– высокую полноту объединения идентичных объектов;
– масштабируемость обработки больших данных;
– устойчивость к изменениям структуры системы.
В рамках данной работы в качестве решения рассматривается подход, осно­

ванный на сочетании:
– бинарной классификации пар объектов для оценки степени их идентич­
ности;

– алгоритма распространения меток (Label Propagation Algorithm, LPA) для
эффективного формирования групп в графе бинарных связей;

– модифицированных процедур калибровки точности для повышения каче­
ства кластеризации в условиях наличия ошибок в данных.

Таким образом, сформулированная задача требует интеграции методов ма­
шинного обучения, графовых алгоритмов и динамического управления структу­
рой данных для достижения высокой степени интероперабельности и согласован­
ности групп в условиях работы с большими динамическими данными.

Выводы к первой главе

В данной главе рассмотрены теоретические положения, лежащие в осно­
ве задачи динамичного формирования групп объектов по принципу идентично­
сти. Было проанализировано понятие интероперабельности в широком смысле,
а также выделено ключевое направление — структурная интероперабельность,
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как наиболее релевантная категория задач по организации взаимодействий меж­
ду объектами в условиях больших данных.

Показано, что важнейшей характеристикой структуры системы является её
согласованность — способность формировать устойчивые, однородные группы с
минимальным количеством ошибок и шумов. Структурная согласованность рас­
сматривается как необходимое условие эффективного функционирования распре­
делённых и динамичных систем, где объекты постоянно изменяются, добавляют­
ся или удаляются.

Были подробно рассмотрены основные критерии и методы оценки качества
группировок: однородность, полнота, V­мера и другие. Эти меры качества позво­
ляют формально оценить степень близости текущей структуры к идеальной.

В завершение была сформулирована задача динамичного формирования со­
гласованных групп: для множества объектов с изменяющимися характеристика­
ми требуется построить устойчивую кластерную структуру, способную адапти­
роваться к изменениям и обеспечивать высокое качество группировки.

Рассмотренные в первой главе теоретические положения служат основой
для последующего анализа методов оптимизации вычислений. Результаты главы
опубликованы в работе [15].
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Глава 2. Определения схожести объектов и проблемы вычисления признаков
в задаче динамичного формирования групп

2.1 Задача оценки схожести и идентичности

Одним из основных этапов в задаче динамичного формирования групп объ­
ектов по принципу идентичности является построение механизма оценки схоже­
сти между объектами. Эта задача возникает в различных прикладных областях: от
объединения товарных предложений в маркетплейсах до слияния дублирующих­
ся записей в реестрах и базах данных, сопоставления событий в логах, иденти­
фикации сущностей в текстах и других. На интуитивном уровне под идентично­
стью понимается факт того, что два объекта описывают одну и ту же сущность в
предметной области. В информационных системах идентичность не всегда может
быть установлена напрямую—чаще всего приходится делать вывод о ней косвен­
но, на основании набора признаков, которые объекты имеют. Поэтому первым
этапом становится построение численной меры схожести, позволяющей опреде­
лить, насколько близки два объекта друг к другу. Эта мера, по сути, является при­
ближённой оценкой вероятности их идентичности.

В общем случае представим описания каждого элемента в виде набора из
q признаков­атрибутов: di = (pi1, · · · , p

i
q). Сравнивая любые два элемента этого

множества на основе этих признаков, можно оценить их сходство. Для двух эле­
ментов j и k, сходство которых устанавливается на основеm числовых признаков
{pq}, функция сходства может выглядеть так [3; 4]:

F (j, k) = 1−
1

m

q
∑

z=1

wz

|pjz − pkz |

max
j,k

∣

∣

∣
p
j
z − pkz

∣

∣

∣

,

где 0 ≤ wz ≤ 1 – вес z­го признака, а max
j,k

∣

∣pjz − pkz
∣

∣ – диапазон значений z­го

признака. ФункцияF принимает значения из [0,1] так, чтоF = 1 – это абсолютное
сходство элементов j и k, а F = 0 – абсолютное различие. На основе значений
функции F (j, k) строится матрица схожести:

M ∈ R
N×N , Mjk = F (j, k),

гдеN —общее число объектов. Эта матрица симметрична, но в большинстве при­
кладных случаев — разреженная: схожесть рассчитывается лишь для пар, про­
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шедших предварительный отбор (например, по граничным значениям категори­
альных признаков или предварительным эвристикам). Это позволяет существен­
но снизить вычислительные затраты на построение матрицы. Для принятия ре­
шения о том, считать ли пару объектов идентичной, используется порог τ ∈ [0,1].
Если

F (j, k) ≥ τ,

то объекты j и k считаются идентичными, и между ними устанавливается связь.
Этот шаг преобразует матрицу схожести в граф, где вершины— объекты, а рёбра
отражают идентичные (по мнению модели) пары. Выбор значения τ имеет клю­
чевое значение. Слишком высокий порог ведёт к высокой точности, но низкой
полноте — идентичные объекты могут остаться несвязанными. Слишком низкий
— к высокой полноте, но с ростом ложных объединений. Порог подбирается в
процессе оптимизации ключевой меры качества (Precision или Recall) с исполь­
зованием размеченной выборки.

На практике возможны различные ошибки, связанные с погрешностями
оценки схожести:

– Ложноположительные ошибки (false positives)—объединение неиден­
тичных объектов в одну группу. Это приводит к снижению однородности
кластеров.

– Ложноотрицательные ошибки (false negatives)—нераспознание иден­
тичных объектов как пары. Это снижает полноту группировки.

Частота и распределение таких ошибок оказывают существенное влияние на по­
следующую кластеризацию и её согласованность.

Возможны альтернативные подходы к построению функции F (j, k), в том
числе:

– Обучаемые модели — логистическая регрессия, градиентный бустинг,
нейросети, обучаемые на размеченных парах объектов;

– Эвристические правила — использование бизнес­логики или ручных
правил;

– Метрики векторов признаков—косинусная мера, расстояние Минков­
ского и другие.

Выбор конкретной функции зависит от доступных данных, требований к скоро­
сти, интерпретируемости и возможности масштабирования.
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Таким образом, задача оценки схожести между объектами является осново­
полагающей в рамках более широкой задачи формирования согласованных групп.
Именно на этом этапе формируются связи, которые в дальнейшем будут преоб­
разованы в кластеры с использованием графовых алгоритмов. Качество, устойчи­
вость и масштабируемость меры схожести в значительной степени определяют
успешность всей системы группировки.

2.2 Методы вычисления схожести по признакам

Оценка схожести между объектами лежит в основе всей процедуры их
группировки по принципу идентичности. От того, насколько корректно постро­
ена функция сходства, зависит точность формирования кластеров, устойчивость
групп кшумам, а также способность алгоритма адаптироваться к изменениям дан­
ных.Поскольку объекты в реальных системах, как правило, описываются набором
признаков различной природы, задача сводится к построению меры близости в
признаковом пространстве. В этом разделе рассматриваются существующие под­
ходы к определению схожести между объектами по признакам, даётся их класси­
фикация, сравнительный анализ, а также обсуждаются их применимость и огра­
ничения в условиях динамичного формирования групп.

Метрики и функции расстояния — методы данной группы базируются на
представлении объектов в виде векторов признаков и применении к ним стан­
дартных метрик. Они особенно распространены при работе с числовыми или би­
нарными признаками. Примеры наиболее часто используемых метрик:

– Евклидово расстояние:

d(i, j) =

√

√

√

√

m
∑

k=1

(pik − pjk)2,

используется при равнозначных признаках и одинаковом масштабе.
– Манхэттенское расстояние:

d(i, j) =
m
∑

k=1

|pik − pjk|,

более устойчиво к выбросам, чем евклидово.
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– Косинусное сходство:

S(i, j) =
⟨di, dj⟩

∥di∥ · ∥dj∥
,

применяется, когда важна форма распределения признаков, а не абсолют­
ные значения.

– Jaccard­индекс—особенно эффективен для бинарных признаков и мно­
жества категорий.

– Hamming­дистанция—используется при сравнивании битовых строк и
категориальных признаков с фиксированными наборами значений.

Метрики просты, интерпретируемы и легко реализуемы. Однако они предполага­
ют наличие нормализованных, числовых признаков и равнозначность их вклада.
При нарушении этих предпосылок результат может быть неадекватным.

Во многих прикладных задачах используются заранее заданные правила,
отражающие специфику предметной области. Например, в системах товарного
сопоставления может применяться правило: ”если название, производитель и
объём совпадают, а цена отличается не более чем на 10%, объекты считаются
идентичными”. Такие подходы легко реализуются, обладают высокой интерпре­
тируемостью, позволяют жёстко контролировать ошибки. Недостатки эвристик:
плохо адаптируются к изменяющимся данным, плохо масштабируются — с ро­
стом числа признаков экспоненциально растёт сложность логики, низкая полнота
— многие идентичные объекты могут не попадать под правила. Эвристики осо­
бенно уязвимы в условиях шумных и неполных данных, а также в задачах, где
трудно формализовать правила без привлечения статистики.

Современные подходы всё чаще используют обучение моделей на размечен­
ных парах объектов. Каждый объект описывается набором признаков, а модель
обучается различать пары: match (идентичны) и non­match (различны). Примеры
таких моделей:

– логистическая регрессия—интерпретируема, хорошо работает на линей­
но разделимых данных;

– градиентный бустинг (XGBoost, CatBoost) — способен учитывать нели­
нейные зависимости и эффективно работать с категориальными призна­
ками;
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– нейронные сети — позволяют обрабатывать векторные представления
объектов, тексты и сложные зависимости;

– двухбашенные архитектуры — обучаются на парных сравнениях и воз­
вращают меру схожести.

Преимущества обучаемых моделей: высокая точность и адаптивность, возмож­
ность автоматического определения важности признаков, устойчивость к шумам
при достаточном объёме данных. Недостатки: необходимость размеченной обуча­
ющей выборки, переобучение на частные случаи, сложность интерпретации (осо­
бенно у нейросетей), высокая стоимость поддержки в условиях изменяющихся
данных. Особенно критично это в системах, где структура и объёмы данных ме­
няются ежедневно: модель быстро теряет актуальность, а переобучение требует
автоматизации и вычислительных ресурсов.

На практике часто используются комбинации перечисленных подходов [14;
16; 17]: эвристика как фильтр кандидатов, модель для ранжирования и отбора N
наиболее перспективных кандидатов (при необходимости), обученная модель би­
нарной классификации. Такие методы позволяют добиться высокого качества при
разумных затратах, особенно если грамотно разделены этапы отбора кандидатов
и проверки отобранных кандидатов.

2.3 Роль аналитических запросов в формировании признаков

В предыдущих разделах рассматривались методы оценки схожести между
объектами, основанные на признаковом описании. Однако для большинства ре­
альных задач критическим этапом является не только выбор функции схожести,
но и построение самих признаков. Во многих случаях признаки не являются непо­
средственно хранимыми в исходных данных, а формируются путём агрегации,
фильтрации и объединения событий, связанных с объектом. Это делает задачу
формирования признаков тесно связанной с выполнением аналитических запро­
сов, в первую очередь — SQL­запросов к хранилищам событий и логов.

Рассмотрим ряд примеров признаков, часто используемых в системах, где
требуется сопоставление или группировка объектов:

– Частотные признаки: общее число событий, связанных с объектом (на­
пример, количество покупок товара, количество просмотров, количество
запросов к API).
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– Временные признаки: дата первого и последнего события, среднее вре­
мя между событиями, сезонность активности.

– Агрегаты по параметрам: средняя цена покупок, медианное значение
определённого параметра, количество уникальных пользователей, взаи­
модействовавших с объектом.

– Поведенческие профили: доля событий определённого типа, стабиль­
ность активности.

– Групповые признаки: статистики по отношению к другим объектам (на­
пример, насколько цена объекта выбивается из среднего по категории).

Получение каждого такого признака требует выполнения агрегатных операций по
подмножеству большого объёма данных. Как правило, события хранятся в распре­
делённых хранилищах, что делает выполнение даже одного аналитического за­
проса ресурсоёмким. В динамично меняющейся системе, где объекты и события
появляются или обновляются постоянно, возникает необходимость регулярного
пересчёта признаков.

Главная особенность динамичной среды заключается в том, что признаки
объектов не являются статичными. Изменения в событиях (например, новый за­
каз, обновление карточки, регистрация пользователя) могут повлиять на признаки
нескольких объектов. Это создаёт несколько проблем:

– Частота пересчёта: признаки должны быть пересчитаны при каждом
значимом изменении данных — в идеале в реальном времени или с ми­
нимальной задержкой.

– Объём данных: даже один запрос на пересчёт признаков для одного объ­
екта может требовать чтения и агрегации миллионов строк событий.

– Нагрузка на систему: массовый пересчёт признаков по многим объек­
там создаёт значительную нагрузку на базу данных или аналитическое
хранилище.

– Задержка в обновлении модели: если признаки обновляются медленно,
модель начинает работать с устаревшими данными, что снижает точность
оценки схожести.

В совокупности эти факторы приводят к тому, что именно процесс формирования
признаков становится бутылочным горлышком в задаче динамичного формиро­
вания групп. Даже при наличии качественной модели оценки схожести, своевре­
менное получение входных данных для неё оказывается затруднено. Существуют
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различные направления, позволяющие частично смягчить вычислительные затра­
ты:

– использование материализованных представлений и предварительных
агрегаций (но они требуют дополнительного места и усложняют актуа­
лизацию);

– кэширование признаков с частичным обновлением;
– ограничение глубины истории для агрегаций;
– переход от SQL­кластеров к специализированным системам потоковой
аналитики (например, Apache Flink, Apache Druid).

Однако каждое из решений связано с компромиссами по точности, сложности
поддержки или затратам на инфраструктуру. Кроме того, в некоторых системах
(например, построенных на классических СУБД) невозможно полностью уйти от
SQL­запросов. Это делает задачу оптимизации и ускорения аналитических запро­
сов принципиально важной.

Выводы ко второй главе

Указанные выше проблемы являются предметом рассмотрения в следую­
щей главе, где описаны исследованные методы ускорения аналитических запро­
сов и сделаны выводы об их применимости в контексте динамичного формирова­
ния групп идентичных объектов. Несмотря на то, что не удалось получить универ­
сально применимое решение, анализ существующих подходов позволил точнее
сформулировать требования к архитектуре системы и уточнить границы приме­
нимости предложенного метода.
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Глава 3. Ускорение выполнения аналитических SQL­запросов как элемент
преобразования данных

Цель данной главы — исследовать возможности повышения эффективно­
сти выполнения аналитических запросов, применяемых для вычисления призна­
ков. Рассматриваются существующие подходы к оптимизации запросов в цен­
трализованных строчных СУБД и предлагается их доработка для применения к
массово­параллельным колоночным СУБД. Оцениваются их пределы примени­
мости, а также предлагаются практические методики, основанные на машинном
обучении и профилировании нагрузки. Полученные результаты позволяют обос­
новать архитектурные ограничения последующих этапов работы и определить
классы задач, в которых методы динамичного формирования групп объектов мо­
гут быть реализованы эффективно. В рамках настоящего исследования экспери­
менты проводились как на СУБД с открытым исходным кодом (PostgreSQL), так и
на промышленной проприетарной СУБД (GaussDB), что позволило оценить при­
менимость подходов в условиях, приближенных к реальной эксплуатации.

3.1 Анализ существующих подходов к оптимизации запросов

3.1.1 Традиционные методы

На рисунке 3.1 представлен традиционный [18] метод, базирующийся на
расчёте стоимостных оценок. Для формирования оптимального плана выполне­
ния запроса оптимизатор анализирует множество возможных вариантов соедине­
ния, применяя, в частности, алгоритмы динамического программирования. Опи­
раясь на предварительно вычисленные оценки кардинальности, стоимостная мо­
дель выбирает наиболее эффективный вариант среди семантически равнозначных
планов. В идеальном случае, при абсолютно точных оценках кардинальности и

оценка 
кардинальностей

модель 
стоимости

перечислитель 
пространства 

планов

SELECT  *
     FROM Emp, Pos, Sal
     WHERE Emp.rank = Pos.rank
     AND Pos.code = Sal.code

Emp Pos

SalNL

HJ

Рисунок 3.1 — Архитектура традиционного оптимизатора запросов.

корректной стоимостной модели, данная архитектура обеспечивает выбор наи­
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лучшего плана запроса. Однако на практике вычисление кардинальности часто
основывается на упрощённых допущениях, таких как равномерное распределе­
ние данных и отсутствие зависимостей между атрибутами. В реальных базах дан­
ных эти предположения обычно не выполняются, что может приводить к неопти­
мальным, а в некоторых случаях и к крайне неэффективным планам выполне­
ния запросов. Компонент оценки кардинальности (CardEst) является ключевым
элементом в процессе оптимизации запросов [19]. Его основная задача заключа­
ется в прогнозировании количества строк для всех промежуточных результатов
запроса, что позволяет оптимизатору выбирать наиболее эффективные операции
соединения. Качество итогового плана выполнения запроса напрямую зависит от
точности оценок, предоставляемых CardEst. CardEst представляет собой важней­
ший компонент СУБД, что объясняет пристальный интерес к этой технологии со
стороны исследователей [19; 20] и корпоративных разработчиков [21—23]. Со­
временные СУБД с открытым исходным кодом и коммерческие СУБД в основном
используют один из двух традиционных методов CardEst: гистограммы [24—29]
в PostgreSQL [30] и SQL Server [31], сэмплирование [32—36] вMySQL иMariaDB
[37].

В научных публикациях CardEst чаще всего рассматривается как стати­
стическая проблема. Рассмотрим таблицу T , содержащую k атрибутов A =

A1, A2, . . . , Ak. Здесь T может представлять как самостоятельную реляционную
таблицу, так и промежуточный результат соединения нескольких таблиц. В дан­
ном исследовании предлагается исходить из допущения, что любой атрибут Ai

(где 1 ≤ i ≤ k) принадлежит к одному из двух типов: категориальный (его зна­
чения допускают целочисленное кодирование) или непрерывный, с областью до­
пустимых значений Di. Любой запрос выбора Q к таблице T может быть фор­
мализован в стандартном виде: Q = {A1 ∈ R1 ∧ A2 ∈ R2 ∧ · · · ∧ An ∈ Rn},
где Ri ⊆ Di определяет ограничивающее условие запроса для атрибута Ai. Без
ограничения общности Ri = Di, если Q не накладывает ограничений на Ai. Обо­
значим через Card(T,Q) истинную кардинальность ­ точное число записей в T ,
удовлетворяющих всем условиям Q. Суть задачи CardEst заключается в макси­
мально точном приближении значения Card(T,Q) без фактического выполнения
запроса Q к таблице T .
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Гистограммы. В системах, использующих для оценки кардинальности
подход на основе гистограмм, мощность базовых таблиц оценивается с помо­
щью гистограмм (квантильная статистика), наиболее распространённых значений
с их частотами и кардинальности областей определения (количества различных
значений). Эта статистика по атрибутам вычисляется заранее с использованием
выборки таблицы. Для сложных предикатов, где нельзя применять гистограммы,
система прибегает к специальным методам, которые теоретически не обоснова­
ны. Чтобы объединить конъюнктивные предикаты для одной и той же таблицы,
СУБД просто предполагает независимость и перемножает селективности отдель­
ных оценок.

Полученные размеры объединений двух таблиц оцениваются по формуле

|T1 ▷◁x=y T2| =
|T1||T2|

max(dom(x), dom(y))
, (3.1)

где T1 и T2 ­ произвольные таблицы, а dom(x) ­ мощность области определения
атрибута x, то есть количество различных значений x.

Сэмплирование. В системах, использующих для оценки кардинальности
подход на основе сэмплирования, мощность базовых таблиц оценивается с по­
мощью подвыборок. Для набора данных также называемого «популяцией», и за­
проса с неизвестным числовым результатом, который мы хотим оценить, сначала
случайным образом выбирается небольшое количество элементов из набора дан­
ных. Затем по выборке вычисляется несколько статистических данных, таких как
среднее по выборке и дисперсия. Наконец, эта статистика используется для оцен­
ки значения результата запроса и определения границ точности оценки.

Задача оптимизатора (планировщика) — построить наилучший план вы­
полнения. Один и тот же SQL­запрос может быть выполнен множеством раз­
личных способов, гарантируя при этом идентичные результаты. Когда вычис­
лительные затраты остаются приемлемыми, оптимизатор запросов анализирует
все возможные варианты выполнения, выбирая среди них наиболее эффектив­
ный по времени. На первом этапе оптимизатор генерирует планы сканирования
для каждого отдельного отношения (таблицы), участвующего в запросе. Доступ­
ные варианты планов определяются наличием индексов в соответствующих от­
ношениях. Поскольку последовательное сканирование (SeqScan) возможно для
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любой таблицы, этот вариант всегда включается в множество рассматриваемых
планов. Предположим, для отношения создан индекс и запрос содержит ограни­
чение <отношение.атрибутОПЕРАТОР константа>. Если окажется, что <отно­
шение.атрибут> совпадает с ключом индекса­B­дерева и <ОПЕРАТОР>—один
из операторов, входящих в класс операторов индекса, создаётся ещё один план, c
использованием индекса­B­дерева для чтения отношения. Если находятся другие
индексы, ключи которых соответствуют ограничениям запроса, могут добавить­
ся и другие планы. Для индексов генерируются планы сканирования (IndexScan)
в тех случаях, когда их порядок сортировки совпадает с условием ORDER BY
(при его наличии) или когда этот порядок может быть полезен для последующего
соединения слиянием (Merge Join/MJ).

Когда запрос предполагает соединение нескольких отношений, после фор­
мирования всех возможных планов сканирования для отдельных таблиц система
переходит к анализу стратегий соединения. Доступны три основных метода:

– Соединение вложенными циклами (Nested Loop/NL) предполагает много­
кратное сканирование правого отношения для каждой строки левого от­
ношения. Несмотря на простоту реализации, данный подход может ока­
заться ресурсоёмким. Однако его эффективность значительно повышает­
ся, если для правого отношения доступно сканирование по индексу, когда
значения из левого отношения выступают в качестве ключей поиска.

– Соединение слиянием (Merge Join/MJ) требует предварительной сорти­
ровки обоих отношений по атрибутам соединения. После этого происхо­
дит параллельное сканирование обоих отношений с объединением соот­
ветствующих строк. Этот метод привлекателен однократным сканирова­
нием каждого отношения. Необходимый порядок сортировки может быть
достигнут либо явной операцией сортировки, либо использованием ин­
декса по ключу соединения.

– Соединение по хешу (Hash Join/HJ) начинается с построения хеш­
таблицы по атрибутам соединения правого отношения. Затем левое от­
ношение сканируется, и для каждой строки вычисляется хеш­ключ для
поиска соответствий в подготовленной хеш­таблице. Этот метод особен­
но эффективен при работе с большими объёмами данных.

Когда количество таблиц в запросе не превышает заданного порога, система
применяет стратегию практически полного перебора для нахождения оптималь­
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ного порядка соединений. В процессе планирования особый приоритет отдаётся
соединениям между таблицами, для которых явно указаны условия соединения в
предложении WHERE (в форме ограничений типа <таблица1.атрибут1 = таб­
лица2.атрибут2>). Соединения между таблицами без явных условий вWHERE
рассматриваются лишь в крайнем случае ­ когда для некоторой таблицы отсут­
ствуют какие­либо условия соединения с другими таблицами. Для каждой допу­
стимой пары таблиц планировщик анализирует все возможные варианты выпол­
нения соединения, выбирая среди них наиболее эффективный согласно внутрен­
ним оценкам стоимости. Такой подход обеспечивает нахождение качественного
плана выполнения даже при ограниченном переборе вариантов. Когда число таб­
лиц в запросе становится больше установленного предела, порядок соединений
определяется с помощью эвристик на основе генетического алгоритма. Осталь­
ные этапы построения плана остаются без изменений. Итоговое дерево плана
включает узлы сканирования (индексного или полного для исходных таблиц) и
при необходимости узлы соединений трёх типов: вложенными циклами, слияни­
ем или хешированием. Оптимизатор при оценке планов принимает во внимание
вычислительные ресурсы, необходимые для выполнения запроса.

Стоимость — это внутренний числовой показатель, представляющий рас­
четное использование ресурсов для плана. Стоимость зависит от запроса в среде
оптимизатора. Для оценки стоимости оптимизатор учитывает следующие факто­
ры:

1. Системные ресурсы, в том числе расчетный ввод­вывод, ЦП и память.
2. Расчетное количество возвращённых строк (количество элементов).
3. Размер исходных наборов данных.
4. Распределение данных.
5. Структуры доступа.
Стоимость соединения представляет собой комбинацию индивидуальных

затрат на доступ двух соединяемых наборов строк, а также стоимость операции
соединения.

3.1.2 Учёт особенностей GaussDB

GaussDB — это распределенная база данных, использующая архитек­
туру массово­параллельной обработки и поддерживающая колоночное хране­
ние данных. Из­за колоночного хранения стандартные типы чтения данных
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(SeqScan и IndexScan) здесь не применимы, их заменяет колоночное считывание
(CStoreScan), а соединение слиянием становится в принципе невозможным. Ос­
новное назначение—выполнение аналитических запросов, подразумевающее со­
единение большого числа крупных таблиц. ПоэтомуNestLoop практически всегда
является неоптимальным выбором, и его просто отключают. Из всех стратегий
соединения таблиц остаётся только одна — HashJoin.

Также распределённость данных делает невозможным производить соеди­
нение таблиц сразу. Изначально база данных распределена по какому­то ключу.
Если соединение таблиц происходит по ключам, отличным от ключа партициро­
вания, требуется перераспределить данные, что делается одним из двух способов:

1. Broadcast — пересылает данные выбранной таблицы по всем дата­нодам
(эффективно для маленьких таблиц).

2. Redistribute — пересылает данные выбранной таблицы по конкретным
дата­нодам, что требует дополнительных вычислений, но работает быст­
рее первого для больших таблиц.

Если в условии соединения <where табл1.атр1=табл2.атр2> ни атр1, ни
атр2 не являются ключом изначального распределения данных, то нужно ли­
бо произвести Broadcast любой из двух таблиц, либо Redistribute обеих. Если
же данные распределены по одному из ключей соединения, то вариант с двумя
Redistribute заменяется на Redistribute второй таблицы.

3.2 Методы повышения эффективности выполнения

В последние годы исследователи в области баз данных активно изучают
применение нейросетевых подходов для модернизации оптимизаторов запросов.
Основное направление этих работ связано с заменой стандартных компонентов
оптимизатора обученными моделями. В частности, такие системы как DQ [38]
и ReJOIN [39] применяют методы обучения с подкреплением, комбинируя их
с классическими стоимостными функциями, что позволяет автоматически вы­
являть эффективные стратегии поиска и анализировать пространство вариантов
соединения. Результаты исследований демонстрируют, что подобные обученные
стратегии могут превосходить традиционные эвристические подходы при исполь­
зовании той же стоимостной функции. Однако следует отметить, что помимо ос­
новной стоимостной модели, данные системы продолжают использовать эври­
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стические методы для оценки кардинальности, выбора физических операторов
и определения оптимальных индексов.

Другие подходы демонстрируют, как можно использовать машинное обу­
чение для получения более точных оценок кардинальности. Однако ни один из
них не демонстрирует, что их улучшенные оценки количества элементов на са­
мом деле приводят к лучшим планам выполнения запросов. Относительно лег­
ко улучшить среднюю ошибку оценок количества элементов, но гораздо сложнее
улучшить оценки для случаев, которые фактически улучшают планы запросов.

Важно отметить, что в отличие от оптимизации порядка соединений, выбор
конкретных алгоритмов соединения (таких как хеш­соединение или сортировка
слиянием) и определение оптимальных индексов не могут основываться исклю­
чительно на оценках кардинальности. Исследование SkinnerDB [40] продемон­
стрировало потенциал применения обучения с подкреплением для адаптивных
стратегий обработки запросов, однако такая методика требует специализирован­
ной системы выполнения запросов, способной к динамической адаптации.

Исследование, представленное в работе ”Neo: A Learned Query Optimizer”
[41], демонстрирует, что данный интеллектуальный оптимизатор запросов дости­
гает сравнимой или превосходящей производительности относительно ведущих
коммерческих решений (Oracle и Microsoft). Система Neo функционирует следу­
ющим образом:

1. Использует набор правил преобразования запросов для сохранения се­
мантической корректности.

2. Автоматически обучается принимать решения относительно оптималь­
ного порядка соединений, а также выбора алгоритмов соединения и под­
ходящих индексов.

Для оптимизации этих решений Neo применяет как метод обучения с учи­
телем, так и механизм обратной связи. Данный подход позволяет системе адапти­
роваться к конкретному экземпляру базы данных, принимая решения на основе
фактических показателей времени выполнения запросов.

В данной работе исследовалась применимость многих из этих подходов к
массово­параллельной СУБД. Опробованы как методы, основанные на предска­
зании кардинальности, так и на основе предсказания стоимостей.
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3.2.1 Подходы к улучшению оценки кардинальности

Современные подходы к оценке кардинальности, использующие машинное
обучение, направлены на построение моделей, непосредственно прогнозирую­
щих значение Card(T,Q) для произвольного запроса Q. Наиболее продвинутые
реализации данной концепции применяют сложные алгоритмы, включая глубо­
кие нейронные сети и ансамбли на основе градиентного бустинга, что позволяет
существенно повысить точность оценок.

В отличие от запросо­зависимых методов, подходы, основанные на модели­
ровании данных, не требуют анализа конкретных запросов. В данной парадигме
каждый кортеж таблицы T рассматривается как точка в пространстве признаков,
соответствующая совместному распределению P (T (A)) = P (T (A1, A2, ..., An)).
Для заданного запросаQ с условиями Ai ∈ Ri вероятность P (T (Q)) = P (T (A1 ∈

R1, ..., An ∈ Rn)) позволяет выразить кардинальность как Card(Q, T ) =

P (T (Q)) · |T |. Таким образом, ключевая задача сводится к точной аппроксима­
ции функции плотности P (T (A)) для целевой таблицы.

1. Адаптивный оптимизатор запросов AQO [42] предлагает модификацию
стандартной формулы расчета селективности, вводя индивидуальные
коэффициенты для каждого простого условия. Эти коэффициенты под­
бираются с помощью машинного обучения (метод k­ближайших сосе­
дей) таким образом, чтобы вычисленная селективность максимально со­
ответствовала реальной селективности, наблюдаемой AQO при преды­
дущих выполнениях запросов. Для этого система сохраняет два типа дан­
ных: селективность условий, предсказанную штатным планировщиком,
и фактическую селективность, полученную после выполнения запросов.
Особенность AQO заключается в анализе условий с точностью до кон­
стантных значений. Такой подход снижает сложность задачи обучения,
при этом в большинстве случаев не приводит к потере информации ­ хотя
AQO не учитывает конкретные значения констант, он работает с наблю­
даемой селективностью условий. Исключение составляют случаи, когда
планировщик использует фиксированные оценки по умолчанию, напри­
мер:

– для условий вида ”выражение1 = выражение2” всегда применя­
ется селективность 0.005.
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– для условий ”выражение1 > выражение2”используется значение
1/3.

Среди всех рассмотренных в работе подходов AQO является наиболее
простым как в реализации, так и в концептуальном плане. Более того,
этот метод уже интегрирован в PostgreSQL и может быть активирован
через настройки системы. Однако проведенные тесты для OLAP­систем
показали, что при использовании исключительно hash­join (который до­
минирует в аналитических запросах как наиболее эффективный метод)
применение AQO не дает значимого ускорения выполнения запросов.

2. Naru (Neural Relation Understanding) [22] – современный оценщик кар­
динальности, который полностью фиксирует корреляции между всеми
столбцами одной таблицы, используя глубокую авторегрессионную мо­
дель. Имея таблицу T , авторегрессионная модель θ принимает кортеж
x ∈ T в качестве входных данных и предсказывает условные распре­
деления вероятностей, {pθ(Xi|x<i)}, каждое из которых является одно­
мерным распределением по i­ому столбцу (условие на всех предыду­
щих значениях столбца x. Вероятность входного кортежа затем прогно­
зируется как pθ(x) =

∏n
i=1 pθ(Xi = xi|x<i). Любая глубокая авторегрес­

сивная архитектура, например, Transformer, может создать экземпляр
этой структуры.
Naru является подходом на основе обучения без учителя. Он не требует
выполнения запросов для сбора обучающих данных, ему нужны только
сами данные конкретной БД. Хоть этот подход и имеет исходный код в
открытом доступе, в отличии от многих других, результаты статьи яв­
ляются скорее теоретическими, нежели практическими. Подход приме­
ним только к оценке кардинальности для запросов, использующих всего
1 таблицу, что делается достаточно качественно и традиционными ме­
тодами. Вклад этой статьи заключается скорее в отработке подхода на
основе авторегрессионных моделей к данному роду задач для дальней­
шего расширения на случай нескольких таблиц.

3. Метод NeuroCard [43] представляет собой многотабличное расшире­
ние подхода Naru, основанное на глубокой авторегрессионной моде­
ли. В его основе лежит декомпозиция совместной функции плотно­
сти вероятности (ФПВ) по цепному правилу: PT (A) = PT (A1) ·
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∏k
i=2 PT (Ai|A1,...,Ai−1), где каждая условная ФПВ параметризуется 4­

слойной нейронной сетью. Для совместного обучения таблиц использу­
ется единый автоэнкодер с маскированием. Оценка вероятности запроса
Q выполняется методом прогрессивной выборки из области определения
запроса.
Важное ограничение оригинального NeuroCard ­ поддержка только дре­
вовидных схем соединения. В экспериментах данного исследования с
циклическими схемами применялось разбиение на набор древовидных
подграфов с построением отдельной модели для каждого. Хотя метод де­
монстрирует высокую точность, его практическое применение сталкива­
ется с проблемами:

– Экспоненциальный рост числа подграфов с увеличением таб­
лиц.

– Высокие вычислительные затраты на инференс нейросетевой
модели.

Эти ограничения делают текущую реализацию NeuroCard непригодной
для интеграции в промышленные СУБД, несмотря на теоретическую
точность подхода.

4. Метод Pessimistic CardEst [23] реализует принципиально иную парадиг­
му оценки кардинальности, ориентированную не на точное предсказа­
ние, а на построение гарантированной верхней оценки, всегда превыша­
ющей фактическое значение. В отличие от традиционных подходов, где
минимизируется ошибка предсказания, здесь оптимизируется строгость
верхней границы. Теоретическая основа метода базируется на аппара­
те условной энтропии для вывода оценок и использовании гиперграфов
для представления соединений, что позволяет оптимизировать вычисли­
тельную сложность. Авторы формализовали пространство компромис­
сов между точностью оценок и вычислительными затратами, обеспечи­
вая теоретическую основу для адаптивного управления этим балансом.
Однако практическое применение метода сталкивается с существенными
ограничениями: отсутствием поддержки циклических схем соединения
и необходимостью линейного объема дополнительной памяти в худшем
случае. Эти факторы, наряду с вычислительной сложностью, пока пре­
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пятствуют интеграции подхода в промышленные СУБД, несмотря на его
теоретическую строгость и математическую элегантность.

5. Метод FLAT [44], основанный на усовершенствованных сетях
факторизации­разделения­суммы­произведения (FSPN), предлагает
адаптивное разложение совместной плотности вероятности PT (A) с уче­
том степени зависимости между атрибутами. В отличие от классических
SPN, в FSPN вводится дополнительный узел факторизации, который
разделяет PT (A) на произведение PT (W ) · PT (H|W ), где W и H пред­
ставляют соответственно слабо и сильно коррелированные атрибуты.
При этом PT (W ) моделируется традиционным SPN­подходом, а для
PT (H|W ) применяется итеративное разбиение на подпространства до
достижения локальной независимостиH отW , после чего многомерная
ФПВ PT (H) аппроксимируется непосредственно с помощью многоли­
стового узла. Как и в SPN, структура FSPN и вычисление вероятности
запроса выполняются рекурсивно ­ в нисходящем и восходящем по­
рядке соответственно. Ключевое преимущество подхода заключается в
кластеризации данных по степени взаимной зависимости, что позволяет
использовать более простые и быстрые модели машинного обучения,
так как оставшиеся после факторизации зависимости хорошо описыва­
ются кусочно­линейными функциями. Кроме того, метод обеспечивает
быстрое обновление структуры при изменении данных.
FLAT представляет собой наиболее перспективное направление, соче­
тая более изощренный подход, чем AQO, с уже доказанной практиче­
ской применимостью (метод внедрен в одну коммерческую СУБД). Од­
нако отсутствие открытой реализации и значительная сложность само­
стоятельной разработки системы на момент проведения исследования не
позволили включить экспериментальную проверку этого подхода в дан­
ную работу.

3.2.2 Подходы на основе замены традиционной функции стоимости на
нейросетевую

Экспериментальные данные демонстрируют отсутствие прямой зависимо­
сти между точностью оценок кардинальности и производительностью запросов.
Как показано на рисунке 3.2, даже значительное улучшение точности оценок не
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Рисунок 3.2 — Сопоставление точности оценок кардинальности разными
методами и времени выполнения запросов.

гарантирует соответствующего ускорения выполнения запросов. В случае с под­
ходом MSCN (multi­set convolutional network) [45] десятикратное повышение
точности оценок кардинальности привело лишь к незначительному (в пределах
нескольких процентов) росту производительности. Более того, два других иссле­
дованных метода, обеспечившие 3­х и 2­х кратное улучшение точности соответ­
ственно, фактически продемонстрировали увеличение времени выполнения за­
просов.

Этот парадокс объясняется несколькими факторами:
– Стоимостная модель оптимизатора, являясь по сути эвристической, вно­
сит существенный вклад в конечный результат.

– Различия в реализации стоимостных функций между разными СУБД.
– Наличие дополнительных факторов, влияющих на производительность
(например, выбор физических операторов).

Таким образом, при разработке методов оценки кардинальности следует
учитывать, что повышение точности само по себе не является достаточным усло­
вием для улучшения производительности запросов. Необходим комплексный под­
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ход, учитывающий особенности конкретной стоимостной модели и других ком­
понентов оптимизатора запросов.

Осознание рисков, связанных с подходом, основанным исключительно на
повышении точности предсказания кардинальности, побудило исследовательское
сообщество, включая автора данного исследования, рассмотреть альтернативные
методы оптимизации запросов. Новое направление предполагает непосредствен­
ную оптимизацию планов выполнения, минуя этап оценки кардинальности. В
этом контексте особую популярность приобрели методы обучения с подкрепле­
нием (Reinforcement Learning, RL), что объясняется естественным соответствием
между процессом построения плана запроса и структурой RL­задач. Фундамен­
тальное сходство заключается в последовательном характере обоих процессов:
при построении плана запроса оптимизатор постепенно формирует оптималь­
ную последовательность соединений, аналогично тому, как RL­агент выстраи­
вает оптимальную стратегию действий. Это соответствие позволяет органично
интегрировать RL в традиционные оптимизаторы, заменяя стандартные алгорит­
мы перечисления на RL­стратегии. Такой подход обладает двумя существенными
преимуществами: во­первых, он сохраняет совместимость с классической архи­
тектурой оптимизаторов, а во­вторых, использует иерархическую структуру зада­
чи для значительного сокращения вычислительных затрат на обучение по срав­
нению с методами обучения с учителем. Для более глубокого понимания этой
аналогии рассмотрим классический алгоритм динамического программирования
”снизу вверх”для определения порядка соединений. Согласно принципу опти­
мальности, алгоритм последовательно строит оптимальные подпланы, начиная
с соединений двух таблиц и постепенно увеличивая их размер. Традиционно для
хранения промежуточных результатов используется справочная таблица, однако
этот подход сталкивается с проблемой экспоненциального роста вычислительной
сложности.МетодыRL предлагают решение этой проблемы, интерпретируя спра­
вочную таблицу как обучаемую модель, которая аккумулирует знания о качестве
различных подпланов и позволяет предсказывать эффективность потенциальных
решений без необходимости явного хранения всей статистики.

Подход из статьи «Learning to Optimize Join Queries With Deep Reinforcement
Learning» [38] (DQN –DeepQ­Network)— глубокая нейронная сеть, приближа­
ющая Q­функцию, — переосмысливает процесс оптимизации запросов как зада­
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чу предсказания. Анализируя стоимость ранее построенных подпланов, система
определяет, какое следующее действие с наибольшей вероятностью приведёт к
оптимальному решению. В основе подхода лежит Q­learning, который устанавли­
вает зависимость между выбором конкретного соединения таблиц и его ожидае­
мой эффективностью. Эта зависимость выводится на основе исторических дан­
ных о том, как подобные соединения влияли на итоговую производительность
всего плана запроса. По сути, алгоритм учится предсказывать ценность каждого
возможного соединения, опираясь на накопленный опыт выполнения запросов,
что позволяет избегать полного перебора всех вариантов.

1. Пример.
Авторы этой статьи сосредоточились на классической проблеме поиска
плана запроса, состоящего из бинарных операторов соединения и унар­
ных выборок, проекций и методов доступа. В качестве примера они ис­
пользовали следующую базу данных из трех отношений, обозначающих
заработную плату сотрудников:

Emp(id,name,rank) Pos(rank,title,code) Sal(code,amount)

Рассмотрим следующий запрос:

SELECT *
FROM Emp, Pos, Sal
WHERE Emp.rank = Pos.rank
AND Pos.code = Sal.code

Существуют различные варианты выполнения данного запроса. В каче­
стве примера можно выполнить запрос какEmp ▷◁ (Sal ▷◁ Pos), или как
Sal ▷◁ (Emp ▷◁ Pos).

2. Обучение с подкреплением.
Принцип оптимальности Беллмана не только лежит в основе оптимиза­
ции реляционных запросов, но и имеет глубокую связь с марковскими
процессами принятия решений (МППР)— классом стохастических про­
цессов, применяемых для формализации разнообразных задач, начиная
от поиска пути до планирования расписаний. В рамках модели МППР
агент осуществляет последовательный выбор действий, направленный
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на достижение определённой целевой функции, такой как увеличение
производительности или улучшение точности. Принимаемые решения
зависят от текущего состояния системы и, как правило, приводят к пе­
реходу в новое состояние. Марковский характер процесса означает, что
будущая эволюция системы полностью определяется её текущим состо­
янием. Математически МППР задаётся кортежем из пяти элементов:

⟨S,A, P (s,a), R(s,a), s0⟩

Здесь S представляет множество возможных состояний системы, A —
множество доступных агенту действий, s′ ∼ P (s,a) определяет вероят­
ностное распределение новых состояний при заданных текущем состоя­
нии и выбранном действии, а s0 задаёт распределение начальных состоя­
ний. Функция R(s, a) определяет величину вознаграждения за выполне­
ние действия a в состоянии s, служащую мерой эффективности агента.
Основная задача МППР заключается в поиске оптимальной стратегии
π : S → A, то есть функции, сопоставляющей состояния действиям и
максимизирующей ожидаемое суммарное вознаграждение:
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π E

[

T−1
∑

t=0

R(st, at)

]

при условии, что st+1 = P (st, at), at = π(st)

Как и в случае динамического программирования в комбинаторных зада­
чах, большинство МППР сложно решить точно. Стоит обратить внима­
ние, что жадное решение, жадно максимизирующее вознаграждение на
каждом шаге, может оказаться неоптимальным в долгосрочной перспек­
тиве. Как правило, аналитические решения таких проблем плохо масшта­
бируются во временном горизонте.

3. Марковская модель перечисления.
Рассмотрим стандартное перечисление соединений «снизу вверх», а за­
тем установим связь с марковским процессом принятия решений. Каж­
дый запрос на соединение можно описать как граф запросов, где ребра
обозначают условия соединения между таблицами, а вершины обознача­
ют таблицы. Любая реализация оптимизатора соединений динамическо­
го программирования должна отслеживать свой прогресс: что уже было
сделано в конкретном подплане (какие отношения уже были объедине­
ны и какие варианты осталось «присоединить» к рассматриваемому под­
плану). Формализм графа запросов позволяет представить это состояние.
Граф запросаG—это неориентированный граф, в котором каждое отно­
шение R является вершиной, а каждый предикат соединения ρ определя­
ет ребро между вершинами. Пусть κG обозначает количество компонент
связности G. Принятие решения о соединении двух подпланов соответ­
ствует выбору двух вершин, соединённых ребром, и объединению их в
одну вершину. Пусть G = (V,E)— граф запроса. Применение соедине­
ния c = (vi, vj) к графу G определяет новый граф со следующими свой­
ствами: (1) vi и vj удаляются из V , (2) новая вершина (vi+vj) добавляется
в V и (3) ребра (vi+vj) являются объединением ребер, инцидентных vi и
vj . Каждое соединение уменьшает количество вершин на 1. Каждый план
можно описать как последовательность таких соединений c1 ◦ c2... ◦ cT

до тех пор, пока |V | = κG. Приведенное выше описание включает в се­
бя еще одну эвристику System R: «избегание декартовых произведений».
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Можно ослабить эту эвристику, просто добавив ребра к G в начале алго­
ритма, чтобы убедиться, что он полностью связан.
Рассмотрим пример, в котором исходный граф запросов содержит вер­
шины (Emp, Pos, Sal). Предположим, что первое выполняемое соедине­
ние имеет вид c1 = (Emp, Pos). В результате этого соединения структура
графа изменяется, и теперь он состоит из вершин (Emp+Pos, Sal). Да­
лее применяется единственное оставшееся возможное соединение, что
приводит к образованию финальной вершины Sal + (Emp+ Pos). Дан­
ная вершина соответствует плану соединения, который можно записать
как Sal ▷◁ (Emp ▷◁ Pos). Таким образом, последовательное применение
операций соединения преобразует исходный граф запросов в итоговый
план выполнения.
Задача оптимизации соединения состоит в том, чтобы найти наилучшую
возможную последовательность соединений, т.е. наилучший план запро­
са. Эту модель можно расширить, чтобы она также учитывала выбор фи­
зического оператора. Множество допустимых соединений можно клас­
сифицировать по типам, например, соединение может быть представле­
но как c = (vi, vj, HashJoin) или c = (vi, vj, NestLoop). Также имеется
стоимостная модель J(c) → R+, представляющая собой функцию для
вычисления стоимости выполнения определённого соединения.
Даны граф запросаG и модель стоимости J . Требуется найти последова­
тельность соединений c1◦c2...◦cT , которая преобразует граф до состояния
с |V | = κG, минимизируя общую стоимость:

min
c1,...,cT

T
∑

i=1

J(ci)

при условии, что Gi+1 = c(Gi)

Эта формулировка задачи явным образом задаёт марковский процесс
принятия решений (МППР), несмотря на то, что здесь рассматривает­
ся минимизация, а не максимизация. В данном случае G описывает со­
стояние системы, c соответствует действию, а процедура объединения
вершин определяет переход между состояниями P (G,c). Функция возна­
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граждения выражается как отрицательная стоимость−J . Итогом МППР
является функция, которая для заданного графа запроса определяет оп­
тимальное следующее соединение.

4. Стоимость соединения с учётом ”последствий”.
Чтобы представить, как обучение с подкреплением даёт нам новый
взгляд на эту классическую проблему оптимизации базы данных, сна­
чала рассмотрим жадное решение. Наивным решением является незави­
симая оптимизация каждого ci. Алгоритм работает следующим образом:
(1) начать с графа запроса, (2) найти соединение с наименьшей стоимо­
стью, (3) обновить граф запроса и повторять, пока не останется только
одна вершина.
Жадный алгоритм, конечно, не учитывает, как локальные решения могут
повлиять на будущие затраты. Для иллюстрации рассмотрим наш пример
запроса со следующими простыми затратами:

J(EP ) = 100, J(SP ) = 90, J((EP )S) = 10, J((SP )E) = 50

Жадное решение будет стоить 140 (поскольку оно не учитывает стоимо­
сти будущих соединений), в то время как оптимальное решение имеет
стоимость 110.
Жадное решение неоптимально, потому что на каждом шаге оно не учи­
тывает долгосрочную цену своего действия. Иногда приходится жертво­
вать краткосрочной выгодой ради экономии в совокупности. Рассмотрим
задачу оптимизации для конкретного графа запроса G:

V (G) = min
c1,...,cT

T
∑

i=1

J(ci) (3.2)

В классическом подходе к динамическому программированию эта функ­
ция называется функцией ценности. Отмечено, что оптимальное поведе­
ние на всем горизонте решений предполагает оптимальное поведение в
каждый момент времени, что лежит в основе идеи динамического про­
граммирования.
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В зависимости от текущего соединения можно записать её в следующем
виде:

V (G) = min
c

Q(G,c)

Q(G, c) = J(c) + V (G′)

что приводит к следующему рекурсивному определению Q­функции
(функции остаточной стоимости):

Q(G,c) = J(c) +min
c′

Q(G′,c′) (3.3)

Интуитивно Q­функция отражает общую стоимость выполнения соеди­
нений при условии, что на каждом последующем шаге выбирается опти­
мальное действие. Если Q­функция известна, то задача считается решён­
ной, поскольку для построения оптимальной последовательности доста­
точно на каждом шаге выбирать соединение, минимизирующее значение
Q: minc′ Q(G′,c′). Таким образом, локальная оптимизация Q­функции га­
рантирует глобально оптимальный план соединений.
Рассмотрим модифицированную версию жадного алгоритма, работаю­
щую следующим образом: (1) исходным состоянием является граф за­
проса, (2) на каждом шаге выбирается соединение с минимальным зна­
чением Q­функции, (3) граф обновляется, и процесс повторяется. Такой
алгоритм сохраняет вычислительную сложность O(|V |3), но при этом
становится доказуемо оптимальным. Ключевая идея заключается в ис­
пользовании глубокого обучения с подкреплением для аппроксимации
глобальной Q­функции, которая обобщается на все возможные графы за­
просов в базе данных. Это позволяет получить полиномиальный алго­
ритм построения оптимального плана выполнения запроса, что является
существенным улучшением по сравнению с традиционными методами.

5. Применение обучения с подкреплением к задаче данного исследова­
ния.
Алгоритмы Q­обучения представляют собой важный класс методов обу­
чения с подкреплением, которые позволяют приближать Q­функцию на
основе эмпирических данных. Возникает вопрос: что, если бы мы мог­
ли обучать модель предсказывать совокупную будущую стоимость, ис­
пользуя признаки (G, c) и ограниченный набор наблюдений? На практи­
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ке данные для обучения могут быть получены из записанных последо­
вательностей принятия решений, каждая из которых представляет собой
кортеж (G, c, J(c), G′), где G — исходный граф запроса, c — выполнен­
ное соединение, J(c) — его фактическая стоимость, а G′ — преобразо­
ванный граф после выполнения соединения. Такие последовательности
легко извлекаются из готовых планов выполнения запросов, что дела­
ет возможным обучение модели на реальных данных без необходимости
явного моделирования среды.
Предположим, что у нас имеется параметризованная модельQθ, аппрок­
симирующая истинную Q­функцию:

Qθ(fG, fc) ≈ Q(G, c)

Здесь fG — это вектор признаков, кодирующий структуру графа запро­
са, а fc — вектор признаков, описывающий конкретное соединение. Па­
раметры модели θ инициализируются случайным образом и затем уточ­
няются в процессе обучения. Для каждого обучающего примера i мож­
но вычислить целевую метку yi, которая представляет собой оценку Q­
значения:

yi = J(c) +min
c′

Qθ(G′,c′)

Эти метки {yi} затем используются для обучения модели методом ре­
грессии, где цель состоит в минимизации расхождения между предска­
занными Qθ(fG, fc) и целевыми значениями yi. Такой подход позволяет
итеративно улучшать оценку Q­функции на основе наблюдаемых дан­
ных. Если бы Q была истинной Q­функцией, то имела бы место следую­
щая рекуррентная формула:

Q(G,c) = J(c) +min
c′

Qθ(G′, c′)

Итак, процесс обучения, или Q­обучение, определяет функцию потерь на
каждой итерации:

L(Q) =
∑

i

∥yi −Qθ(G,c)∥22
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Затем параметры Q­функции можно оптимизировать с помощью гради­
ентного спуска до сходимости.
Обучение с подкреплением дает два ключевых преимущества: (1) стои­
мость поиска для одного запроса по сравнению с традиционной оптими­
зацией запросов радикально снижается, поскольку алгоритм имеет вре­
менную сложность жадного поиска, и (2) параметризованная модель мо­
жет потенциально обучаться через запросы, которые имеют похожие, но
не идентичные подпланы. Это связано с тем, что сходство между подпла­
нами определяется признаковыми описаниями графа запроса и соедине­
ний, fG и fc; таким образом, если они разработаны достаточно вырази­
тельным образом, то нейронную сеть можно обучить экстраполировать
оценки Q­функции на всю рабочую нагрузку.
Выбор Q­обучения вместо других алгоритмов обучения с подкреплени­
ем сделан не просто так. Во­первых, Q­обучение позволяет использовать
оптимальные подструктуры во время обучения и значительно сократить
объем необходимых данных. Во­вторых, по сравнению с обучением на
основе стратегий, Q­обучение выводит оценку для каждого соединения,
которое появляется в любом подплане, а не просто выбирает лучшее со­
единение. В­третьих, модель позволяет выбирать k лучших соединений
на каждом шаге, а не просто получать лучший план.

6. Эффективная генерация обучающей выборки.
Обучающая выборка генерируются автоматически в результате работы
традиционного алгоритма планирования. Для каждого решения о соеди­
нении, которое принимает оптимизатор, можно получить оценку сто­
имости соединения, рассчитанную на основе оценок кардинальности.
Предположим, мы запускаем традиционный алгоритм кустистого дина­
мического программирования для оптимизации k­путевого соединения.
Мы получаем не только окончательный план, но и оптимальный план
для каждого отдельного подплана, перечисляемого на этом пути. Каж­
дый запрос генерирует оптимальный план запроса для всех входящих в
него подпланов, а также запоминает неоптимальные подпланы, которые
не были достроены до конца. Это означает, что один запрос генериру­
ет большое количество обучающих примеров. На рис. 3.3 показано, как
принцип оптимальности помогает собрать обучающую выборку.
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Рисунок 3.3 — Используя принцип оптимальности, из одного плана, созданного
собственным оптимизатором, извлекаются три обучающих примера. Эти
примеры имеют одни и те же долгосрочные затраты и отношения для

соединения (т.е. принятие этих локальных решений в конечном итоге приводит к
соединению в одну связную компоненту {T1, ...,T4} с оптимальной совокупной

стоимостью V ∗).

7. Инженерия ”признаков”.
Краткая мотивация того, как стоит думать о признаковом описании дан­
ных в такой задаче, заключается в следующем. Признаковые описания
должны быть достаточно богатыми, чтобы они отражали всю необходи­
мую информацию для прогнозирования стоимости принятого решения в
купе с последующими затратами. Для этого необходимо знать, что тре­
бует SQL­запрос в целом, таблицы в левой части предлагаемого соедине­
ния и таблицы в правой части предлагаемого соединения. Также требует­
ся знание того, как предикаты одной таблицы влияют на кардинальность
по обе стороны соединения.

– ”Участвующие” отношения.
Общая интуиция состоит в том, чтобы использовать имя каж­
дого столбца в качестве признака, потому что оно опре­
деляет распределение этого столбца. Первым шагом являет­
ся создание набора признаков, чтобы описать какие атрибу­
ты участвуют в запросе и в конкретном соединении. Пусть
A будет набором всех атрибутов в базе данных (например,
{Emp.id, Pos.rank, ..., Sal.code, Sal.amount}). Каждое отношение
rel (включая промежуточные результаты построения дерева со­
единений) имеет набор атрибутов, Arel ⊆ A. Аналогично, каж­
дый граф запросов G может быть представлен своими атрибу­
тами AG ⊆ A. Соединение можно описать как пару отношений
(L,R), где для каждого из них существуют видимые атрибуты
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AL и AR. Все наборы атрибутов – AG, AL и AR – кодируются
бинарным способом: единица означает наличие соответствую­
щего атрибута, а ноль – его отсутствие. Применяя операцию ⊕

для объединения векторов, формируются признаки графа запро­
са fG = AG и признаки соединения fc = AL ⊕ AR. В итоге, пол­
ный вектор признаков для пары (G, c) представляет собой конка­
тенацию fG⊕fc. Наглядный пример такого представления можно
увидеть на рисунке 3.4, где показано признаковое описание для
демонстрационного запроса.

Рисунок 3.4 — Запрос и соответствующие ему признаковое описание. Бинарные
векторы кодируют атрибуты в графе запроса (AG), левой части соединения (AL)
и правой части (AR). Такое кодирование позволяет описать как граф запроса, так
и конкретное соединение. Показаны промежуточное соединение и финальное
соединение. Пример запроса охватывает все отношения в схеме, поэтому

AG = A.

– Предикаты.
Предикаты могут изменить указанное распределение, то есть
(col, selectivity) отличается от (col, TRUE). Чтобы обрабатывать
предикаты в запросе, нужно учитывать их в признаковом описа­
нии. Можно использовать статистику таблиц, присутствующую
в большинстве СУБД. Для каждого предиката σ в запросе можно
получить селективность δσ, которая оценивает долю кортежей,
остающихся после применения предиката. Чтобы учесть пре­
дикаты в признаковом описании, можно масштабировать слот
в fG, которому соответствует отношение и атрибут с предика­
том, на δr. Например, если оценка селективности для фильтра
Emp.id > 200 оценивается как 0.2, то слот Emp.id в fG будет из­
менен на 0.2. Рисунок 3.5а наглядно иллюстрирует это масшта­
бирование.
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– Операторы соединения.
Также важно закодировать тип оператора соединения. Это про­
сто: мы добавляем еще один бинарный вектор, который указы­
вает из фиксированного набора операторов используемый тип
соединения (рисунок 3.5б).

Рисунок 3.5 — Адаптация признакового описания для работы с предикатами и
операторами соединения. Базовая структура признаков расширяется: слева
добавляются предикаты, справа — физические операторы. В случае выбора

между NestLoop и HashJoin, к признакам соединения присоединяется двумерный
бинарный вектор, указывающий тип оператора.

8. Обучение модели.
В методе DQN применяется многослойный перцептрон (MLP) для при­
ближенного вычисления Q­функции. На вход нейросети подается век­
тор признаков (G, c), сформированный как fG ⊕ fc. Экспериментальным
путем установлено, что оптимальная производительность при ограни­
ченном времени обучения (менее 10 минут) достигается при использо­
вании двухслойной архитектуры. Обучение модели осуществляется по­
средством классического стохастического градиентного спуска (SGD).

9. Дообучение модели на времени выполнения запроса. Так как модель
обучалась на оценках стоимости, которые, как было описано выше, да­
леки от истинных стоимостей, она не сможет превзойти классический
оптимизатор. До текущего момента всё, что делалось моделью – это так
называемый imitation learning (обучение повторению). На данном этапе
система теоретически может показывать качество сравнимое с качеством
традиционного оптимизатора, но никак не может превосходить его. Что­
бы продвинуться дальше в сторону улучшения качества, нужно дать мо­
дели возможность узнать не оценки, а фактические стоимости тех или
иных действий. Стандартным решением этого вопроса является дообу­
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чение на данных, где целевым значением вместо оценок стоимости явля­
ется время выполнения. Такое решение на первый взгляд логично и есте­
ственно: наша основная цель – уменьшить время выполнения запросов.
Но на деле время, затраченное как на весь запрос, так и на отдельные его
части, есть очень непостоянный показатель, зависящий от общей загру­
женности системы. Причём эти показатели нельзя даже назвать зашум­
лёнными, что было бы приемлемо для обучения модели. Колебания вре­
мени выполнения одного и того же запроса могут быть многократными.
Поскольку на практике сбор данных и обучение модели не должно оста­
навливать работу СУБД, эти вещи происходят одновременно соштатным
функционированием СУБД. Таким образом, использование времени вы­
полнения запросов в качестве целевых значений для обучения модели
невозможно. Предложенное в данной работе решение описано в разделе
”Архитектура рабочего процесса” секции 3.3.2.

10. Использование обученной модели.
После обучения становится доступна параметризованная оценка Q­
функции Qθ(fG, fc). Для её применения нужно просто вернуться к стан­
дартному алгоритму, как в жадном методе, но вместо использования
локальных стоимостей соединений теперь используется выученная Q­
функция: (1) начинаем с графа запроса, (2) кодируем каждое соединение
(возможное действие), (3) выбираем соединение с наименьшим оценоч­
ным значением Q (т.е. выходом нейронной сети), (4) обновляем подплан
запроса и повторяем. Этот алгоритм имеет временную сложность жадно­
го перечисления. Отличие лишь в том, что стоимостная модель жадного
алгоритма здесь заменяется на нейронную сеть.

Методология работы системы «Neo: A Learned Query Optimizer» (Neural
Optimizer) [41] представляет собой обученный оптимизатор запросов, демонстри­
рующий сравнимую или превосходящую эффективность относительно ведущих
коммерческих решений (Oracle и Microsoft) при работе на их собственных движ­
ках обработки запросов. Данная система обучается принимать решения как о по­
следовательности соединений, так и о выборе оптимальных операторов. Процесс
оптимизации реализуется через обучение с учителем, дополненное механизмом
обратной связи для непрерывного совершенствования, что позволяет адаптиро­
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ваться к конкретной инстанции базы данных и учитывать реальное время выпол­
нения при формировании решений.

Архитектура Neo устраняет четкое разделение между ключевыми компо­
нентами классического оптимизатора запросов: оценкой селективности, расчетом
стоимости и алгоритмом перебора планов. В отличие от традиционных подходов,
система не вычисляет кардинальность напрямую и не использует заданную вруч­
ную стоимостную модель. Вместо этого Neo интегрирует эти функции в единую
нейросетевую модель оценки стоимости, которая анализирует подплан и предска­
зывает оптимальное время выполнения для любого плана запроса, включающего
данный подплан. На основе предсказаний этой нейросети Neo осуществляет на­
правленный поиск в пространстве возможных планов выполнения для конкрет­
ного запроса. По мере обнаружения более эффективных планов, нейросеть по­
степенно совершенствуется, что позволяет фокусировать поиск на наиболее пер­
спективных вариантах. Этот итеративный процесс создает положительную об­
ратную связь: улучшенные предсказания стоимости ведут к нахождению более
оптимальных планов, что в свою очередь способствует дальнейшему обучению и
уточнению нейросетевой модели. Цикл продолжается до стабилизации стратегии
принятия решений оптимизатора.

Авторы статьи Neo ставили перед собой задачу по преодолению несколь­
ких ключевых проблем. Во­первых, для автоматического улавливания интуитив­
но понятных паттернов в планах запросов с древовидной структурой авторы ста­
тьи разработали модель глубокой нейронной сети, использующую древовидные
свёртки. Во­вторых, чтобы обеспечить понимание нейросетью семантики имею­
щейся базы данных, они разработали векторное представление характеристики,
которая автоматически представляет семантику предикатов запроса с использо­
ванием данных из имеющейся базы данных. Они интегрировали эти подходы в
комплексную систему обучения, способную строить планы выполнения запросов.

1. Обзор структуры обучения.
Далее мы обсудим архитектуру системы Neo, изображённую на рисунке
3.6, и общую стратегию обучения. Neo работает в два этапа: начальный
этап, на котором собирается информация о работе классического опти­
мизатора, и этап выполнения, на котором в работу вступает нейросетевая
модель.

– Сбор знаний.
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Рисунок 3.6 — Архитектура системы Neo.

На первом этапе, именуемом «Экспертиза», Neo получает опыт
от традиционного оптимизатора запросов. Neo нуждается в на­
боре пользовательских запросов, представляющих общую рабо­
чую нагрузку пользователя и возможности базового движка (т.е.
реализующие репрезентативный набор операторов). Кроме того,
предполагается, что у Neo есть доступ к традиционному опти­
мизатору. Neo использует этот оптимизатор только для создания
планов выполнения запросов (QEP) для каждого запроса в набо­
ре. Эти QEP вместе с их временем выполнения добавляются в
базу знаний Neo (набор пар план/время), которые используются
в качестве отправной точки на этапе обучения модели.

– Построение модели.
На основе накопленного опыта Neo строит первоначальную мо­
дель. Модель представляет собой глубокую нейронную сеть,
предназначенную для прогнозирования конечного времени вы­
полнения запроса по имеющемуся подплану или полному пла­
ну (частный случай). Нейросеть обучается, используя собранные
заранее данные, в режиме обучения с учителем. Этот процесс
включает преобразование каждого собранного запроса в призна­
ковое описание. Эти признаки содержат информацию о запросе
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(например, граф соединения) и информацию о текущем состоя­
нии плана (например, порядок соединения). Neo может работать
с рядом различных признаков, начиная от простых бинарных ко­
дировок и заканчивая более сложными эмбедингами. Сеть стои­
мости Neo использует древовидные свертки для обработки QEP
с древовидной структурой.

– Поиск плана.
После преобразования запроса в закодированное представление
система Neo применяет нейросетевую модель для исследования
пространства возможных планов выполнения запросов (QEP),
включающего различные варианты порядка соединений и типов
операторов. Модель находит оптимальный план, минимизирую­
щий ожидаемое время выполнения, которое оценивается с по­
мощью предсказания нейросети. Учитывая, что полный перебор
всех возможных планов для заданного запроса вычислительно
неосуществим, Neo реализует стратегию поиска по принципу
«сначала наилучший вариант», используя нейросеть для эффек­
тивного исследования пространства решений. Сформированный
Neo план содержит детализированную информацию о последо­
вательности соединений, применяемых операторах (таких как
хеш­соединение, соединение слиянием или вложенными цикла­
ми) и методах доступа к данным (например, сканирование ин­
дексов или полное сканирование таблиц). Этот план передаёт­
ся в нижележащий механизм выполнения, который обрабатыва­
ет его, добавляя при необходимости семантически корректные
преобразования (вроде включения операций сортировки) и ис­
полняя итоговый план. Такой подход гарантирует как эффектив­
ность, так и корректность генерируемых планов выполнения за­
просов.

– Переобучение модели.
По мере того, как Neo просматривает больше запросов, модель
улучшается и адаптируется к базе данных пользователя. Это до­
стигается за счет использования нового опыта. В частности, ко­
гда QEP выбран для определённого запроса, он отправляется в
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базовый механизм выполнения, который обрабатывает запрос и
возвращает результат пользователю. Кроме того, Neo записыва­
ет время выполнения QEP, добавляя пару план/время к своему
опыту. Затем Neo переобучает модель на основе этого опыта,
итеративно улучшая свои оценки.

2. Инженерия признаковых описаний.
Признаковые описания объектов – это как раз то, с чем работает нейро­
сеть. Именно их она принимает на вход и из них пытается извлечь знания.
Поэтому от качества признаковых описаний зависит качество модели.

– Обозначения.
Для запроса q мы определяем набор базовых отношений, ис­
пользуемых в q, как R(q). Подплан выполнения P для запроса
q (обозначается Q(P ) = q) это лес деревьев, представляющий
план выполнения, который находится в процессе построения
(или построен – частный случай). Каждый внутренний (нели­
стовой) узел дерева является оператором соединения ▷◁i∈ J , где
J — набор возможных операторов соединения (например, с по­
мощью хеширования ▷◁H , слиянием ▷◁M , циклом ▷◁L), и каждый
листовой узел является чтением таблицы, чтением индекса или
невыбранным способом чтения отношения r ∈ R(q), обознача­
емыми T (r), I(r) и U(r) соответственно. Например, частичный
план выполнения запроса можно обозначить как

[(T (D) ▷◁H T (A)) ▷◁L I(C)], [U(B)] (3.4)

Здесь тип чтения для B не указан, и не выбрано соединение для
связи B с остальной частью плана. В плане также указан способ
чтения таблицD иA, которые соединяются хешом, результат ко­
торого затем будет объединён с использованием циклического
соединения с C.
Полный план выполнения— это план из одного дерева и без ли­
стьев с невыбранным способом чтения; все решения о том, как
план должен быть выполнен, были приняты. Мы говорим, что
один план Pi является подпланом другого плана Pj (обозначим
Pi ⊂ Pj), если Pj может быть построен из Pi путем (1) выбора
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способа чтения для листа с до сих пор неопределённым спосо­
бом чтения или (2) объединением поддеревьев в Pi оператором
соединения.
Построение полного плана выполнения можно рассматривать
как марковский процесс принятия решений (MDP). Начальное
состояние MDP — частичный план, в котором каждое скани­
рование не определено и соединения отсутствуют. Каждое дей­
ствие включает либо (1) объединение двух подпланов с помо­
щью оператора соединения, либо (2) преобразование неуказан­
ного сканирования в определённый тип сканирования. Более
формально каждое действие преобразует текущий план Pi в лю­
бой план Pj такой, что Pi ⊂ Pj . Цена за каждое действие равна
нулю, за исключением последнего действия, которое имеет цену,
равную времени выполнения построенного плана.

– Кодировка информации о запросе.

Рисунок 3.7 — Кодировка информации о запросе.
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Представление зависимой от запроса, но независимой от плана,
информации состоит из двух компонентов. Первый компонент
кодирует граф соединения запроса как матрицу смежности, на­
пример, на рисунке 3.7 в графе соединения единица в первой
строке третьего столбца указывает на наличие предиката соеди­
нения между отношениями A и C. Строка и столбец, связанные с
отношением E, остаются незаполненными, так как E не фигури­
рует в данном запросе. Для упрощения модели предполагается,
что любые два отношения могут быть связаны максимум одним
внешним ключом. Тем не менее, предложенное представление
допускает обобщение на случай нескольких внешних ключей пу­
тём замены значения «1» на индекс конкретного ключа. Более
того, учитывая симметричность матрицы соединений, для фор­
мирования векторного представления запроса достаточно учи­
тывать только элементы верхней треугольной части (выделенной
красным), что сокращает объём хранимых данных без потери ин­
формации.
Второй компонент кодировки запроса — это вектор предикатов
столбцов. Neo поддерживает три варианта с различными уров­
нями требований к предварительным вычислениям:

(a) Бинарная кодировка (наличие предиката): показыва­
ет, какие атрибуты участвуют в запросе. Длина векто­
ра — это количество атрибутов во всех таблицах ба­
зы данных. Например, на рисунке 3.7 в блоке ”Преди­
каты” показан закодированный таким образом вектор
с 1, установленными в позициях для атрибутов A.2 и
B.1, поскольку оба атрибута используются как часть
предиката. Предикаты соединения здесь не рассмат­
риваются. Нейросеть знает только, присутствует ли
атрибут в предикате или нет. Такая кодировка может
быть построена без какого­либо доступа к базе дан­
ных.

(b) Гистограммное кодирование (селективность предика­
та): расширение бинарной кодировки, которое заме­
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няет «0» или «1» предсказанной селективностью это­
го предиката (например, A.2 может быть 0.2, если
мы предсказываем селективность 20%). Селективно­
сти предоставляются традиционным оптимизатором.

(c) R­Vector (семантика предиката): наиболее продвину­
тое кодирование с использованием языковой модели
машинного обучения. На основе word2vec, модели об­
работки естественного языка, каждая запись в векто­
ре предиката столбца заменяется вектором, содержа­
щим семантическую информацию, связанную с пре­
дикатом. Это кодирование требует построения моде­
ли на основе данных в базе данных и является самым
дорогим вариантом.

Более сложные схемы кодирования расширяют возможности мо­
дели, позволяя ей выявлять и анализировать нетривиальные за­
висимости в данных. Впрочем, даже упрощённые методы коди­
рования не становятся непреодолимым препятствием для изуче­
ния сложных взаимосвязей. Так, хотя гистограммное кодирова­
ние явно не отражает корреляции между таблицами, нейросете­
вая модель способна самостоятельно выявлять такие закономер­
ности в процессе обучения, адаптируя оценки кардинальности
на основе наблюдений за временем выполнения запросов. Одна­
ко использование R­Vector в Neo даёт существенное преимуще­
ство, предлагая семантически обогащённое представление пре­
дикатов запроса, что упрощает процесс оптимизации и повыша­
ет точность прогнозирования.

– Кодировка информации о плане.
В дополнение к кодировке запроса также требуется представле­
ние частичного или полного плана выполнения запроса. В то вре­
мя как в остальных работах древовидная структура каждого ча­
стичного плана выполнения была преобразована в вектор, коди­
рование, предложенное авторами этой статьи, сохраняет древо­
видную структуру планов выполнения. Каждый узел частичного
плана выполнения кодируется в вектор фиксированной длины,
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формируя векторное дерево (рис. 3.8). Количество векторов со­
ответствует числу узлов и может варьироваться, как и структура
дерева (левосторонняя или ветвистая), сохраняя при этом еди­
ный формат векторного представления. Векторное представле­

Рисунок 3.8 — Формат описания плана выполнения.

ние формируется путём отображения каждого узла в вектор раз­
мерности |J | + 2|R|, где |J | — число возможных типов соеди­
нений, а |R| — количество отношений. Первые |J | компонент
вектора определяют тип соединения (например, корневой узел
на рисунке 3.8 кодирует циклическое соединение). Следующие
2|R| элементов описывают задействованные отношения и мето­
ды их сканирования (полное, индексное или неопределённое).
Для листовых узлов в подвекторе отношений устанавливается
ровно одна единица, за исключением случая неопределённого
сканирования, когда отмечаются оба варианта (индексное и пол­
ное). Во внутренних узлах соответствующие значения получа­
ются объединением характеристик дочерних узлов. Например,
нижний узел циклического соединения на рисунке 3.8 содержит
единицы для полного сканирования таблиц A и D и индексного
сканирования таблицы C.
Важно отметить, что данное представление может вклю­
чать несколько независимых частичных планов выполнения (с
несколькими корневыми узлами), которые ещё не соединены
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между собой. Например, для кодирования частичного плана из
уравнения 3.4, корневой узел U(B) будет представлен вектором
[0000110000]. Эти кодировки предназначены исключительно для
формирования векторного представления планов выполнения,
которое будет использоваться нейросетевой моделью Neo, опи­
санной в последующих разделах.

3. Функция потерь при обучении нейросети.
Исследуем архитектуру нейронной сети, обученной предсказывать опти­
мальное время выполнения для частичного плана Pi ­ минимальное вре­
мя, достижимое при любом полном плане Pf , содержащем Pi. Так как
истинный оптимальный план выполнения заранее неизвестен, в рамках
данного исследования в качестве целевого значения используется наи­
лучшее зафиксированное время выполнения запроса на момент обуче­
ния.
Обозначим через E набор полных планов выполнения запросов Pf ∈ E

с известным временем выполнения L(Pf). МодельM обучается прибли­
жать минимальную стоимость для всех подплановPi ⊆ Pf из обучающей
выборки:

M(Pi) ≈ min{C(Pf) | Pi ⊆ Pf , Pf ∈ E} (3.5)

где C(Pf) представляет стоимость полного плана выполнения. Систе­
ма позволяет настраивать целевую функцию стоимости для адаптации
поведения Neo под конкретные требования. Система поддерживает раз­
личные стратегии оптимизации через настраиваемую функцию стоимо­
сти. Для минимизации абсолютного времени выполнения используется
простая метрика: C(Pf) = L(Pf). Альтернативно, для гарантии улуч­
шения относительно базового плана можно определить относительную
стоимость:

C(Pf) =
L(Pf)

Base(Pf)
, (3.6)

гдеBase(Pf) ­ наилучшее известное время выполнения для данного пла­
на. Независимо от выбора метрики, Neo последовательно минимизирует



62

стоимость в процессе работы. Обучение модели основано на минимиза­
ции квадратичной ошибки:

(M(Pi)−min{C(Pf) | Pi ⊆ Pf , Pf ∈ E})2 (3.7)

4. Архитектура нейросети.
Архитектура нейросети Neo показана на рисунке 3.9. Она была разра­
ботана для создания индуктивного смещения, подходящего для оптими­
зации запросов: структура самой нейронной сети разработана так, что­
бы отражать интуитивное понимание того, что делает планы запросов
быстрыми или медленными. Люди, изучающие планы запросов, учат­
ся распознавать неоптимальные или хорошие планы путем сопоставле­
ния с образцом: соединение слиянием поверх хеш­соединения с общим
ключом соединения, вероятно, вызывает избыточную сортировку или хе­
ширование; циклическое соединение поверх двух хеш­соединений, ве­
роятно, очень чувствительно к ошибкам оценки количества элементов;
хеш­соединение с использованием таблицы фактов в качестве отноше­
ния «построения», вероятно, приводит к выбросам; серия соединений
слиянием, не требующих повторной сортировки, скорее всего, будет ра­
ботать хорошо и т.д. Ключевой тезис состоит в том, что все эти шабло­
ны можно распознать, анализируя поддеревья плана выполнения запро­
са. Архитектура модели Neo, по сути, представляет собой большой банк
этих шаблонов, которые изучаются автоматически, из самих данных, с
использованием метода, называемого древовидной сверткой. Как пока­

Рисунок 3.9 — Архитектура нейросети.

зано на рисунке 3.9, когда модель оценивает частичный план запроса,
кодирование на уровне запроса проходит через несколько полносвязных
слоёв, размер каждого из которых уменьшается. Выходной вектор тре­
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тьего полносвязного слоя комбинируется с векторным представлением
каждого узла дерева плана (одинаковый вектор контекста добавляется
ко всем узлам). Данный подход, известный как ”пространственная ре­
пликация позволяет объединять признаки фиксированной размерности
(кодировка запроса) с признаками переменной размерности (кодировка
плана). Обогащенные векторы узлов затем обрабатываются через после­
довательность слоев древовидной свертки, сохраняющих древовидную
структуру данных на выходе. После этого применяется операция дина­
мического объединения, сглаживающая древовидную структуру в один
вектор. Несколько дополнительных полносвязных слоёв используются
для преобразования этого вектора в одно значение, используемое в ка­
честве прогноза модели для введённого плана.

5. Древовидные свёртки.
Свёрточные нейронные сети принимают входные тензоры с фиксирован­
ной структурой, такой как вектор или изображение. Для Neo признако­
вые описания планов выполнения структурированы как узлы в дереве
(например, на рисунке 3.8). Таким образом, древовидные свёртки – это
адаптация традиционной свёртки изображений для данных с древовид­
ной структурой.
Древовидные свёртки является естественным подходом для Neo. Подоб­
но преобразованию свёртки для изображений, свёртка дерева перемеща­
ет набор общих фильтров по каждой части дерева плана. Интуитивно
понятно, что эти фильтры могут охватывать широкий спектр локальных
отношений между родительскими вершинами и их потомками. Напри­
мер, фильтры могут искать хеш­соединения поверх соединений слияни­
ем или объединение двух отношений при наличии определённого преди­
ката. Выход этих фильтров обеспечивает сигналы, используемые конеч­
ными слоями нейросети; выходные данные фильтра могут обозначать со­
ответствующие факторы, такие как сортировка дочерних элементов опе­
ратора соединения (предполагая объединение слиянием), или фильтр мо­
жет оценить, будет ли правостороннее отношение соединения иметь низ­
кую кардинальность (предполагая, что индекс может быть полезен).
Каждый узел дерева­плана имеет ровно два дочерних узла, поэтому
фильтр содержит три весовых вектора: ep, el, er. Фильтр применяется к
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каждому локальному участку из вектора узла xp и его дочерних векторов
xl и xr (которые заменяются на 0⃗ для листьев), создавая новый вектор уз­
ла x′p:

x′ = σ(ep 3 xp + el 3 xl + er 3 xr) (3.8)

Здесь σ(∙) — нелинейное преобразование (например, ReLU), 3 — ска­
лярное произведение, а x′p — выход фильтра. Каждый фильтр агрегиру­
ет данные из локального окружения узла дерева. Единый фильтр после­
довательно обрабатывает все узлы дерева плана выполнения, что обес­
печивает его применимость к планам любой величины. Применение на­
бора фильтров к дереву трансформирует его в новое дерево с идентич­
ной структурой, но с узлами, представленными векторами потенциально
иной размерности. На практике используется множество (сотни) таких
фильтров.
Поскольку результатом свёртки дерева является другое дерево, несколь­
ко слоев фильтров свёртки дерева могут быть «наложены друг на друга».
Первый слой фильтров свёртки дерева будет иметь доступ к расширен­
ному дереву плана выполнения (т.е. каждый фильтр будет перемещаться
по каждому родительскому/левому дочернему/правому дочернему тре­
угольнику расширенного дерева). Количество информации, восприни­
маемое конкретным фильтром, называется рецептивным полем фильтра.
Второй слой фильтров будет применяться к выходным данным первого,
и, таким образом, каждый фильтр этого второго слоя будет видеть ин­
формацию, полученную от узла n в исходном расширенном дереве, до­
черних элементов n и дочерних для дочерних n: таким образом, каждый
слой свёртки дерева имеет большее рецептивное поле, чем у предыду­
щего. В результате первый слой свёртки дерева изучает простые призна­
ки (например, распознавание объединения слиянием поверх соединения
слиянием), тогда как последний слой свертки дерева изучает сложные
признаки (например, распознавание левосторонней цепочки соединений
слиянием).

6. Поиск плана с помощью нейросети.
Нейросеть предсказывает стоимость плана выполнения запроса, но не
даёт сам план выполнения напрямую. Поэтому для создания планов
необходимо объединить нейросеть с методом поиска.
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Используя обученную модель и входящий запрос q, Neo выполняет по­
иск в пространстве планов для данного запроса. В некотором смысле этот
поиск отражает процесс поиска, используемый традиционными оптими­
заторами баз данных, при этом обученная нейросеть берет на себя роль
функции стоимости. Однако, в отличие от традиционных систем, нейро­
сеть предсказывает не стоимость подплана, а минимальное возможное
время выполнения полного (финального) плана, включающего данный
подплан. Эта разница позволяет выполнить поиск по принципу «сначала
наилучшее», чтобы найти план выполнения с низкой ожидаемой стои­
мостью. По сути, это сводится к многократному изучению кандидата с
наилучшей предполагаемой стоимостью до тех пор, пока не возникнет
условие остановки.
Поиск для запроса q стартует с создания пустой min­кучи, упорядочен­
ной по нейросетевым оценкам стоимости частичных планов. Изначально
в кучу помещается частичный план с неопределёнными типами скани­
рования всех отношений из R(q). Например, при R(q) = {A,B,C,D}

инициализация задаётся как

P0 =
(

[U(A)], [U(B)], [U(C)], [U(D)]
)

(3.9)

На каждой итерации из вершины кучи извлекается подплан Pi, после че­
го генерируются его потомки Children(Pi): каждый оценивается нейро­
сетью и добавляется в кучу. Потомки соответствуют всем планам, кото­
рые могут быть сформированы путём уточнения сканирования в Pi или
объединения двух его поддеревьев оператором соединения. Формально
Children(Pi) пусто для завершённого плана, а иначе представляет до­
ступные действия в данном состоянии MDP. Следующая итерация ис­
следует новый наиболее перспективный план из кучи, причём каждая
операция поиска выполняется за O(logn), где n — текущий размер ку­
чи.
Хотя выполнение можно завершить при обнаружении полного плана, ал­
горитм легко модифицируется для продолжения поиска улучшенных ва­
риантов до истечения заданного времени. В этой версии Neo исследует
наиболее перспективные элементы из кучи до достижения временного
ограничения, после чего возвращает оптимальный обнаруженный пол­
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ный план. Это позволяет пользователю управлять балансом между дли­
тельностью планирования и временем выполнения запроса. Для различ­
ных запросов могут устанавливаться индивидуальные временные лими­
ты согласно требованиям. При срабатывании таймера до формирования
полного плана Neo переключается в экстренный режим: жадно обраба­
тывает наиболее перспективные потомки последнего анализированного
подплана до получения завершённого плана.

3.3 Реализация проведённых исследований

В качестве набора запросов использовались запросы к базе данных IMDB –
Join Order Benchmark (JOB) [46]. Это набор так называемых ”запросов реального
мира”. Такие наборы ценятся больше, чем наборы синтетических запросов, так
как есть мнение, что результаты, полученные на синтетических запросах, могут
значимо отличаться от результатов на реальных запросах.

Пример запроса.
SELECT MIN(t.title) AS movie_title
FROM keyword AS k,

movie_info AS mi,
5 movie_keyword AS mk,

title AS t
WHERE k.keyword LIKE ’%sequel%’
AND mi.info IN (’Bulgaria’)
AND t.production_year > 2010

10 AND t.id = mi.movie_id
AND t.id = mk.movie_id
AND mk.movie_id = mi.movie_id
AND k.id = mk.keyword_id;

Количество таблиц в запросах варьируются от 3 до 17. Всего в наборе чуть
больше 100 запросов.

3.3.1 Машинное обучение для оценки кардинальности

При сравнении методов оценки кардинальности сравнивались два показа­
теля:

1. Точность полученных оценок – сравнивались предсказанные моделями
значения с фактическими значениями кардинальности. Фактические зна­

https://github.com/gregrahn/join-order-benchmark
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чения доступны после выполнения плана – это размеры промежуточных
результатов, получаемые автоматически, без дополнительных вычисле­
ний.

2. Время выполнения запросов из JOB IMDBпо планам, построенным клас­
сическим оптимизатором с использованием его собственных оценок кар­
динальности, и по планам классического оптимизатора, построенным
при использованием оценок кардинальности, предсказанных моделью.

Первый показатель – способ оценить качество модели в техническом плане.
Второй же даёт возможность понять, помогают ли более точные оценки карди­
нальности построить более быстрые планы, и если да, то насколько быстрее вы­
полняется выбранный набор запросов.

NARU (Neural Relation Understanding) и NeuroCard (Neural Network for
Cardinality Estimation)

Подход Naru [22] применим только для оценки кардинальности предикатов
на одном отношении, чего не достаточно для решения задачи оптимизации. Под­
ход был выбран для проверки эффективности метода. Обучение модели на CPU
длилось 8 часов, что слишком долго для внедрения метода в продукт. При этом
результаты были положительными и соответствовали результатам, заявленным
авторами оригинальной статьи.

Подход NeuroCard [43] развивает концепцию NARU [22], добавляя возмож­
ность оценки кардинальности промежуточных результатов соединений. Время
обучения данной модели, как и предполагалось, превышает аналогичный пока­
затель NARU. Модель обучается без учителя, анализируя фактические данные в
базе данных. При незначительных изменениях данных она сохраняет эффектив­
ность, однако для предоставления гарантий время обучения должно быть суще­
ственно меньше среднего периода значимых изменений данных. Точные количе­
ственные оценки сознательно опущены из­за отсутствия экспериментальных дан­
ных, однако очевидно, что обучение, занимающее более нескольких часов (напри­
мер, 8 часов для базы IMDB, существенно уступающей по масштабам реальным
корпоративным системам), представляет собой непрактичное решение.

Учитывая данный опыт, было решено изучить подходы, уже интегрирован­
ные в open­source СУБД. В качестве примера рассматривается Adaptive Query
Optimizer (AQO) [42], успешно реализованный в PostgreSQL.
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PostgreSQL AQO (Adaptive Query Optimizer)

В дополнение к JOB IMDB, разработчики AQO [42] использовали синтети­
ческий набор запросов TPC­DS. В экспериментах запросы классифицировались
по времени выполнения: ускорение быстрых запросов оказалось невозможным,
тогда как для медленных удалось достичь двукратного улучшения. Тестирование
проводилось в PostgreSQL со стандартным планировщиком, поддерживающим
хеш­соединения и соединения вложенными циклами.

В настоящем исследовании применялась колоночная OLAP­СУБД с мас­
совым параллелизмом. В подобных системах соединения вложенными циклами
отключены по практическим причинам (раздел 3.1.2). При такой конфигурации
AQO не внес изменений в планы JOB IMDB, что породило гипотезу: метод спо­
собен лишь заменять «неоптимальные» NestLoop на HashJoin. Данная гипотеза в
работе не верифицировалась.

3.3.2 Глубокое обучение для аппроксимации функции стоимости

Различия в архитектуре централизованных СУБД и массово­параллельных
колоночных СУБД необходимо учитывать при модификации рассмотренных ме­
тодов аппроксимации функции стоимости. Например, вместо нескольких мето­
дов чтения таблиц, используемых в централизованных СУБД, в рассмотренной
колоночной СУБД используется только 1 метод. Для соединения таблиц доступен
только метод HashJoin. При этом обычное дерево­план в массово­параллельных
СУБД дополняется также операторами, отвечающими за решение вопроса рас­
пределённости используемых в запросе таблиц – методы BroadCast и Redistribute.
Использовать предложенные в статьях, взятых за основу, признаковые описания
как есть не получится. В качестве решения данной проблемы были выбраны сле­
дующие модификации:

1. Набор доступных операторов соединения был заменён. Вместо
[HashJoin, NestLoop] в данной работе использовался только HashJoin,
причём чтобы получить признаковые описания он был объединён с
операторами перераспределения данных как показано на рисунке 3.10.

2. Так как вместо нескольких способов чтения таблиц в работе был досту­
пен только один, соответствующим образом изменилась и кодировка.

Одной из сложностей таких подходов является сбор обучающей выборки.
Требования к нему, как и всегда, предъявляются стандартные – разнообразие,



69

Рисунок 3.10 — Трансформация плана выполнения запроса для создания
признаковых описаний.

чистота, достаточный размер. Данными в рассмотренной задаче являются пары
[план; величина, характеризующая стоимость плана]. Если использовать в каче­
стве величины, характеризующей стоимость, например, время выполнения пла­
на, то для сбора обучающей выборки придётся выполнять запросы. Выполнение
запроса требует времени, а с учётом необходимости собрать большую выборку
данных – времени требуется неприемлемо много. Альтернативой этому служит
подход, не требующий выполнения запросов. Традиционный оптимизатор вычис­
ляет оценки стоимостей за доли секунды, вне зависимости от размера плана. И
хотя оценки стоимости не позволят превзойти традиционный оптимизатор, мож­
но собрать достаточно большую и разнообразную обучающую выборку за куда
более короткое время и научить модель работать не хуже, чем традиционный оп­
тимизатор. Так как нейросеть выступает в роли выделителя признаков, она может
выучить основные зависимости и из таких данных. Последний слой нейросети
представляет собой линейную регрессию, отображающую признаки плана в его
стоимость. Обычно достаточно дообучить на более качественных данных толь­
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ко последний слой. Таким образом удаётся обучить модель в два этапа. Подходы
из разобранных статей используют в качестве величин, характеризующих фак­
тическую стоимость плана, время выполнения. Практическое применение време­
ни выполнения запроса невозможно из­за влияния внешних факторов: например,
при разной текущей загрузке системы длительность исполнения идентичного пла­
на может существенно варьироваться. Для решения этой проблемы в настоящем
исследовании предложено использовать вместо времени фактическую стоимость
плана — значение, рассчитываемое стандартной функцией стоимости оптимиза­
тора, но с подстановкой реальных кардинальностей (а не их оценок), которые ста­
новятся доступны после выполнения плана. Данный подход обеспечивает полу­
чение объективного показателя временных затрат на выполнение плана, инвари­
антного к внешним условиям.

DQN (Deep Q­Network) подход

Признаковое описание данных, представленное в статье DQN [38], не поз­
воляет строить ветвистые планы (рисунок 3.11). Это можно доказать простым

Рисунок 3.11 — Примеры левого­глубокого и ветвистого планов.

примером. Одно из основных требований к признаковым описаниям при подходе
Q­learning – разные состояния (state) системы должны иметь различные признако­
вые описания. В векторе признаков DQN можно выделить три части: левая коди­
рует финальное состояние (терминальное, когда все таблицы соединены), средняя



71

кодирует текущее состояние (state) – все таблицы, которые соединены на данный
момент (для первого шага – одна из двух таблиц первого соединения), и правая
кодирует действие (action) – таблицы, которые присоединяются на этом шаге к
имеющейся цепочке соединений, закодированных в предыдущей части. Модель
на основе этого вектора предсказывает минимальную остаточную стоимость, то
есть стоимость текущего действия плюс сумму стоимостей всех последующих
действий при условии что они будут оптимальны. Допустим в запросе есть 4 таб­
лицы и условия соединения таковы, что план выполнения запроса может быть
ветвистым, например, таким: (A ▷◁ B) ▷◁ (C ▷◁ D). Такой план подразумевает,
что в процессе его построения в какой­то момент времени текущим состоянием
(state) было наличие одной пары соединённых таблиц – например, (A ▷◁ B). На
этом шаге действием (action) обязательно было соединение двух других таблиц –
(C ▷◁ D). Так как модель предсказывает стоимость последующих действий начи­
ная с текущего, она должна знать, что таблицы A и B уже соединены. Также одна
из таблиц, соединяемых на текущем шаге, должна быть закодирована в среднем
векторе. Получается, что в среднем векторе на этом шаге будут закодированы три
таблицы – A, B и либо C, либо D – в зависимости от того, какая таблица в со­
единенияя будет слева, а какая справа. Но этот вектор будет совпадать с вектором
состояния, в котором таблицы A, B и C или D уже соединены, что недопустимо.
Таким образом, предложенный в статье DQN способ кодирования состояний и
действий (state и action) позволяет строить только левые­глубокие деревья. Такие
деревья образует по сути отдельный класс деревьев. Сравнение левых­глубоких
планов с ветвистыми планами в части эффективности до сих пор ни кем не про­
водилось. Столь явное ограничение метода DQN вызывает опасения – а может
ли вообще левый­глубокий план быть лучше ветвистого? Можно ли найти для
абсолютного большинства запросов левый­глубокий план, который был бы эф­
фективнее субоптимального ветвистого плана, построенного традиционным оп­
тимизатором? Чтобы приблизиться к ответам на эти вопросы, в рамках данной ра­
боты был проведён эксперимент: для запросов IMDB JOB с малым количеством
таблиц (5 и менее) был произведён полный перебор планов. Для каждого запро­
са определялся как лучший план (оптимальный), так и лучший левый­глубокий
план. Результаты сравнивались между собой, а также с планами, построенными
традиционным оптимизатором. Эксперимент показал следующее:

1. Cреди оптимальных планов нет ни одного левого­глубокого.



72

2. В 80% запросов лучший левый­глубокий план проигрывает плану, по­
строенному традиционным оптимизатором.

С одной стороны, эти два факта ставят под сомнение целесообразность исполь­
зования метода DQN, с другой стороны – эксперимент проводился только для за­
просов с малым количеством таблиц. Такие запросы хорошо оптимизируются и
традиционным оптимизатором. В больших же запросах ошибки в оценках накап­
ливаются с ростом глубины дерева, что приводит к планам, далёким от оптималь­
ных. Несмотря на результаты эксперимента, работа с методом DQN была продол­
жена.

Модель представляет собой двухслойный перцептрон (полносвязную ней­
ронную сеть), принимающий на вход текущий запрос и частично построенный
подплан. Обучение модели направлено на прогнозирование Q­функции, которая
оценивает не мгновенную стоимость, а долгосрочные последствия включения
конкретного соединения в подплан. Следовательно, здесь необходима информа­
ция о том, как выглядит финальное состояние системы (какие таблицы должны
присутствовать в финальном плане). Поэтому используется кодировка на уровне
запроса – кодировка всего запроса, так же как и кодировка текущего подплана.
Кодировка на уровне запроса, Q, кодирует все атрибуты и их оценки селективно­
стей. То есть для заданной схемы базы данных с таблицами T1, . . . , Tn, имеющими
атрибутыAi1, . . . , Aim, кодировка на уровне запроса для атрибутаAij будет следу­
ющей:

– 0 если Ti не участвует в запросе
– предсказанная селективность атрибута Aij , если Aij имеет предикат
(фильтр)

– 1 если Ti участвует в запросе, но для Aij в запросе нет предиката
Например, для схемы базы данных:

– Emp(id, name, rank)
– Pos(rank, title, code)
– Sal(code, amount)

и запроса:

SELECT *
FROM Emp, Pos
WHERE Emp.rank = Pos.rank
AND Emp.id > 200
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кодировкой на уровне запроса будет вектор [0.2 1 1 1 1 1 0 0], где 0.2 –
селективность предиката Emp.id > 200.

Помимо кодировки на уровне запроса здесь требуется кодировка текущего
соединения (action). Кодировка соединения состоит из кодировки левого поддере­
ва, L, правого поддерева (всегда лист), R, и способа соединения, J. Левое поддере­
во кодируется 1 и 0 для каждого атрибута в схеме базы данных в зависимости от
того, относится ли он к таблице, являющейся частью этого поддерева. Рассмотрим
запрос:

SELECT *
FROM Emp, Pos, Sal
WHERE Emp.rank = Pos.rank
AND Pos.code = Sal.code
AND Emp.id > 200

и предположим, что на текущем шаге построения плана таблицы Emp и Pos уже
соединены, а действием является присоединение к ним таблицы Sal (рисунок
3.12).

Рисунок 3.12 — Пример создания векторного представления для текущего
состояния и действия.
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В этом случае кодировками Q, L и R будут вектора:
– Q = [0.2 1 1 1 1 1 1 1]

– L = [ 1 1 1 1 1 1 0 0]

– R = [ 0 0 0 0 0 0 1 1]

Полной кодировкой запроса и текущего соединения будет конкатенация векторов
Q, L, R и вектора, кодирующего тип соединения J. Так как в данной работе ис­
пользовался только один способ соединения – HashJoin, но были дополнительные
операторы перераспределения данных, вектор, кодирующий способ соединения,
по сути, кодировал способ перераспределения данных в дочерних узлах. Вектор
J мог иметь следующие виды:

– J = [0 0 0 0], если перераспределение данных дочерних узлов не
требуется

– J = [1 0 0 0], если для левого дочернего узла применяется оператор
Redistribute

– J = [0 1 0 0], если для правого дочернего узла применяется оператор
Redistribute

– J = [1 1 0 0], если для двух дочерних узлов применяется оператор
Redistribute

– J = [0 0 1 0], если для левого дочернего узла применяется оператор
Broadcast

– J = [0 0 0 1], если для правого дочернего узла применяется оператор
Broadcast

Архитектура нейросети представлена на рисунке 3.13. {qi, li, ri} – первый

слой нейросети, соединяющийся со скрытым слоем из 32 узлов hi, которые в свою
очередь соединены с выходным слоем O размерности 1. В качестве функции ак­
тивации использовалась кусочно постоянная функция ReLU. {qi, li, ri} кодируют
кардинальности и текущий подплан, а скрытый слой комбинирует информацию,
выходящую из первого слоя, чтобы создать промежуточные величины, включаю­
щие в себя различные взвешенные комбинации атрибутов. Несмотря на простоту,
такая архитектура может моделировать сложные взаимосвязи между атрибутами.

Вместо использования стандартного подхода обучения с учителем, здесь
применяется Q­learning, один из подходов обучения с подкреплением, которые
тренирует модель аппроксимировать Q­функцию – функцию, которая вычисля­
ет суммарную стоимость следующих действий по трём вещам: описание запро­
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Рисунок 3.13 — Архитектура нейросети, использовавшаяся в данной работе в
экспериментах с подходом DQN.

са (вектор Q), подплан, построенный на текущий момент (вектор L) и действие,
предпринимаемое на текущем шаге (вектора R и J). В процессе построения пла­
на с использованием Q­функции, можно получить оценку суммарной стоимости
всех последующих соединений для каждого доступного на данномшаге действия,
выбрать самое дешёвое и продолжать действовать жадно пока план не будет по­
строен полностью. Каждый тренировочный экземпляр – это кортеж (state, action,
cost(action), state′), где

– state – граф текущего состояния (вектора Q и L)
– action – присоединение новой таблицы к имеющемуся подплану (вектора
R и J)

– cost(action) – стоимость этого присоединения
– state′ – новое состояние после выполнения присоединения action
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Нейросеть – это параметризованная модель для аппроксимации Q­функции. Обо­
значим модель Q̃θ, Q̃θ(fstate, faction) ≈ Q̃(state, action), где fstate – это вектор,
кодирующий состояние, а faction – это вектор, кодирующий действие. θ – пара­
метры модели, которые инициализируются методом Кайминга [47]. Для каждого
кортежа из обучающей выборки можно вычислить целевое значение по формуле:

yi = cost(action) + min
action′

Q̃θ(state
′, action′) (3.10)

где action′ пробегает все возможные в состоянии state′ действия (рисунок 3.14).

Рисунок 3.14 — Пример определения терминов state, action, reward и next state в
дереве (подплане).

{yi} могут быть использованы как целевые значения в задаче регрессии.
Если бы Q̃ была истинной Q­функцией, выполнялось бы следующее равенство:

Q̃(state, action) = cost(action) + min
action′

Q̃θ(state
′, action′) (3.11)
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Функция ошибки вычисляется по формуле:

L(Q̃) =
1

N

N
∑

i=1

(

yi − Q̃θ(state, action)
)2

(3.12)

Параметры модели Q̃θ, аппроксимирующей Q­функцию, могут быть оптимизиро­
ваны с помощью градиентных методов [48].

Чтобы повысить стабильность тренировочного процесса и, следовательно,
его скорость, использовались две нейросети. Первая нейросеть тренировалась
предсказывать {yi}, являющиеся суммой стоимости текущего действия и оценкой
минимальной суммарной стоимости всех последующих действий, требующихся
для построения полного плана. Второе слагаемое можно получить, взяв предска­
зания второй нейросети на соответствующих входных данных. Вторая нейросеть
в точности повторяет архитектуру первой и отличается лишь тем, что её пара­
метры заморожены и обновляются лишь раз вK шагов посредством копирования
новых весов первой нейросети во вторую. Обозначим вторую нейросеть как Q̃θ−,
где θ− означает, что веса модели не обновляются. K – гиперпараметр, который
стоит подбирать исходя из поведения тренировочного процесса в конкретной си­
туации. В данной работе вторая нейросеть обновляла веса раз в 1000 шагов.

После обучения на оценках стоимостей, модель дообучалась на фактиче­
ских значениях стоимостей. Для этого первый слой замораживался и изменялись
веса только второго слоя.

В исходной конфигурации нейросеть оказалась неспособной к обучению.
Для решения проблемы были предложены три модификации:

1. Добавление Layer Normalization [49].
2. Входной вектор данных дополняется числом, равным разности между

общим количеством таблиц в запросе и текущим количеством таблиц
в подплане. Хотя исходный входной вектор содержит всю информацию
для определения оставшихся шагов построения плана, явное предостав­
ление этого значения существенно упрощает задачу обучения для ней­
росети.

3. Double Q­Learning [50] – вместо минимума по всем возможным действи­
ям в уравнении (3.10) здесь с помощью первой нейросети (обновляю­
щейся на каждом шаге) выбирается самое дешёвое действие, а дальше с
помощью второй нейросети (обновляющейся раз вK шагов) вычисляет­
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ся оценка Q­функции для этого конкретного действия. Вместо формулы

Q̃θ(state, action) = cost(action) + min
action′

Q̃θ−(state
′, action′) (3.13)

в Double Q­Learning исползуется формула

Q̃θ(state, action) = cost(action) + Q̃θ−(state
′, action′Q̃θ(state

′, action′))

(3.14)
После внесения трёх указанных модификаций процесс обучения стал схо­

диться. Однако наилучший результат для набора запросов IMDB JOB уступал тра­
диционному оптимизатору: совокупное время выполнения запросов оказалось на
43% больше (таблица 1). Одним из факторов, объясняющих этот результат, могут
быть ограничения на структуру планов, формируемых данным подходом.

Время выполнения 100 запросов.
Планы

классического оптимизатора.
Планы

обученного оптимизатора.
Версия из
оригинальной статьи. 1.5 часа 7 часов

Версия с
рядом модификаций. 2.15 часа

Таблица 1 — Результаты сравнения подхода DQN с классическим
оптимизатором запросов.

NEO (Neural Optimizer) подход

В отличие от подхода DQN, метод Neo способен формировать ветвистые
планы выполнения запросов. В данном подходе не используется концепция action
­ вместо этого алгоритм работает исключительно с понятием state, оценивая по­
тенциал каждого подплана независимо от конкретных действий на каждом шаге.
Модель предсказывает не остаточную стоимость, а минимально возможную сто­
имость полного плана, который может быть получен из текущего подплана. На
рисунке 3.15 представлена визуализация одного шага алгоритма Neo по построе­
нию плана выполнения запроса. Векторные представления запросов и подпланов

соответствуют оригинальной работе с учётом внесённыхмодификаций, аналогич­
ных изменениям, применённым в подходе DQN.
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Рисунок 3.15 — Пример множества возможных состояний в подходе Neo.

Архитектура рабочего процесса. Оригинальный подход (рисунок 3.16(а)) об­
ладает существенными ограничениями. Во­первых, модель требует значитель­
ного объема ”опыта”для достижения приемлемого качества ­ экспериментально
установлено, что необходимо не менее 500 уникальных планов для каждого за­
проса. Это означает необходимость выполнения сотен неоптимальных планов на
реальной СУБД, что приводит к двум проблемам: (1) неприемлемо большие вре­
менные затраты и (2) чрезмерная нагрузка на рабочую базу данных. Во­вторых,
подготовка R­векторов требует значительных вычислительных ресурсов.

На рисунке 3.16(б) представлена модифицированная архитектура Neo, ре­
шающая эти проблемы. Ключевые изменения включают:

– Замену реального выполнения планов на процедуру EXPLAIN, которая
мгновенно вычисляет оценку стоимости плана с использованием стан­
дартного оценщика кардинальности.
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– Отказ от использования R­векторов.
Данная модификация позволяет за секунды получить необходимый объем трени­
ровочных данных без нагрузки на рабочую СУБД.

Рисунок 3.16 —
(a) Дизайн системы Neo в оригинале.

(б) Модифицированный дизайн системы Neo – модификации подсвечены
бордовым цветом.

Использование архитектуры Transformer. Поскольку входные данные пред­
ставляют собой набор деревьев (в простейшем случае ­ листья), а выходное зна­
чение ­ одно число, возникает необходимость агрегации множества векторов в
единое представление. В оригинальной архитектуре для этого применялось ди­
намическое объединение (Max Pooling или Average Pooling) [51] ­ стандартный,
но ограниченный подход, широко используемый в компьютерном зрении, но при­
водящий к потере информации.

В данной работе для решения этой проблемы предложено использовать ме­
ханизм Self­Attention из архитектуры Transformer [52], который вычисляет взве­
шенную сумму векторов, где веса определяются самими векторами. Этот подход:

– Позволяет сохранить больше информации при агрегации.
– Компенсирует отсутствие R­векторов в модифицированной архитектуре.
– Обеспечивает более богатое представление данных.

Соответствующая модификация архитектуры показана на рисунке 3.17.
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Рисунок 3.17 — Модификация архитектуры нейросети Neo.

Рисунок 3.18 — Зависимость максимальной величины шума от x.

Аугментация данных. У использовавшейся СУБД есть одна особенность –
сбор статистик по данным при запуске СУБД обладает элементом стохастики. Из­
за этого селективности предикатов флуктуируют от запуска СУБД к запуску. При
этом модель очень чувствительна к этим изменениям. Чтобы снизить чувстви­
тельность модели и таким образом повысить её надёжность, в работе была пред­
ложена своего рода аугментация данных. Её суть заключалась в том, чтобы при
формировании батча добавлять к селективностямшум.Масштаб шума зависил от
значения селективности: чем ближе селективность к 0.5, тем больше возможный
шум, причём на отрезках [0, 0.2] и [0.8, 1] шум не добавлялся – селективности из
этих отрезков имеют важное значение. Они показывают, что после применения
фильтра таблица либо станет значимо меньше, либо её размер всё ещё будет бли­
зок к исходному. Добавление шума в таких случаях может навредить. На отрезке
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[0.2, 0.8] максимальный размер шума ограничен функцией y = 0.2− 20
9 (x− 0.5)2

– параболой с максимумом равным 0.2 и достигающимся при x = 0.5, и ветвя­
ми, пересекающими ось абсцисс в точках 0.2 и 0.8 (рисунок 3.18). Такое решение
сделало обученную модель устойчивой к флуктуациям селективностей – при пе­
резапуске СУБД одна и та же модель показывала себя одинаково.

Получение оценок неопределённости предсказаний. Хотя новый метод фор­
мирования обучающей выборки обладает существенными преимуществами, он
не обеспечивает полного покрытия пространства возможных планов и не гаран­
тирует отсутствия шума в обучающих данных. Эти ограничения могут привести
к ошибочным предсказаниям нейронной сети, что особенно критично в рассмат­
риваемой задаче. Для снижения рисков предлагается расширить модель, добавив
оценку неопределённости предсказания стоимости наряду с самим предсказани­
ем. Подпланы, для которых оценка неопределённости превышает установленный
пороговый уровень, должны автоматически исключаться из рассмотрения, даже
если их предсказанная стоимость выглядит привлекательно. Такой подход позво­
ляет компенсировать фундаментальные ограничения метода формирования обу­
чающих данных и минимизировать вероятность выбора субоптимальных планов
выполнения запросов.

Неопределённость, в свою очередь, делится на алеаторическую и эписте­
мическую [53]. Их суть хорошо проиллюстрирована на рисунке 3.19. Эпистеми­

ческая неопределённость описывает то, чего модель не знает, потому что дан­
ных для обучения нет в некоторой части области определения. Эпистемическая
неопределённость отражает недостаточность данных и знаний о моделируемой
системе. Она уменьшается по мере увеличения полноты обучающей выборки,
но сохраняется в областях с недостаточным количеством обучающих примеров.
В отличие от неё, алеаторическая неопределённость обусловлена фундаменталь­
ной стохастичностью наблюдаемых процессов и не может быть устранена даже
при увеличении объёма данных. В случае ошибок измерений такая неопределён­
ность называется гомоскедастической, демонстрируя постоянный уровень вари­
ативности. Когда неопределённость варьируется в зависимости от входных па­
раметров, она классифицируется как гетероскедастическая. Байесовский стати­
стический подход предоставляет механизм для интеграции априорных знаний с
наблюдаемыми данными при построении выводов. Его принципиальная особен­
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Рисунок 3.19 — Демонстрация различных видов неопределённости в контексте
линейной регрессии.

ность заключается в рассмотрении параметров модели как вероятностных рас­
пределений, а не фиксированных значений. Такой подход открывает возможность
оценки неопределённости через анализ распределения весов модели, что принци­
пиально невозможно в классических детерминированных моделях.

– Получение оценок эпистемической неопределённости.
Ансамблирование представляет собой эффективный метод, основанный
на обучении множества моделей или их копий на различных подмноже­
ствах данных, с последующим объединением их предсказаний в единое
распределение. Однако данный подход требует значительных вычисли­
тельных ресурсов, что привело к разработке альтернативной методики
­ использования dropout [54] в качестве байесовской аппроксимации ан­
самбля моделей [55]. Dropout, изначально предложенный как метод регу­
ляризации, случайным образом обнуляет веса сети согласно распределе­
нию Бернулли во время обучения. Как показано в работе [55], нейронная
сеть с dropout­слоями перед каждым полносвязным слоем математиче­
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ски эквивалентна байесовской аппроксимации гауссовского процесса. В
этом подходе каждое подмножество активных нейронов определяет уни­
кальную конфигурацию сети. Процесс обучения можно рассматривать
как совместное обучение 2m различных моделей, гдеm ­ количество ней­
ронов в сети, причем для каждого батча обучается случайно выбранная
конфигурация. Для практического применения предлагается выполнять
множественные прогоны модели (порядка нескольких сотен) с включен­
ным dropout­механизмом на этапе предсказания. Среднее значение полу­
ченных предсказаний служит точечной оценкой, а их дисперсия ­ мерой
эпистемической неопределенности модели. Этот подход позволяет оце­
нить надежность предсказаний без необходимости обучения полноцен­
ного ансамбля моделей.

– Получение оценок алеаторической неопределённости.
Эпистемическая неопределённость характеризует ограничения самой
модели, тогда как алеаторическая неопределённость отражает внутрен­
нюю стохастичность данных и принципиальную невозможность полно­
го объяснения наблюдаемых явлений. Алеаторическая неопределённость
подразделяется на два типа: гомоскедастическую, остающуюся постоян­
ной для всех входных данных, и гетероскедастическую, варьирующую­
ся в зависимости от характеристик входных данных. Гетероскедастиче­
ская неопределённость, будучи функцией от входных параметров, мо­
жет быть непосредственно смоделирована и предсказана нейронной се­
тью как часть её выходных данных. В отличие от неё, гомоскедастиче­
ская неопределённость оценивается как глобальный параметр модели,
значение которого определяется спецификой решаемой задачи и остаёт­
ся неизменным для всех входных данных. Это различие имеет принци­
пиальное значение при проектировании архитектур нейронных сетей для
оценки неопределённости предсказаний. Изучение гетероскедастической
неопределённости выполняется путём замены функции потерь средне­
квадратичной ошибки на следующую:

L =
N
∑

i=1

(yi − ŷi)
2

2Nσ(xi)2
+

1

2
logσ(xi)2 (3.15)
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Модель предсказывает как среднее значение ŷ, так и дисперсию σ2. В слу­
чае значительной невязки между предсказанными и фактическими зна­
чениями модель увеличивает оценку дисперсии, отражая низкую уверен­
ность в своих предсказаниях. Однако логарифмическая составляющая в
функции потерь играет критическую роль, ограничивая чрезмерный рост
дисперсии и предотвращая её стремление к бесконечности. Этот меха­
низм обеспечивает баланс между чувствительностью к ошибкам и чис­
ленной устойчивостью модели. Формально это выражается в том, что при
больших невязках логарифмический член доминирует, смягчая влияние
квадратичного члена на итоговое значение дисперсии.

Эксперименты показали, что в данной задаче алеаторическая неопределён­
ность всегда пренебрежимо мала, а эпистемическая неопределённость достаточ­
но часто оказывается высока. Это обусловлено сложностью покрытия обучающей
выборкой всей области определения (всего пространства планов выполнения за­
просов). 500 случайных планов для запросов с количеством таблиц более 8 – это
крайне малая доля всех возможных планов. Поэтому при использовании моде­
ли во время построения плана, в качестве кандидатов ей часто предоставляются
подпланы, не похожие на подпланы из обучающей выборки. Этот подплан может
быть как ”хорошим” так и ”плохим”. В целях снижения риска выбора неудачного
плана имеет смысл не рассматривать кандидатов с высоким уровнем эпистеми­
ческой неопределённости модели. Перед заменой традиционного оптимизатора
”умным” можно итеративно подобрать порог для значения неопределённости, по
которому будет приниматься решение об исключении кандидата из рассмотрения.
Таким образом можно обезопасить систему от ошибок при выборе плана.

Анализ результатов подхода Neo Аналогично результатам, полученным для
метода DQN, первоначальная версия подхода Neo из оригинальной работы пока­
зала худшую производительность по сравнению с традиционным оптимизатором.
Эксперименты с Neo проводились в двух различных режимах работы СУБД: цен­
трализованном табличном режиме и массово­параллельном колоночном режиме.
В централизованном табличном режиме модифицированная версия Neo проде­
монстрировала значительное улучшение, построив планы выполнения запросов,
которые в совокупности выполнялись на 40% быстрее планов, сгенерированных
традиционным оптимизатором. Однако в массово­параллельном колоночном ре­
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жиме результаты оказались противоположными ­ планы, построенные ”умным”
оптимизатором, выполнялись на 30% медленнее (таблица 2).

Время выполнения 100 запросов.

Табличный режим СУБД Колоночный режим СУБД

Традиционный
оптимизатор

Обученный
оптимизатор

Традиционный
оптимизатор

Обученный
оптимизатор

Версия из
оригинальной статьи. 2.5 часа

5 часов
1.5 часа

3 часа

Версия с
рядом модификаций. 1.5 часа 2 часа

Таблица 2 — Результаты сравнения подхода Neo с классическим оптимизатором
запросов

Выводы к третьей главе

Результаты, полученные в ходе проведённого исследования, опубликованы
в работах [56—58] и позволяют сделать ряд обобщающих выводов о возможно­
стях и ограничениях применения современных методов ускорения аналитических
SQL­запросов в контексте задач динамичного формирования групп объектов.

Во­первых, необходимо отметить, что среди протестированных подходов
лишь один — модель Neo, представляющая собой обучаемую функцию стоимо­
сти запросов, — продемонстрировала устойчивое ускорение выполнения запро­
сов на заранее определённом тестовом наборе. Использование модели позволяло
избежать неоптимальных планов, формируемых традиционными эвристическими
оптимизаторами, особенно в случаях с высокой сложностью соединений и нетри­
виальной структурой условий. При этом прочие исследованные методы (включая
модели оценки кардинальности, стратегии замены отдельных компонентов опти­
мизатора и адаптивные механизмы типа AQO) либо показали крайне ограничен­
ное улучшение, либо оказались неработоспособными в условиях исследуемой ар­
хитектуры.

Однако даже относительно успешный случай применения Neo требует кри­
тического переосмысления с позиции прикладной пригодности. Все полученные
улучшения справедливы только при условии фиксированного состава данных и
стабильного запроса. При этом:

– сама модель обучается на выборке запросов, сформированной для кон­
кретного состояния базы данных;
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– любые изменения в данных (обновление, добавление, удаление) могут
приводить к рассогласованию между моделью и реальной системой;

– для поддержания точности модели необходимо её постоянное дообучение
или периодическое переобучение на новых данных.

В случае статичной системы такой подход может быть оправдан, однако в
задаче динамичного формирования групп объектов, где обновления происходят
регулярно, объекты появляются и исчезают, а признаки пересчитываются много­
кратно, возникает необходимость либо в непрерывном онлайн­обучении, либо в
построении механизма оценки степени устаревания модели и её релевантности в
текущий момент времени. Последнее представляет собой отдельную, принципи­
ально нерешённую задачу, требующую ресурсов, экспериментальной валидации
и архитектурной поддержки. Отсутствие универсального решения для отслежи­
вания деградации моделей и автоматического триггера на переобучение делает
подобные системы уязвимыми и ненадёжными в условиях высокой изменчиво­
сти данных.

Таким образом, даже несмотря на теоретические преимущества методов ма­
шинного обучения для оптимизации SQL­запросов, их применение в условиях ди­
намичной среды оказывается сопряжено с избыточными накладными расходами
и неопределённостями. Иными словами, затраты на внедрение и поддержку по­
добных подходов в большинстве случаев превышают потенциальный выигрыш в
производительности.

Исходя из этого, в рамках данной работы был сделан принципиальный вы­
вод о невозможности универсального применения исследованных методов уско­
рения аналитических запросов в задачах, где признаки объектов формируются по­
средством сложных агрегаций. Подобные задачи, к сожалению, остаются в зоне
ограниченной оптимизируемости.

Тем не менее, важно подчеркнуть, что существует обширный класс задач, в
которых признаки объектов либо доступны непосредственно в исходных данных,
либо могут быть получены простыми трансформациями без необходимости обра­
щения к агрегатным операциям. Именно на такие задачи ориентировано дальней­
шее развитие предлагаемого метода динамичного формирования групп объектов
по принципу идентичности. Отказ от попытки универсального ускорения запро­
сов позволил сосредоточиться на более реалистичных сценариях, где возможна
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высокочастотная переоценка схожести объектов и последующая кластеризация с
приемлемыми вычислительными затратами.

Следующая часть диссертации посвящена архитектуре, алгоритмам и экс­
периментальному обоснованию метода динамичного формирования групп, раз­
работанного с учётом этих ограничений.
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Глава 4. Методы динамичного формирования групп объектов по принципу
идентичности

4.1 Структурная и семантическая согласованность как основа
интероперабельности

Формирование групп объектов по принципу идентичности в динамичной
информационной системе требует формального описания связей между объекта­
ми. Такие связи отражают вероятность того, что два объекта представляют одну и
ту же сущность. Модель, описывающая эти связи, служит основой для последую­
щего применения алгоритмов кластеризации и анализа структурной согласован­
ности. В данной главе под «структурой» понимается графовая модель, задающая
схему потенциальной идентичности между объектами.

Рассмотрим множество объектов:

I = {i1, i2, . . . , iN},

где каждый объект i ∈ I описывается вектором признаков di = (pi1, pi2, . . . , piq).
На множестве пар объектов вводится функция семантической близости

F (i, j) ∈ [0, 1], которая отражает степень их идентичности. Эта функция может
быть как вручную заданным расстоянием в признаковом пространстве, так и обу­
чаемой моделью. Далее фиксируется порог τ :

F (i, j) ≥ τ ⇒ объекты i и j считаются идентичными.

На основе значений F (i, j) строится граф связей:

G = (V,E,w),

где:
– V = I — множество вершин, соответствующих объектам;
– E ⊆ {(i, j) | F (i, j) ≥ τ}—множество рёбер между “схожими” объекта­
ми;

– w(i, j) = F (i, j)— вес ребра, отражающий степень схожести.
Такой граф, называемый структурой связей объектов, является входными

данными для задачи группировки.
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Поскольку граф строится на основе оценки схожести, он может содержать
ошибки:

– ложноположительные связи— рёбра между объектами, не являющимися
идентичными;

– ложноотрицательные ”связи” — отсутствие рёбер между действительно
идентичными объектами.

Структурная согласованность основывается на анализе связей между объ­
ектами, где каждая связь имеет конкретное значение или название, при этом сами
свойства объектов не учитываются [4]. Такой подход предполагает рассмотрение
всей системы как однородного набора взаимосвязанных элементов. Классифика­
ция или разделение этой системы на подмножества производится исключительно
на основе изучения структуры связей между объектами. Безусловно, подобный
метод имеет существенное ограничение, поскольку не учитывает содержатель­
ную сторону объектов. Однако важно понимать, что структурная согласованность
служит лишь дополнением к семантической согласованности, которая обеспечи­
вает содержательную непротиворечивость системы и напрямую зависит от спе­
цифики рассматриваемой предметной области.

Для теоретического анализа удобно ввести идеальную структуру — консо­
нансную [59; 60]. Структура является консонансной, если все тройки объектов в
ней находятся в консонансном состоянии. Вводится консонансная функция

Fk(i1, i2, i3) = r1,2 ∧ (r2,3 = r1,3) ∨ (¬r12) ∧ (r2,3 ̸= r1,3)

принимающая значения из множества {0, 1}:
– если Fk(i1, i2, i3) = 1, то тройка объектов находится в консонансом состо­
янии;

– если Fk(i1, i2, i3) = 0, то тройка объектов находится в диссонансном со­
стоянии.

В реальных условиях мы имеем ассонансную структуру— граф, содержащий как
консонансные тройки, так и диссонансные.

В отличие от структурной согласованности, которая фокусируется исклю­
чительно на формальных связях между элементами, семантическая согласован­
ность требует содержательного соответствия между критериями группировки и
реальными свойствами объектов. Если структурный подход отвечает на вопрос
”образуют ли объекты связные группы по заданному формальному правилу? то
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семантический — ”действительно ли сгруппированные объекты идентичны по
существу?”. Ключевая проблема возникает, когда формальные критерии группи­
ровки расходятся с содержательной идентичностью объектов. Например, при кла­
стеризации текстовых документов по векторным представлениям структурная со­
гласованность может быть достигнута за счет близости в векторном пространстве,
но семантическая согласованность при этом нарушится, если документы с разным
смыслом окажутся в одном кластере из­за случайного совпадения терминов. Ана­
логично, при группировке изображений по формальным признакам (гистограм­
мам цветов) в один кластер могут попасть совершенно разные по содержанию
изображения, имеющие схожие цветовые распределения.

Интероперабельность— это способность системы взаимодействовать меж­
ду компонентами, данными и источниками. В задаче группировки объектов инте­
роперабельность достигается, когда система находится в консонансном состоянии
и является семантически согласованной. Только сочетание обоих видов согласо­
ванности позволяет создавать интероперабельные системы, где группы объектов
сохраняют как формальную целостность, так и смысловую идентичность.

Важно подчеркнуть, что сама по себе структура — это лишь описание свя­
зей, полученных на основе текущих данных. Такие свойства, как:

– устойчивость к ошибкам в связях,
– возможность масштабной обработки,
– адаптация к изменению данных,

— относятся не к структуре, а к алгоритмам, которые её обрабатывают. Алгоритм
должен быть способен корректно выделять группы даже при наличии умеренно­
го количества ошибок, эффективно масштабироваться на большие графы и под­
держивать инкрементальную переработку при изменении состава объектов. Эти
аспекты рассматриваются далее в разделе 4.2.

В данном разделе была представлена формальная модель структуры связей
между объектами, основанная на графе, порождённом функцией сходства. Такая
структура служит основой для следующего этапа — кластеризации объектов в
группы по принципу идентичности. Были рассмотрены различия между идеаль­
ной (консонансной) и реальной (ассонансной) структурами, возникающими из­за
ошибок в оценке схожести. Также была уточнена роль структуры в обеспечении
согласованного, интероперабельного представления данных в системе. Переход к
графовой модели позволяет учитывать как признаки объектов, так и взаимосвязи
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между ними, что особенно важно в условиях динамически изменяющихся дан­
ных. Граф схожести объектов выступает как обобщённая, масштабируемая форма
представления предварительных связей, пригодная для дальнейшей обработки и
кластеризации.

4.2 Сравнительный анализ методов группировки по идентичности

Очевидным методом [61] для объединения товаров в группы является ис­
пользование принципа транзитивности (рис. 4.1).

Рисунок 4.1 — Подход на основе транзитивного замыкания.

Суть подхода заключается в том, чтобы добавлять новый товар в уже су­
ществующую группу, если он похож хотя бы на один из товаров этой группы.
Хотя этот метод достаточно прост в реализации, он вызывает серьёзные пробле­
мы, влияя на структуру групп. Вместо чётко выраженных групп товаров (объекты
одной группы имеют связи друг с другом и не имеют связей с объектами дру­
гих групп), мы часто получаем группы, связанные между собой редкими рёбрами
(рис. 4.2). Эти связи некорректны и возникают при ошибках процедуры сравне­
ния двух товаров. Из­за них транзитивный подход приводит к рассогласованию
внутри групп.

Задача формирования групп объектов по принципу идентичности в графе
сводится к задаче выделения сообществ (community detection). В классическом ви­
де сообщество в графе — это подмножество вершин, обладающее высокой плот­
ностью внутренних связей и относительно малым числом рёбер, ведущих наружу.
При этом отсутствует строгое универсальное определение сообщества: на прак­
тике оно задаётся алгоритмически — как результат работы метода.
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Рисунок 4.2 — Три группы идентичных товаров, ошибочно соединённых между
собой малым числом рёбер.

В данном разделе рассматриваются основные подходы к выделению сооб­
ществ в графах, проанализированы их достоинства и недостатки с точки зрения
специфики рассматриваемой задачи: работа с разреженными графами, высокая
динамика структуры, наличие ошибочных связей, отсутствие априорного знания
о числе групп.

1. Методы на основе edge betweenness (Girvan–Newman) [62]
Основаны на поэтапном удалении рёбер с наибольшей центральностью
(межкластерной нагрузкой). Обеспечивают иерархическое разбиение.
Плюсы: не требует задавать число кластеров (можно выбрать оптималь­
ное по принципу максимизации модулярности.
Минусы: низкая устойчивость к ошибочным связям; дорогие пересчё­
ты после каждого удаления; низкая масштабируемость (временная слож­
ность O(V · E2) или O(V 3)).

2. Модулярностные методы (Modularity­based) [63]
Например, Louvain. Стремятся максимизировать модулярность — функ­
ционал, сравнивающий плотность внутренних рёбер с ожидаемой при
случайной структуре.
Плюсы: не требует задавать число кластеров; относительно высокая
устойчивость к ошибочным связям (благодаря глобальности оптимиза­
ции); высокая скорость (временная сложность O(E)) (Louvain).
Минусы: эффект «порога разрешения» — не выявляют малые сообще­
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ства; локальные максимумы (нет чётко выраженного глобального макси­
мума); чувствительны к инициализации.

3. Label Propagation Algorithm (LPA) [64]
Алгоритм, в котором каждая вершина принимает метку, наиболее рас­
пространённую среди её соседей. Повторяется до сходимости.
Плюсы: не требует задавать число кластеров; масштабируем; высокая
скорость (временная сложность O(|V |+ |E|) на 1 итерацию).
Минусы: нестабильность результатов (зависимость от порядка обновле­
ния); возможен «захват» всей связной компоненты одной меткой (но это
можно нивелировать за счёт обеспечения низкой доли ошибочных рёбер
в графе).

4. Infomap [65]
Использует модель случайного блуждания с минимизацией длины опи­
сания маршрута. Оптимизирует map equation.
Плюсы: высокая точность на графах с ярко выраженными сообществами
и относительная устойчивость к ошибочным связям (учёт вероятностей
переходов снижает влияние ошибок).
Минусы: чувствителен к структуре графа (в структурах без явных сооб­
ществ может быть неэффективен); относительно низкая масштабируе­
мость (временная сложность O(ElogV )).

5. Walktrap [66]
Кластеризация на основе расстояния между распределениями случай­
ных блужданий фиксированной длины. Строит иерархию путём агломе­
рации.
Плюсы: не требует задавать число кластеров (можно выбрать оптималь­
ное по принципу максимизации модулярности); относительная устойчи­
вость к ошибочным связям (помогает усреднение по случайным блужда­
ниям).
Минусы: чувствителен к длине блуждания и требует предварительной
настройки числа шагов; требует полный граф; низкая масштабируемость
(временная сложность O(V 2logV )).

6. Методы на основе спектральной теории [67]
Включают разложение Лапласиана или матрицы смежности. Часто при­
меняются как предварительный шаг к кластеризации.
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Минусы: чувствительность к числовымпогрешностям; сложность интер­
претации; низкая масштабируемость (временная сложность от O(k · E)

до O(V 3) в зависимости от числа компонент k и разреженности графа).

Таблица 3 — Сравнение алгоритмов кластеризации по ключевым критериям

Метод Не требует
числа кластеров Масштабируемость

Girvan–Newman ± –
Louvain + +
Label Propagation (LPA) + +
Infomap + –
Walktrap ± –
Спектральные методы – –

На основании анализа можно заключить, что Label Propagation Algorithm
(LPA) и Louvain обладают наиболее подходящими характеристиками для реше­
ния задачи динамичного формирования групп идентичных объектов: они не тре­
буют указания числа кластеров, работают локально и масштабируются на боль­
шие графы. Кроме того, LPA может быть модифицирован для учёта весов рёбер,
а также, как будет показано дальше, может быть эффективно реализован в пара­
дигме MapReduce [68], что делает его особенно подходящим для решения задачи
в условиях больших данных.

4.3 Алгоритмы поиска групп

На основе анализа, проведённого в предыдущем разделе, в качестве базо­
вого метода кластеризации в данной работе выбран алгоритм распространения
меток (Label Propagation Algorithm, LPA). Он обеспечивает масштабируемость,
не требует задания числа кластеров и легко адаптируется к графовой структуре
входных данных.

Тем не менее, при применении LPA на графах, очищенных от слабых связей
(для повышения точности), возникает проблема снижения полноты: часть объек­
тов оказывается изолированной и не попадает в формируемые кластеры. Это кри­
тично для задач, где важно максимальное покрытие объектов, в том числе сла­
бо связанных. Для решения данной проблемы предлагается модифицированный
двухэтапный подход к кластеризации.

Алгоритм LPA реализует следующий процесс. На начальном этапе каж­
дая вершина графа получает уникальную метку. Затем выполняется итератив­
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ный процесс: на каждом шаге вершина обновляет свою метку, выбирая наиболее
распространённую метку среди соседних вершин. В случае наличия нескольких
меток с одинаковой максимальной частотой, выбор осуществляется случайным
образом. Итерации продолжаются до достижения сходимости решения либо до
исчерпания заданного максимального числа итераций.

Для формального описания алгоритма (алг. 1) необходимо ввести следу­
ющие понятия. Матрица связности A представляет собой симметричную квад­
ратную матрицу, отражающую наличие или отсутствие связей между объектами.
Диагональная матрица степенейD содержит на диагонали степени вершин графа,
где степень вершины определяется количеством её связей с другими вершинами:
D = diag(d1, d2, . . . ,dN).

Матрица перехода вычисляется какP = D−1A. Матрица метокC имеет раз­
мерностьN×n, гдеN ­ количество объектов (вершин графа), а n ­ число уникаль­
ных меток на начальной итерации алгоритма (максимальное количество групп).
В рассматриваемом случае принимается N = n, что соответствует исходному со­
стоянию, когда каждая вершина графа имеет уникальную метку. Таким образом,
без потери общности можно записать:

C(0) = diag(1, 1, . . . ,1),

C(t+ 1) = PC(t).

При этом новые метки вершин определяются как arg max
label

C.
А л г о р и т м [64].
Вход: G – граф, C0 – начальные метки.
Выход: Ĉ – финальные метки.

Ш а г 1. Составить матрицу связности A для графа G.
Ш а г 2. Вычислить di =

∑

j

Aij .

Ш а г 3. Рассчитать D = diag(d1, d2, . . . ,dN).
Ш а г 4. Вычислить P = D−1A.
Ш а г 5. Инициализировать C(t = 0) = C(0).
Ш а г 6. Пока C(t) не сошлось:

C(t+ 1) = PC(t),
t = t+ 1.
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Ш а г 7. Ĉ = C(t).
Алгоритм обладает высокой степенью распараллеливания и эффективно

реализуется в распределённых вычислительных системах, что обеспечивает его
практическую применимость для обработки крупномасштабных графов. Это до­
стигается благодаря локальному характеру вычислений ­ обновление метки каж­
дой вершины зависит только от её непосредственных соседей. Пример реализации
алгоритма в парадигме MapReduce, демонстрирующий его масштабируемость,
представлен на рис. 4.3.

Рисунок 4.3 — Одна итерация LPA в парадигме MapReduce: на первом шаге
каждая вершина посылает всем соседям свою метку, на втором шаге каждая

вершина меняет свою метку на моду от всех полученных на первом шаге меток.

В рамках данной работы была предложена модификация алгоритма. Пред­
ложенная схема состоит из двух логически разделённых этапов:

1. Первый этап: построение кластеров на сильных связях.Из исходного
графаG = (V,E,w) удаляются все рёбра, для которых значение функции
сходства F (i,j) < τstrong, где τstrong — порог, соответствующий высокой
степени сходства. На полученном подграфеGstrong выполняется стандарт­
ный алгоритм LPA. Это позволяет сформировать начальные устойчивые
группы с высокой однородностью.

2. Второй этап: доагрегация и включение слабо связанных объектов.
После построения начального разбиения объекты, не попавшие в класте­
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Рисунок 4.4 — Пример работы двухстадийного алгоритма LPA. LPA(95%)
упустил бы один из зелёных товаров, что негативно сказалось бы на полноте.

LPA(80%) сгруппировал бы все товары, что негативно сказалось бы на
однородности.

ры (в силу недостатка сильных связей), анализируются на предмет воз­
можного присоединения к существующим группам. Для этого рассмат­
риваются рёбра с весами в диапазоне [τweak, τstrong]. Каждый неподклю­
чённый объект присоединяется к той группе, с которой он связан наи­
большим общим весом, при условии, что такая связь превышает τweak.

Таким образом, первый этап обеспечивает высокий уровень однородности
кластеров за счёт строгого фильтра, а второй— полноту за счёт мягкого дообъеди­
нения. Пример работы представлен на рис. 4.4. На первом этапе были образованы

следующие группы:
1. Фиолетовые: 1254679585, 1618206631, 1615304227, 31920558.
2. Коричневые: 1772039848, 1731197069, 1617184773, 1654613518.
3. Зелёные: 1622098030, 1622104200.

Эта разбивка корректна с точки зрения однородности: группы отличаются годом
выпуска книги, и в каждой группе оказались книги с одинаковыми обложками,
названиями и годом выпуска. На втором же этапе книга с id 1630618602 добави­
лась в зелёную группу, так как с ней у данного товара было больше связей, чем с
другими группами (2 связи против 1 с каждой другой группой). У данной книги не
указан год выпуска, но оттенок обложки совпадает с оттенком обложки книг 2018
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года выпуска, поэтому с учётом доступной информации добавление этой книги в
зелёную группу можно считать корректным. Получается, что для этой компонен­
ты связности из 11 товаров транзитивный подход на графе с уверенными рёбрами
сгруппировал бы фиолетовые с коричневыми, а на графе с неуверенными рёбрами
сгруппировал бы вообще все товары в одну группу. LPA (80%) сделал бы то же,
что транзитивный подход на графе с уверенными рёбрами. LPA (95%) справился
бы хорошо с точки зрения однородности, но не идеально с точки зрения полноты.
2­stage LPA привёл к наилучшему результату.

Для выбора порогов τstrong и τweak использовалась размеченная выборка, со­
стоящая из идентичных и неидентичных пар объектов. Основные параметры на­
стройки:

– τstrong выбирается так, чтобы среди пар объектов со значением функ­
ции сходства F (i,j) ≥ τstrong доля ложноположительных примеров (false
positive) не превышала 5%;

– τweak выбирается так, чтобы среди пар объектов со значением функции
сходства τweak ≤ F (i,j) ≤ τstrong доля ложноположительных примеров
(false negative) не превышала 20%.

Такое разделение диапазона весов рёбер позволяет отделить высоконадежные
связи (используемые для построения начальных кластеров) от потенциально по­
лезных, но более шумных, применяемых только для дообъединения.

Модифицированный алгоритм сохраняет ключевые достоинства LPA, при
этом даёт более высокие показатели полноты при том же уровне однородности.
Его характеристики:

– Локальность: оба этапа требуют только информации о соседях вершины;
– Масштабируемость: реализация возможна в распределённой среде;
– Адаптивность: добавление новых объектов возможно без полного пере­
счёта;

– Устойчивость: итоговая структура слабо чувствительна к отдельным
ошибочным рёбрам.

Выводы к четвёртой главе

Предложенная двухэтапная модификация алгоритма распространения ме­
ток позволяет добиться высокой полноты кластеризации при сохранении точно­
сти. Такой подход особенно актуален в задачах, где исходный граф идентично­
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сти зашумлён, а качество модели предсказания идентичности не идеально. Метод
применим для обработки больших объёмов данных и интеграции в динамические
системы, требующие переоценки связей в реальном времени.
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Глава 5. Экспериментальные исследования и анализ результатов

5.1 Методика оценки качества решения

Подходы сравнивались на собранном вручную тестовом экземпляре данных
в задаче поиска идентичных товарных предложений. Была выбрана одна катего­
рия товаров, состоящая из около 20 тыс. карточек товаров. Из них случайным об­
разом было выбрано 3 тыс. карточек, которые были разбиты на группы вручную.
В результате получилось 704 группы, распределение их размеров представлено
на рис. 5.1.

Рисунок 5.1 — Демонстрация различных видов неопределённости в контексте
линейной регрессии.

Из постановки задачи у нас есть N карточек товаров, для которых суще­
ствует C = {c1, c2, · · · ,cn} – истинное разбиение на группы идентичных товаров.
Пусть мы нашли некоторое свое разбиение K = {k1, k2, · · · ,km}. Тогда можно
составить матрицуA, элементы {acikj} которой – это количество карточек товаров
из истинной группы ci и определенные нами в группу kj . Данная матрица исполь­
зуется для вычисления различных численных оценок качества подходов.

– 1. Однородность [9] – схожесть объектов внутри группы:

h =

{

1, если H (C, K) = 0,

1− H(C|K)
H(C) иначе,
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где

H (C|K) = −
m
∑

j=1

n
∑

i=1

acikj

N
log

acikj
n
∑

i=1

acikj

,

H(C) = −
n

∑

i=1

m
∑

j=1

acikj

n
log

m
∑

j=1

acikj

n
.

– 2. Полнота [9] – доля идентичных объектов, объединенных в одну группу:

c =

{

1, если H (K, C) = 0,

1− H(K|C)
H(K) иначе,

где

H (K|C) = −
n

∑

i=1

m
∑

j=1

acikj

N
log

acikj
m
∑

j=1

acikj

,

H(K) = −
m
∑

j=1

n
∑

i=1

acikj

n
log

n
∑

i=1

acikj

n
.

– 3. V ­мера [9] – гармоническое среднее между однородностью и полнотой:

Vβ =
(1 + β) h c

β h+ c
,

где β – параметр: если β больше 1, полнота имеет больший вес в расчетах, если
β меньше 1, больший вес имеет однородность.

Второй класс методов оценки качества кластеризации основан на комбина­
торном подходе, который исследует количество пар объектов, сгруппированных
одинаково в истинном и найденном в качестве решения задачи разбиениях. Дру­
гими словами, каждая пара объектов может быть либо 1) сгруппирована вместе в
обоих разбиениях (N11), 2) сгруппирована отдельно в обоих разбиениях (N00), 3)
сгруппирована вместе в найденном, но не в истинном разбиении (N01), 4) сгруп­
пированы вместе в истинном, но не в найденном разбиении (N10). На основе этих
четырех значений можно рассчитать следующие меры качества.
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– 4. ОценкаФаулкса­Мэллоуза [10] – геометрическое среднее между однород­
ностью и полнотой (в комбинаторном смысле):

FMscore =

√

N11

N11 +N01
·

N11

N11 +N10
=

N11
√

(N11 +N01) · (N11 +N10)

– 5. Индекс Рэнда с поправкой на случайность [11; 12] – при рассмотрении
всех пар объектов – это сумма двух долей: 1) доля пар, попавших в одну группу
при условии, что они и должны были попасть в одну группу в силу идентично­
сти, 2) доля пар, не попавших в одну группу при условии, что они и не должны
были попасть в одну группу. Поправка на случайность позволяет нивелировать
эффект от высокой вероятности получить большое число пар второго типа даже
при случайном разбиении:

ARI =

n
∑

i=1

m
∑

j=1

(acikj
2

)

−

[

n
∑

i=1

(

xi

2

)
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)

]
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−
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2
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/
(
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2

)

,

где

xi =
m
∑

j=1

acikj ,

yj =
n

∑

i=1

acikj .

5.2 Полученные результаты

В данном разделе приведены результаты сравнения работы следующих ал­
горитмов:

– транзитивное замыкание связных компонент;
– LPA и его модификация, предложенная автором данного исследования;
– Louvain;
– DIANA [69], не являющийся графовым методом кластеризации, но рас­
смотренный для полноты картины.

Как уже было отмечено выше, алгоритм распространения меток работает не с
непрерывными характеристиками (расстояниями), а с бинарными (есть связь /
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нет связи). Последние же получаются из первых путем сравнения расстояния с
некоторым пороговым значением. Выбор порогового значения позволяет регу­
лировать соотношение числа одних и других, отдавая приоритет либо полноте
решения, либо точности. В рассматриваемой задаче исходно доступно несколько
графов, соответствующих разным значениям точности решения (80 и 95%).

Результаты экспериментов представлены в таблице. Как уже было сказано
выше, все рассмотренные методы в качестве исходных данных используют граф.
Если транзитивный подход и LPA могут работать и с разреженным графом, то
DIANA требует наличия связей каждого объекта с каждым. Поэтому для разных
методов использовались разные исходные графы. Всего таких графов было три.

1. Граф идентичных объектов с точностью 95% – это граф, полученный
классическим методом в два этапа: отбор кандидатов, на котором можно
потерять пару идентичных объектов в силу не идеальности эвристики, и
непосредственно измерение расстояний для отобранных пар­кандидатов
с последующим сравнением с пороговым значением. Пороговое значе­
ние подобрано таким образом, чтобы доля ошибок составляла 5%. Этот
граф использовался как исходные данные для транзитивного метода, а
также для LPA (95%) и Louvain (95%).

2. Граф идентичных объектов с точностью 80% – аналогично первому гра­
фу, только доля ошибок здесь составляет 20%. В этом графе больше ре­
бер, благодаря чему возможная полнота решения задачи поиска идентич­
ных товаров у него выше, а однородность ниже. Данный граф использо­
вался в эксперименте LPA (80%) и Louvain (80%).

3. Полный граф, каждому ребру которого соответствует значение функции
близости между парой товаров. Этот граф был необходим для экспери­
ментов с методом DIANA.

LPA (80%) работает с точки зрения однородности ожидаемо хуже, чем LPA
(95%), так как разница заключается в разном количестве рёбер между группами
различающихся товаров: слишком большая доля таких рёбер приводит к получе­
нию разными группами товаров одинаковой метки, что нарушает однородность,
хотя в то же время повышает полноту. 2­stage LPA берёт лучшее от обоих, обес­
печивая более высокую полноту при незначительных потерях в однородности.
Diana1 благодаря дивизивной природе даёт решение с наивысшей однородно­
стью, однако полнота проигрывает методу LPA. Для удобного сравнения методов
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Таблица 4 — Результаты сравнения методов объединения объектов в группы

Метод Однородность Полнота V ­мера
Оценка
Фаулкса­
Мэллоуза

Индекс Рэнда с
поправкой на
случайность

Транзитивный
подход (95%) 0.685 0.942 0.793 0.720 0.696

LPA (95%) 0.992 0.916 0.952 0.872 0.863
LPA (80%) 0.744 0.973 0.843 0.755 0.731
2­стадийный LPA 0.986 0.945 0.965 0.882 0.871
Louvain (95%) 0.993 0.902 0.945 0.868 0.855
Louvain (80%) 0.783 0.965 0.865 0.773 0.768
DIANA1 0.995 0.879 0.933 0.840 0.819
DIANA2 0.991 0.810 0.891 0.774 0.756

в таблице также приведена V­мера, позволяющая комплексно оценивать и одно­
родность, и полноту. По V­мере именно 2­stage LPA является лидером среди всех
рассмотренных методов. Учитывая отсутствие повышенных требований к графу
в виде необходимости наличия рёбер между каждой парой товаров, LPA также
является более удобным на практике. Более того, LPA хорошо ложится на модель
распределённых вычислений MapReduce, что позволяет ему иметь эффективную
реализацию, решающую задачу с сотнями миллионов объектов за несколько ча­
сов. Интересным результатом является снижение однородности LPA (80%) в срав­
нении с точностью исходных данных с 80% до 74.4%, и рост однородности LPA
(95%) соответственно с 95% до 99.2%. Это объясняется сутью алгоритма — ес­
ли ошибочных рёбер между разными группами товаров мало (например, 5% от
всех рёбер), LPA «уберёт» часть из них. Если же их достаточно много (например,
20%), LPA не справится с задачей разделения и оставит рёбра, а после объеди­
нения нескольких групп разных товаров добавятся дополнительные ошибочные
рёбра между остальными товарами разных групп, что повысит долю таких рёбер.
Louvain (95%) показывает однородность 99.3%, что практически совпадает с ре­
зультатом LPA (95%) и объясняется тем, что оба алгоритма работают на одном и
том же графе, построенном по высокому порогу. Полнота у Louvain (95%) немно­
го ниже— 90.2% против 91.6% у LPA (95%). Это связано с особенностями самого
метода: он принимает решение о присоединении объекта к кластеру, оценивая,
приведёт ли это к росту модулярности. Если добавление объекта в какой­либо из
соседних кластеров не даёт выигрыша по целевой функции, объект может остать­
ся изолированным. В отличие от LPA, который даже при слабом, но локально пре­
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обладающем сигнале передаёт метку, Louvain действует более консервативно и
избегает включения объектов с неочевидной принадлежностью. Это и объясняет
умеренное снижение полноты при практически той же однородности. В варианте
Louvain (80%), где граф содержит больше рёбер, в том числе ошибочных, наблю­
дается закономерное снижение однородности до 78.3% и рост полноты до 96.5%.
Увеличение количества слабых связей в графе приводит к тому, что Louvain на­
чинает объединять области, которые ранее были разделены. Поскольку алгоритм
полностью опирается на структуру графа— то есть на набор и конфигурацию рё­
бер между объектами — и не учитывает степени достоверности этих связей, его
устойчивость к шуму оказывается ограниченной. Это проявляется в том, что даже
относительно слабые связи, если они соединяют ранее раздельные компоненты,
могут повлиять на агрегацию кластеров и привести к их частичному слиянию.
Тем не менее Louvain (80%) лучше справляется с ростом доли ошибочных связей,
чем LPA (80%), что согласуется с теорией. Алгоритм DIANA на обоих вариантах
демонстрирует очень высокую однородность (99.5% и 99.1%), что отражает ак­
куратный характер дивизивной кластеризации. Он начинает с полной группы и
пошагово делит её, ориентируясь на уменьшение средних внутригрупповых рас­
стояний, разбивая изначальный кластер на всё более однородные подгруппы. Та­
кой подход хорошо работает в части избежания включения заведомо разнородных
объектов. Однако это приводит к заметным потерям полноты: 87.9% у DIANA1 и
81.0% у DIANA2. Различие между ними объясняется способом вычисления меры
схожести: оба алгоритма работают на одном и том же графе, но оценивают рассто­
яние между объектами по­разному, что влияет на последовательность разбиений
и на то, какие группы оказываются разделёнными. DIANA, в отличие от графо­
вых методов, не использует структуру связей напрямую — она ориентируется на
глобальные признаки различия между объектами, что делает её чувствительной к
выбору метрики. Кроме того, алгоритм требует матрицу всех попарных расстоя­
ний, что ограничивает его применимость задачами умеренного масштаба и делает
его мало пригодным для работы с большими графами.

5.3 Методика оценки качества группировки объектов в реальных задачах

В условиях ежедневной обработки сотен миллионов объектов, с миллио­
нами обновлений, добавлений и удалений, критически важно постоянно контро­
лировать качество работы системы динамического формирования групп идентич­
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ных объектов. Бизнес­логика напрямую зависит от точности этих групп: неверная
группировка ведет к искажению аналитики, некорректной работе и финансовым
потерям. Однако практический мониторинг качества на таких масштабах и при
такой динамике упирается в фундаментальные ограничения измерения ключевых
мер качества – полноты и однородности.

Главная проблема – невозможность прямого измерения полноты. Эта мера
качества требует сравнения полученной группировки с полной эталонной размет­
кой всех объектов. Но сама необходимость автоматической группировки возни­
кает именно потому, что создание такого эталона для всего массива данных прин­
ципиально нереализуемо из­за его объема и постоянных изменений. Объекты не
статичны: ежедневные обновления характеристик могут сделать любую, даже ги­
потетически созданную эталонную разметку, устаревшей. Без полного и актуаль­
ного ”ground truth” оценка того, какая доля всех существующих групп идентичных
объектов была найдена системой, превращается в неразрешимую задачу.

Однородность является более доступной мерой качества, так как теорети­
чески ее можно оценить внутри уже сформированных групп, не требуя глобаль­
ного эталона. Однако и здесь возникают практические барьеры, делающие точ­
ную оценку крайне затруднительной. Чтобы подтвердить, что все объекты внут­
ри группы действительно идентичны, необходимо проверить каждую возможную
пару объектов в этой группе на соответствие критериям идентичности. Для груп­
пы размером k это означает проверку k · (k− 1)/2 пар. Для относительно неболь­
шой группы из 10 объектов это уже 45 пар. В реальности группы могут достигать
размеров в десятки или даже сотни объектов, а количество групп исчисляется мил­
лионами. Даже если проверять не все группы, а лишь репрезентативную выборку,
объем работы по ручной или экспертной верификации внутри каждой выбран­
ной группы становится неподъемным для ежедневного контроля. Необходимость
проверки огромного числа пар внутри групп делает попытку точного измерения
однородности на всем массиве данных или даже на значительной выборке практи­
чески неосуществимой задачей в условиях ограниченных ресурсов и требований
к оперативности.

Таким образом, стандартные подходы к оценке качества группировки – че­
рез прямой расчёт однородности и полноты – наталкиваются на непреодолимые
практические препятствия в контексте больших, динамически обновляющихся
данных. Возникает острая потребность в разработке альтернативных, практиче­
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ски реализуемых и оперативных методик контроля качества, которые могли бы
давать значимую оценку работы системы ежедневно, не требуя невозможного –
полной эталонной разметки или полной проверки миллионов пар объектов внутри
групп.

5.3.1 Приближённая оценка однородности

Стандартным подходом по оценке какого­либо параметра в больших дан­
ных является расчёт этого параметра по выборке, сделанной из этих данных. Сем­
плировать случайные группы и проверять их однородность не получится – здесь
мы сталкиваемся с необходимостью проверки всевозможных пар объектов внут­
ри каждой выбранной группы, а число пар квадратично по числу объектов в ней.
Это обстоятельство подталкивает к необходимости семплировать не группы, а са­
ми пары. Простейшим подходом является формирование в каждой группе всевоз­
можных пар, объединение их в общее множество пар и семплирование из него.
Но оценки, полученные таким методом, могут плохо отражать качество поль­
зовательского опыта. Пользователь работает не с парами объектов, а с самими
объектами, поэтому вероятность встретить неоднородную группу скорее пропор­
циональна числу объектов в этой группе, а не числу пар объектов. Анализ рас­
пределения размеров групп в системе (рис. 5.2) выявляет ключевую особенность,
определяющую методику оценки: хотя подавляющее большинство групп являют­
ся малыми (размером 2­10 объектов), именно редкие крупные группы (размером
>10 объектов) содержат значительную долю всех возможных пар объектов в си­
стеме. Во­первых, проверка всех пар объектов является вычислительно неоправ­
данной, особенно для крупных групп, так как количество пар растёт квадратично.
Во­вторых, простое равномерное семплирование пар по всей системе приведёт к
чрезмерному представительству пар из крупных групп в итоговой выборке, что
не соответствует реальной пользовательской нагрузке, где преобладает взаимо­
действие с малыми и средними группами.

Предлагаемый метод двухэтапного семплирования решает эту проблему. На
первом этапе из каждой группы извлекается k−1 пар, что обеспечивает линейную,
а не квадратичную зависимость числа примеров от размера группы. Такой подход
сохраняет баланс: малые группы, которых много, вносят небольшое количество
пар каждая, но в совокупности составляют значительную часть выборки; крупные
группы, которых мало, вносят больше пар на группу, но их общий вклад остается
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Рисунок 5.2 — Распределение числа групп по размерам (синий) и числа пар
объектов в этих группах (бежевый). График ограничен по оси X числом 100.

пропорциональным их встречаемости в системе. Второй этап – семплирование из
этого предварительно сбалансированного множества – позволяет получить итого­
вую выборку, где вероятность включения пары соответствует вероятности встре­
чи пользователя с подобной парой в реальной работе с системой.

Важно отметить, что выбор именно k − 1 пар на первом этапе является оп­
тимальным компромиссом между полнотой охвата и вычислительной эффектив­
ностью. Это количество достаточно для выявления грубых нарушений однород­
ности (если группа неоднородна, высока вероятность обнаружить это даже при
таком семплировании), но при этом не создает непомерной вычислительной на­
грузки даже для крупных групп. Применение более агрессивного семплирования
(например, фиксированного количества пар на группу) привело бы к потере чув­
ствительности к особенностям крупных групп, в то время как менее интенсив­
ное семплирование не обеспечило бы достаточной репрезентативности для малых
групп.

5.3.2 Оценка покрытия как альтернатива полноте

Оценка полноты системы представляет собой методологически сложную
задачу, существенно превосходящую по нетривиальности даже проблему измере­
ния однородности. В практических реалиях больших данных полнота может быть
операционализирована через концепцию покрытия (coverage), определяемого как
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доля объектов системы, для которых алгоритмом идентифицирована хотя бы одна
содержательно значимая группа (т.е. группа размером≥ 2). Ключевое преимуще­
ство данной метрики — её полная автоматизируемость и независимость от руч­
ной верификации, поскольку факт принадлежности объекта к какой­либо группе
фиксируется на этапе выполнения алгоритма. Фундаментальная ценность покры­
тия заключается в его бизнес­релевантности: наличие у объекта хотя бы одного
идентичного партнёра в группе создаёт основу для информационного обмена, вза­
имодополняющего анализа данных и синергетических эффектов. Однако интер­
претация этой метрики требует учёта принципиального ограничения: не для всех
объектов в системе существуют идентичные экземпляры. Следовательно, теоре­
тический максимум покрытия заведомо меньше 100%, а стремление алгоритма к
абсолютному значению является методологической ошибкой.

Для оценки максимально достижимого покрытия (МДП) предлагается сле­
дующий научно обоснованный подход:

1. Формирование репрезентативной выборки из объектов, не включённых
алгоритмом в группы.

2. Экспертная верификация силами асессоров, задачей которых является
ручной поиск потенциально идентичных объектов во всей системе.

3. Расчёт доли принципиально уникальных объектов в выборке.
4. Экстраполяция на генеральную совокупность.

Важно подчеркнуть, что МДП является динамическим параметром системы. Из­
менение состава данных (появление новых объектов, изменение характеристик)
требует регулярного оценивания.

5.4 Примеры работы алгоритмов и примеры использования полученных
групп

Теоретические выкладки и алгоритмические решения, представленные в
предыдущих разделах, находят своё непосредственное применение в реальных
системах электронной коммерции. В данном разделе представлена демонстрация
работоспособности описанного подхода, иллюстрирующая ключевые сценарии
использования:

– Устранение дублирования товаров в выдаче поисковых результатов.
– Формирование объединенных карточек товаров.
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– Плашка ”Есть быстрее” , ”Есть дешевле” и ”Самое выгодное предложе­
ние”.

– Предложение такого же товара в разделе ”Избранное” , если добавленный
ранее товар закончился на складе.

Представленные примеры показывают, как результаты работы подхода на реаль­
ных данных (рис. 5.3, рис. 5.4), так и бизнес­ценность получаемых результатов –
улучшение пользовательского опыта и ключевых метрик платформы.

Рисунок 5.3 — Пример работы двухстадийного алгоритма LPA на реальных
данных. Цветочные горшки разных оттенков попали в разные группы.

На рисунке 5.5 представлен пример с предложениями выбранного товара от
других продавцов. У каждого предложения своя цена и сроки доставки, а также
разный рейтинг продавца. Покупатель может выбрать любое предложение, пони­
мая, что в любом случае получит нужный товар.

Похожий пример можно увидеть на рисунке 5.6. Здесь помимо блока с пред­
ложениями других продавцов покупатель видит подсказку, что этот же товар мож­
но купить по более выгодной цене у другого продавца. Кликнув на неё, покупа­
тель попадёт на страницу самого выгодного предложения. В случае отсутствия
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Рисунок 5.4 — Пример работы двухстадийного алгоритма LPA на реальных
данных. Тарелки для салата с разными узорами попали в разные группы.

системы поиска групп идентичных товаров покупателю пришлось бы искать бо­
лее дешёвые предложения вручную.

На рисунке 5.7 представлен пример товарного предложения с подсказкой о
том, что это достаточно выгодное предложение на маркетплейсе. Это возможно
благодаря системе формирования групп идентичных товаров. Система сформи­
ровала группу с этим товаром, благодаря чему стало понятно, что другие такие
же товары, то есть товары в сформированной группе, стоят дороже.

Помимо прочего, наличие групп идентичных товаров позволяет делать под­
сказку о том, что у другого продавца можно купить такойже товар с более быстрой
доставкой (рис. 5.8). Это полезно для тех покупателей, которым важна скорость
доставки.

И наконец, на рисунке 5.9 показан пример ещё одной бизнес­механики. По­
купатель может добавить товар в избранное, чтобы купить его позже. К момен­
ту, когда покупатель будет готов совершить покупку, помеченное им товарное
предложение может закончиться на складе. Наличие групп идентичных товаров
позволяет показать ему такой же товар от другого продавца рядом с помеченным
им товарным предложением в разделе ”Избранное”. Это помогает пользователю
совершить покупку без дополнительных действий.

Также есть ряд других сценариев использования групп идентичных това­
ров, которые сложно проиллюстрировать рисунками, но которые оказывают не
меньшее влияние на эффективность маркетплейса.
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Рисунок 5.5 — Блок с предложениями других продавцов.

Выводы к пятой главе

В ходе экспериментальных исследований были проанализированы различ­
ные методы кластеризации для задачи поиска идентичных товарных предложе­
ний. Сравнение алгоритмов, включая транзитивное замыкание, LPA, его моди­
фикацию, Louvain и DIANA, показало, что двухстадийный LPA демонстрирует
наилучшие результаты по комплексной мере качества — V­мера, сочетая высо­
кую однородность и полноту. Этот метод также оказался наиболее практичным,
так как не требует полного графа связей и эффективно работает в распределённых
системах. Louvain показал схожие с LPA результаты по однородности, но немного
уступил в полноте из­за своей консервативности. DIANA, несмотря на высокую
однородность, значительно проигрывает в полноте и требует больших вычисли­
тельных ресурсов, что ограничивает его применение в крупномасштабных зада­
чах.

Для оценки качества группировки в реальных условиях были предложе­
ны методики, учитывающие ограничения больших данных. Приближённая оцен­
ка однородности через двухэтапное семплирование пар объектов позволила сба­
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Рисунок 5.6 — Блок с предложениями других продавцов и подсказка ”Есть
дешевле”.

лансировать точность и вычислительную эффективность. Вместо полноты была
введена мера качества ”покрытие” . Эти подходы позволяют контролировать ка­
чество системы без необходимости полной эталонной разметки, что критически
важно в условиях динамически обновляющихся данных.

Практическое применение алгоритмов продемонстрировало их ценность
для электронной коммерции. Формирование групп идентичных товаров улучша­
ет пользовательский опыт, устраняя дублирование в поисковой выдаче, предла­
гая альтернативные варианты покупки и обеспечивая подсказки о более выгод­
ных или быстрых предложениях. Это не только повышает удобство для покупате­
лей, но и способствует увеличению ключевых метрик платформы. Таким образом,
предложенные методы и алгоритмы доказали свою эффективность как в теорети­
ческом, так и в практическом аспектах, обеспечивая решение актуальных задач в
условиях больших и динамичных данных.

Результаты данной главы опубликованы в работах [70—72].
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Рисунок 5.7 — Подсказка о том, что данное товарное предложение выбранного
товара выгоднее других.

Рисунок 5.8 — Подсказка о том, что этот же товар можно купить у другого
продавца с более быстрой доставкой.
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Рисунок 5.9 — Блок ”Нашли такой же” товар от другого продавца в случае, когда
исходное товарное предложение закончилось на складе.
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Заключение

Основные результаты работы заключаются в следующем.
1. Изучены подходы к оптимизации аналитических SQL­запросов с исполь­

зованием методов машинного обучения, который включает модели пред­
сказания кардинальности и нейросетевые аппроксиматоры функции сто­
имости выполнения. Показано, что при условии значительных дорабо­
ток предложенных в литературе методов, с помощью некоторых из них
можно достичь ускорения выполнения сложных запросов в лаборатор­
ных условиях. Однако на практике в условиях динамично изменяющих­
ся данных возникают проблемы устойчивости моделей к изменениям и
высоких накладных расходов на их переобучение в условиях реального
времени.

2. Разработан метод идентификации семантически идентичных объектов,
основанный на комбинации бинарной классификации пар объектов и
алгоритма кластеризации на графах. Произведён теоретический анализ
нескольких алгоритмов выделения сообществ, а также сравнение каче­
ства алгоритмов по ключевым мерам качества (однородность и полнота)
на реальных данных. Алгоритм распространения меток (LPA) выбран в
качестве наиболее подходящего по ряду характеристик, а также по каче­
ству работы. Предложенная архитектура адаптирована для распределён­
ных систем с использованием парадигмы MapReduce, что обеспечивает
масштабируемость и практическую применимость подхода в широком
спектре приложений.

3. Разработан модифицированный двухэтапный алгоритм кластеризации
на основе LPA, в котором реализована калибровка порогов идентично­
сти с учётом допустимого уровня ошибок (5% и 20%). Показано, что
данный алгоритм позволяет повысить полноту кластеризации без потери
однородности, обеспечивая структурную согласованность групп. Пред­
ложенный метод апробирован на задаче поиска идентичных товаров на
маркетплейсе. Предоставлены результаты работы системы.

4. Предложена и апробирована методика оценки качества группировки объ­
ектов, включающая показатели однородности и полноты, а также допол­
нительный показатель покрытия как альтернативу полноте в условиях
отсутствия эталонной разметки. Эта методика адаптирована для анали­
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за результатов динамической кластеризации в системах обработки боль­
ших данных и продемонстрировала свою пригодность при проведении
экспериментальных исследований.
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