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Общая характеристика работы

Актуальность темы исследования. Диссертация посвящена построе­
нию точных (достигаемых) верхних оценок обобщающей способности одномер­
ных пороговых решающих правил.

При решении задачи обучения на основании обучающей выборки объектов,
часто называемой обучением по прецедентам, строится алгоритм, восстанавли­
вающий зависимость выходных переменных от входных на объектах из обучаю­
щей выборки. В задаче классификации выходная переменная одна и принимает
бинарные значения, а алгоритмы называются классификаторами. Для успеш­
ного применения построенного классификатора он должен иметь высокую обоб­
щающую способность, то есть хорошо работать на произвольных объектах, не
обязательно входящих в обучение. Если же качество классификатора на незави­
симой выборке, называемой контрольной, оказывается значительно хуже, чем
на обучающей выборке, то говорят, что произошло переобучение.

Получение оценок обобщающей способности семейства классификаторов
на основе информации об обучающей выборке и структуре семейства выделя­
ется как одна из основных задач теории статистического обучения1. Завышен­
ность полученных оценок может приводить к неоптимальному выбору струк­
турных параметров2. Кроме того, завышенные оценки не дают возможности
исследовать явление переобучения, оценивать и контролировать его значения
при решении реальных задач.

Степень разработанности темы исследования. В конце 70-х гг. XX в.
советские ученые В.Н. Вапник и А. Я. Червоненкис сформулировали основные
статистические проблемы обучения в терминах проблемы минимизации средне­
го риска, т. е. вероятности ошибки классификатора на новом объекте, и пред­
ложили методы оценки среднего риска по эмпирическим данным. Вапник и
Червоненкис получили равномерные по семействам классификаторов оценки3,
связывающие вероятность уклонения среднего риска от эмпирического с дли­
ной обучающей выборки и сложностью семейства, над которыми минимизиру­
ется средний риск. Этот фундаментальный результат активно используется и
сегодня.

Однако оценки ВапникаҫЧервоненкиса являются завышенными. В работе4

показано, что они бывают завышены на 6ҫ12 порядков и плохо согласуются с ре­
зультатами экспериментов. В этой же работе исследуются причины завышенно­
сти оценок, из которых основной является независимость оценок от конкретной
выборки. Оценка ВапникаҫЧервоненкиса универсальна и, следовательно, явля­

1 Вапник В.Н., Червоненкис А. Я. О равномерной сходимости частот появления событий к их вероят­
ностям // Теория вероятности и ее применения, 1971. Т. 16, № 2. С. 264ҫ280.

2 Kearns M. J., Mansour Y., Ng A.Y., Ron D. An experimental and theoretical comparison of model selection
methods // Computational Learning Theory. 1995. P. 21ҫ30.

3 Вапник В. Н., Червоненкис А.Я. Теория распознавания образов. М.: Наука, 1974. 416 с.
4 Vorontsov K. V. Combinatorial probability and the tightness of generalization bounds // Patt. Rec. and

Image An. 2008. V. 18, No. 2. P. 243ҫ259.
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ется оценкой худшего случая.
Теория статистического обучения продолжает активно развиваться, после­

дователи теории занимаются повышением точности равномерных оценок с уче­
том особенностей данных и конкретных алгоритмов классификации5. Получе­
ны более тонкие оценки, которые зависят от свойств отношения частичного
порядка на множестве вектор-столбцов матрицы ошибок. Среди плодотворных
подходов можно выделить оценки, адаптирующиеся к данным и использующие
понятие Радемахеровской сложности, предложенной в 1999 г. В.Колчинским.

В качестве характеристик обобщающей способности используются функ­
ционалы вероятности переобучения и полного скользящего контроля.

В комбинаторной теории переобучения6, предложенной К. В. Воронцовым,
вероятностью переобучения называют долю разбиений конечного множества
объектов на обучающую и контрольную выборки фиксированной длины, при
которых произошло переобучение.

Точность эмпирических оценок функционалов обобщающей способности,
полученных методом МонтеҫКарло, зависит от числа случайных разбиений. Вы­
числение оценок по определению требует экспоненциального по общему количе­
ству объектов перебора всех возможных разбиений. Но для некоторых модель­
ных семейств классификаторов удается аналитически вычислить достигаемые
верхние оценки вероятности переобучения. К настоящему времени достигаемые
верхние оценки получены для слоев и интервалов булева куба, многомерных
сетей, хэмминговых шаров и некоторых их разреженных подмножеств. Разра­
ботан теоретико-групповой подход, который позволяет получать достигаемые
верхние оценки для семейств с произвольными симметриями.

Оценки переобучения могут использоваться в качестве критерия отбора
признаков при построении элементарных конъюнкций в логических алгоритмах
классификации или в качестве критерия ветвления в решающих деревьях. Пред­
ложен способ аппроксимации вероятности переобучения стандартных методов
классификации (нейронных сетей, решающих деревьев, ближайшего соседа) на
реальных задачах с помощью монотонных сетей подходящей размерности.

В комбинаторной теории для вероятности переобучения получена оценка
расслоенияҫсвязности7, учитывающая особенности способа построения класси­
фикатора по обучающей выборке, а также локальные свойства семейства ҫ эф­
фекты расслоения и связности. Благодаря расслоению, классификаторы с высо­
кой вероятностью ошибки вносят пренебрежимо малый вклад в переобучение.
Благодаря связности, у классификаторов с близкими векторами ошибок резко
снижается вклад в переобучение.

5 Valle-Pérez G., Louis A.A. Generalization bounds for deep learning. 2020. doi:10.48550/arXiv.2012.04115.
6 Воронцов К. В. Комбинаторные оценки качества обучения по прецедентам // Доклады РАН. 2004.

T. 394, № 2. С. 175ҫ178.
7 Vorontsov K.V., Ivahnenko A.A. Tight combinatorial generalization bounds for threshold conjunction

rules // 4th Int. Conf. on Pattern Recognition and Machine Intelligence, 2011. Lecture Notes in Computer Science.
SpringerҫVerlag, 2011. P. 66ҫ73.
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В работе8 получены условия, при которых оценка расслоенияҫсвязности
является точной. Им удовлетворяют, в частности, монотонные и унимодальные
цепи классификаторов. В практических задачах статистического обучения та­
кие цепи могут порождаться элементарными пороговыми правилами, использу­
емых в таких алгоритмах классификации, как решающие деревья, логические
закономерности, алгоритмы вычисления оценок, а также при построении ли­
нейных классификаторов методом покоординатной оптимизации. Но при этом
делается предположение о существовании безошибочного правила, практиче­
ски не выполнимое в реальных задачах. В общем случае пороговые правила
порождают семейства классификаторов, называемые прямыми последователь­
ностями.

Ранее для них были известны лишь верхние оценки И.С. Гуза для ожидае­
мой частоты ошибок на контрольной выборке9 в частном случае, когда признак
принимает попарно различные значения на объектах. Различные уточнения оце­
нок расслоенияҫсвязности, например, оценка10 Е. А. Соколова, учитывающая
попарную конкуренцию между классификаторами, также остаются завышен­
ными для прямых последовательностей. Однако завышенность верхних оценок
остается неизученной.

Цель диссертационной работы. Построение точных (достигаемых) верх­
них оценок обобщающей способности одномерных пороговых решающих правил
в рамках комбинаторной теории переобучения, где в качестве характеристик
обобщающей способности рассматриваются функционалы вероятности переобу­
чения, полного скользящего контроля и ожидаемой переобученности. Исследо­
вание завышенности известных оценок обобщающей способности. Применение
полученных оценок в практических задачах.

Научная новизна. Рассмотрены методы минимизации эмпирического
риска и максимизации переобученности и показано, что они обладают свой­
ством финитности. Для финитного метода обучения и произвольного семейства
классификаторов доказаны теоремы о представлении достигаемых верхних оце­
нок обобщающей способности в виде произведения числа разбиений двух непе­
ресекающихся множеств объектов генеральной совокупности.

Для прямых последовательностей классификаторов, порождаемых элемен­
тарными пороговыми правилами при варьировании параметра порога, доказа­
ны теоремы и реализован алгоритм полиномиальной сложности для вычисле­
ния достигаемых верхних оценок обобщающей способности. Алгоритм основан
на рекуррентном подсчете числа допустимых траекторий при блуждании по
трехмерной сетке между двумя заданными точками с ограничениями специаль­
ного вида.

8 Животовский Н.К., Воронцов К. В. Критерии точности комбинаторных оценок обобщающей способ­
ности // Интеллектуализация обработки информации (ИОИ-2012). М.: Торус Пресс, 2012. С. 25ҫ28.

9 Гуз И.С. Конструктивные оценки полного скользящего контроля для пороговой классификации //
Математическая биология и биоинформатика, 2011. Т. 6, №2. С. 173ҫ189. doi:10.17537/2011.6.173.

10 Воронцов К.В., Фрей А.И., Соколов Е. А. Вычислимые комбинаторные оценки вероятности пере­
обучения // Машинное обучение и анализ данных. 2013. T. 1, № 6. С. 734ҫ743.
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Получен новый алгоритм построения дерева решений, в котором в каче­
стве критерия выбора атрибута для разделения узла дерева решений использу­
ются достигаемые верхние оценки полного скользящего контроля и ожидаемой
переобученности пороговых решающих правил.

Построена суррогатная модель для быстрого вычисления приближенных
оценок обобщающей способности семейства пороговых решающих правил с вы­
сокой точностью.

Теоретическая и практическая значимость. Доказаны теоремы о вы­
числении достигаемых верхних оценок обобщающей способности прямых после­
довательностей классификаторов, порождаемых пороговыми правилами над од­
номерным признаком при варьировании параметра порога. В рамках комбина­
торного подхода до сих пор не удавалось получать достигаемые верхние оценки
обобщающей способности для данного семейства в общем случае. Достигаемые
верхние оценки были известны только для частных случаев задач классифика­
ции, где значения одномерного признака на классифицируемых объектах были
попарно различны.

Предложенные в работе методы вычисления оценок обобщающей способно­
сти применимы в качестве критерия отбора признаков при построении алгорит­
мов классификации, в частности, в решающих деревьях, логических закономер­
ностях, и при построении линейных классификаторов методом покоординатной
оптимизации. Предложенный в работе способ построения программы трассер­
ных исследований применим для повышения эффективности трассерных иссле­
дований в нефтегазовых месторождениях.

Методы исследования. Для построения алгоритма использованы мето­
ды комбинаторики и динамического программирования. Для оценки вычисли­
тельной сложности использованы методы математического анализа. Для прове­
дения вычислительных экспериментов по сравнению полученных достигаемых
верхних оценок с существующими оценками алгоритм реализован на языке про­
граммирования C++. Для апробации на результатах проведения трассерных
исследований алгоритм дерева решений с модифицированным критерием выбо­
ра атрибута для разделения узла реализован на языке программирования C++.
Для построения суррогатной модели и вычислительных экспериментов по оцен­
ке точности и устойчивости модели алгоритм реализован на языке Python. Для
выводов о статистической значимости результатов апробации использованы ме­
тоды математической статистики.

Положения, выносимые на защиту:

1. Доказаны теоремы о представлении достигаемых верхних оценок обобща­
ющей способности произвольного семейства классификаторов в виде про­
изведения числа разбиений двух непересекающихся множеств объектов
генеральной совокупности для финитного метода обучения.

2. Доказаны теоремы и разработан алгоритм полиномиальной сложности
для вычисления достигаемых верхних оценок обобщающей способности
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прямых последовательностей классификаторов, порождаемых одномер­
ными пороговыми решающими правилами при варьировании параметра
порога, для финитного метода обучения.

3. Разработан алгоритм для построения программы трассерных исследова­
ний с применением деревьев решений.

4. Разработан алгоритм построения дерева решений с использованием по­
лученных достигаемых верхних оценок полного скользящего контроля и
ожидаемой переобученности в качестве критерия выбора атрибута в узле.

5. Разработан алгоритм вычисления приближенных оценок обобщающей спо­
собности одномерных пороговых решающих правил с использованием сур­
рогатных моделей.

Степень достоверности и апробация результатов. Достоверность ре­
зультатов подтверждена математическими доказательствами, эксперименталь­
ной проверкой полученных методов на прикладной задаче классификации пар
скважин при составлении программы трассерных исследований в нефтегазовых
месторождениях; публикациями результатов исследования в рецензируемых на­
учных изданиях, в том числе рекомендованных ВАК, регистрацией патента на
изобретение и актом внедрения основных результатов.

Основные результаты диссертации докладывались на следующих конфе­
ренциях:

1. Международная школа-конференция «Фундаментальная математика и ее
приложения в естествознании», 2023. [10]

2. Международная научно-практическая конференция «Цифровая трансфор­
мация в нефтегазовой отрасли», 2023. [11]

3. Межрегиональная школа-конференция «Теоретические и эксперименталь­
ные исследования нелинейных процессов в конденсированных средах»,
2021. [15]

4. Всероссийская молодежная научно-практическая конференция «Геолого­
геофизические исследования нефтегазовых пластов», 2021.[8]

5. Международная конференция «Управление развитием крупномасштабных
систем», 2016. [9]

6. Международная конференция «Intelligent Data Processing», 2016. [12]

7. Всероссийская конференция «Математические методы распознавания об­
разов», 2015. [13]
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8. Всероссийская конференция «Математические методы распознавания об­
разов», 2013. [14]

Публикации. Результаты диссертации содержатся в 16 публикациях. В
изданиях из списка ВАК представлено 7 публикаций [1ҫ7]. Получен 1 патент
на изобретение [16]. Все работы индексируются РИНЦ. Работы [1ҫ5] индекси­
руются SCOPUS, Web of Science. Отдельные результаты включались в отчёты
по проектам РФФИ (№ 15-37-50350 мол_нр и № 14-07-00847), Правительства
РФ (№ 075-15-2019-1926). Список публикаций приведен в конце автореферата
и диссертации.

Личный вклад автора. Результаты получены самостоятельно под науч­
ным руководством д.ф.-м.н. К. В. Воронцова. Личный вклад автора в работы,
выполненные совместно с соавторами, заключается в следующем:

• в работе [1] сформулирована и доказана теорема о вычислении достигае­
мой верхней оценки ожидаемой переобученности и верхней оценки часто­
ты ошибок на контрольной выборке для семейства одномерных пороговых
решающих правил, проведены вычислительные эксперименты;

• в работах [2, 10, 11] разработан алгоритм интерпретации исследований
скважин на неустановившихся режимах с применением методов машин­
ного обучения, проведено тестирование алгоритма;

• в работе [5] разработан алгоритм «виртуального расходомера» на основе
стекинга моделей машинного обучения, проведены вычислительные экс­
перименты;

• в работе [6] реализован алгоритм построения дерева решений с использова­
нием комбинаторных оценок для выбора атрибута в узле дерева, проведе­
ны вычислительные эксперименты и доказана статистическая значимость
результатов;

• в работе [7] разработан алгоритм интерпретации исследований скважин
методом эхометрирования с применением методов машинного обучения;

• в работе [8] разработан алгоритм на основе методов машинного обучения
для анализа взаимовлияния скважин;

• в работе [9] разработан подход для проверки однородности символьных
последовательностей на основе проверки статистических гипотез;

• в работе [14] разработан алгоритм вычисления оценки вероятности пере­
обучения для прямой цепи;
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• в работе [15] разработан алгоритм на основе случайного леса для выде­
ления установившихся режимов на динамических данных при гидроди­
намическом исследовании скважины методом построения индикаторной
диаграммы;

• в работе [16] разработан алгоритм построения программы трассерных ис­
следований с использованием методов машинного обучения, проведены
вычислительные эксперименты.

Соответствие паспорту специальности. Результаты диссертационно­
го исследования соответствуют паспорту специальности 1.2.1 «Искусственный
интеллект и машинное обучение», а именно: пункту 1 «Естественно-научные ос­
новы и методы искусственного интеллекта», пункту 2 «Исследования в области
оценки качества и эффективности алгоритмических и программных решений
для систем искусственного интеллекта и машинного обучения. Методики срав­
нения и выбора алгоритмических и программных решений при многих крите­
риях».

Структура и объем диссертации. Диссертация состоит из введения,
четырех глав, заключения, списка иллюстраций, списка таблиц, списка литера­
туры и приложения. Общий объем диссертации составляет 108 страниц, из них
92 страницы текста, включая 15 рисунков и 6 таблиц. Библиография включает
85 наименований на 10 страницах.

Содержание работы

В автореферате нумерация основных утверждений (определений, лемм,
теорем) и формул сквозная.

Во введении обоснована актуальность диссертационной работы, сфор­
мулирована цель и аргументирована научная новизна исследований, показана
практическая значимость полученных результатов, представлены выносимые
на защиту научные положения.

В первой главе решается задача вычисления верхних оценок переобуче­
ния одномерных пороговых решающих правил при выборе порога.

В разделе 1.1 формулируется математическая модель задачи классифи­
кации как задачи принятия решений в условиях неполноты информации и вво­
дятся основные определения комбинаторной теории переобучения. Предполага­
ется, что дана бинарная матрица I , строки которой соответствуют объектам из
генерального множества X, столбцы — классификаторам из семейства A. Мощ­
ность генерального множества конечна и равна L. В ячейке матрицы I(a, x)
находится единица тогда и только тогда, когда данный классификатор a оши­
бается на данном объекте x. Из множества X всех строк матрицы случайно
и равновероятно (с вероятностью P = 1

C`
L

) выбирается наблюдаемая обучаю­

щая выборка — подмножество X ⊂ X фиксированной мощности `. Дополнение
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X̄ = X∖X называется контрольной выборкой. Затем на основе метода обучения
µ из множества A всех столбцов матрицы по обучающей выборке X выбирается
классификатор.

Числом ошибок классификатора a на выборке X ⊂ X называется величина

n(a,X) =
∑

x∈X

I(a, x).

Частотой ошибок классификатора a на выборке X ⊂ X называется вели­
чина

ν(a,X) = n(a,X)/|X|,

где через |X| обозначен объем выборки X .
Переобученностью классификатора a на разбиении (X, X̄) называется ве­

личина
δ(a,X) = ν(a, X̄)− ν(a,X).

Если δ(a,X) > ε, то будем говорить, что классификатор a переобучен
на X .

Для оценок обобщающей способности метода обучения в комбинаторной
теории переобучения рассматриваются следующие функционалы:

• вероятности переобучения:

Qε(µ,A,X, `) = P[δ(µX,X) ⩾ ε] =
1

C`
L

∑

X∈[X]`

[δ(µX,X) ⩾ ε].

• полного скользящего контроля, равный математическому ожиданию чис­
ла ошибок на контрольной выборке:

CCV(µ,A,X, `) = Eν(µX, X̄) =
1

C`
L

∑

X∈[X]`

ν(µX, X̄).

• ожидаемой переобученности:

EOF(µ,A,X, `) = Eδ(µX, X̄) =
1

C`
L

∑

X∈[X]`

(

ν(µX, X̄)− ν(µX,X)
)

.

В данной работе рассматривается метод обучения, называемый методом
минимизации эмпирического риска (МЭР), который выбирает классификатор
с минимальной частотой ошибок на X :

µX ∈ M(X) = Argmin
a∈A

n(a,X).
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Для получения верхних оценок Qε и CCV вводится понятие метода песси­

мистичной минимизации эмпирического риска (ПМЭР)

µX = arg max
a∈M(X)

n(a,X).

Это метод МЭР, который в случае неоднозначности среди M(X) выбирает
классификатор a с наибольшим числом ошибок на множестве X .

Для получения верхних оценок EOF рассматривается метод максимизации

переобученности (МП):

µX = argmax
a∈A

ν(a,X).

Метод МП возникает в задаче комбинаторного вычисления радемахеров­
ской сложности класса решающих правил: при ` = L

2 радемахеровская слож­
ность семейства равна ожидаемой переобученности метода МП.

В разделе 1.2 вводится понятие прямой последовательности классифи­
каторов. Рассмотрим множества объектов, по которым различаются соседние
классификаторы семейства A = {a0, . . . , aP}:

Gp =
{

x ∈ X | I(ap, x) ̸= I(ap+1, x)
}

, p = 0, . . . , P − 1. (1)

Определение 1.1. Семейство классификаторов называется прямой последо­

вательностью, если множества Gp попарно не пересекаются.

Определение 1.2. Одномерным пороговым классификатором над множеством

X ⊂ R называется семейство пороговых правил a(x, θ) = [x ⩾ θ], где θ ∈ R ҫ

параметр, называемый порогом.

Доказывается теорема, что между семействами прямых последовательно­
стей и одномерными пороговыми классификаторами имеется биекция, откуда
следует, что данные понятия являются синонимами.

В случае, когда числовой признак принимает попарно различные значения
на объектах множества X, семейство называется прямой цепью.

Проводятся вычислительные эксперименты, которые показывают, что для
семейства пороговых решающих правил актуальна задача определения обобща­
ющей способности. Эффективное вычисление Qε, CCV и EOF непосредственно
по определению возможно только при малых `. Если ` близко к L/2, то число
слагаемых экспоненциально по L.

Вследствие этого в разделе 1.3 ставится следующая задача. Для прямой
последовательности A общего вида, методов обучения ПМЭР и МП вычислить
точные (достигаемые) верхние оценки вероятности переобучения Qε, полного
скользящего контроля CCV и ожидаемой переобученности EOF за полиноми­
альное по L время.
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В разделе 1.4 исследуются свойства МЭР, МП и ПМЭР и доказывается,
что они обладают общим свойством, которое определяется как финитность ме­
тода обучения. Как показано далее в разделе 1.5, данное свойство позволяет
получить аналитическое представление достигаемых верхних оценок обобщаю­
щей способности произвольного семейства классификаторов.

Назовем пару классификаторов a и a′ неразличимыми на мно-

жестве X
′ ⊂ X, если I(a, x) = I(a′, x) для всех x ∈ X

′.
Пусть дано произвольное семейство классификаторов A. Пусть на множе­

стве A × A × [X]` имеется бинарное отношение a ≻X a′. Назовем его финит­

ным, если для любых классификаторов a, a′ ∈ A, неразличимых на множестве
X

′ ⊂ X, отношение a ≻X a′ не зависит от выбора разбиения множества X
′.

Будем говорить, что на выборке X классификатор a лучше, чем a′, если
a ≻X a′. Назовем метод обучения µ : [X]` → A финитным, если результатом
обучения является лучший с точки зрения финитного отношения ≻X класси­
фикатор:

a = µX ⇔ a ≻X a′, ∀a′ ̸= a. (1.2)

Доказывается теорема о том, что методы МЭР, МП и ПМЭР являются
финитными.

Обозначим через D подмножество объектов, по которым классификаторы
семейства A = {a0, . . . , aP} различимы:

D = G0 ∪ · · · ∪GP−1 =
{

x ∈ X | ∃ a, a′ ∈ A : I(a, x) ̸= I(a′, x)
}

, (1.3)

где множества Gp определяются согласно (1). Объекты множества N = X ∖ D
назовем нейтральными. На множестве N классификаторы семейства неразли­
чимы и допускают одинаковое число ошибок:

m = n(a,N), ∀a ∈ A; (1.4)

mp = n(ap,D).

Будем обозначать через t число объектов из D, попавших в обучающую
выборку X , а через e — число ошибок классификатора ap на этих объектах.
Введём две функции от t и e: число разбиений множества N, таких, что клас­
сификатор ap переобучен на X

Np(t, e) = #
{

(X ∩ N, X̄ ∩ N)
∣

∣ δ(ap, X) ⩾ ε, t = |X ∩ D|, e = n(ap, X ∩ D)
}

,

и число разбиений множества D, таких, что ap является результатом обучения:

Dp(t, e) = #
{

(X ∩ D, X̄ ∩ D)
∣

∣ µX = ap, t = |X ∩ D|, e = n(ap, X ∩ D)
}

.

Введём гипергеометрическую функцию распределения

H`,m
L (s) =

1

C`
L

min{⌊s⌋,`,m}
∑

i=0

C i
mC

`−i
L−m,
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где ⌊x⌋ — целая часть x, то есть наибольшее целое число, не превосходящее x.

Гипергеометрическая функция распределения H`,m
L (s) для данного множества X

мощности L и выборки X0 ⊂ X объема m равна доле выборок множества X объ­
ема `, содержащих не более s элементов из X0. Будем полагать C i

n = 0 при невы­
полнении условия 0 ⩽ i ⩽ n.

Теорема 1.1. Для произвольного семейства классификаторов A = {a0, . . . , aP},
финитного метода обучения µ, множества X мощности L, объема обучаю­

щей выборки `, точности ε ∈ (0, 1) вероятность переобучения имеет вид

Qε =
1

C`
L

P
∑

p=0

∑

(t,e)∈Ψp

Dp(t, e)Np(t, e), (1.5)

где множество D, параметры mp и m определяются по (1.3) и (1.4)

Ψp =
{

(t, e) | 0 ⩽ t ⩽ min{`, |D|}, 0 ⩽ e ⩽ min{t,mp}
}

; (1.6)

Np(t, e) = C`−t
L−|D| H

`−t,m

L−|D|(sp(e)); (1.7)

sp(e) =
`

L
(n(ap,X)− ε(L− `))− e.

Для функционалов полного скользящего контроля и ожидаемой переобу­
ченности имеют место аналогичные теоремы.

Теорема 1.2. Для произвольного семейства классификаторов A = {a0, . . . , aP},
финитного метода обучения µ, множества X мощности L, объема обучаю­

щей выборки `, функционал полного скользящего контроля имеет вид

CCV =
1

(L− `)C`
L

P
∑

p=0

∑

(t,e)∈Ψp

Dp(t, e)Fp(t, e), (1.8)

где

Fp(t, e) =

min{`−t,m}
∑

s=0

Cs
mC

`−t−s
L−|D|−m

(

n(ap,X)− s− e
)

, (1.9)

множества D и Ψp определяются по (1.3) и (1.6), параметры mp и m опреде­

ляются по (1.4).

Теорема 1.3. Для финитного метода обучения µ, произвольной прямой по­

следовательности классификаторов A = {a0, . . . , aP}, множества X мощно­

сти L, объема обучающей выборки ` функционал ожидаемой переобученности

имеет вид

EOF =
1

C`
L

P
∑

p=0

∑

(t,e)∈Ψp

Dp(t, e)Kp(t, e), (1.10)
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где множества D и Ψp определяются по (1.3) и (1.6), параметры mp и m опре­

деляются по (1.4) и

Kp(t, e) =

min{`−t,m}
∑

s=0

Cs
mC

`−t−s
L−|D|−m

(

1
L−`

(

n(ap,X)− (s+ e)
)

− 1
`
(s+ e)

)

. (1.11)

Таким образом, задача сводится к вычислению для каждого p
количества разбиений Dp(t, e) на всем множестве Ψp.

В разделе 1.6 рассматривается случай прямой последовательности и опи­
сывается алгоритм вычисления Dp(t, e). Далее элементы множества D называ­
ются ребрами последовательности. Доказывается теорема, которая для каж­
дого p сводит задачу к расчету количества разбиений множества ребер левой
a0, . . . , ap и правой ap, . . . , aP последовательностей относительно классификато­
ра ap.

Теорема 1.4. Пусть µ ҫ финитный метод обучения. Для каждого p для всех

(t, e) ∈ Ψp число разбиений множества D, таких, что t = |X ∩ D|,
e = n(ap, X ∩ D) и µX = ap, равно

Dp(t, e) =
∑

t′+t′′=t

∑

e′+e′′=e

Lp(t
′, e′)Rp(t

′′, e′′), (1.12)

где

Lp(t
′, e′) = #

{

(X ∩ Lp, X̄ ∩ Lp)

∣

∣

∣

∣

∀d = 0, . . . , p, ap ≻X ad,
t′ = |X ∩ Lp|, e

′ = n(ap, X ∩ Lp)

}

, (1.13)

Rp(t
′′, e′′) = #

{

(X ∩ Rp, X̄ ∩ Rp)

∣

∣

∣

∣

∀d = p+ 1, . . . , P, ap ≻X ad,
t′′ = |X ∩ Rp|, e

′′ = n(ap, X ∩ Rp)

}

,

(1.14)

множества Lp и Rp ҫ множества ребер левой и правой последовательностей

соответственно, точки (t′, e′) и (t′′, e′′) являются элементами множеств Ψ′
p

и Ψ′′
p соответственно, где

Ψ′
p =

{

(t′, e′)
∣

∣ 0 ⩽ t′ ⩽ min{`, |Lp|}, 0 ⩽ e′ ⩽ min{t′, n(ap,Lp)}
}

, (1.15)

Ψ′′
p =

{

(t′′, e′′)
∣

∣ 0 ⩽ t′′ ⩽ min{`, |Rp|}, 0 ⩽ e′′ ⩽ min{t′′, n(ap,Rp)}
}

. (1.16)

Для методов ПМЭР и МП предлагается алгоритм для вычисления значе­
ний Lp(t

′, e′) и Rp(t
′′, e′′) для всех возможных значений параметров, основанный

на рекуррентном подсчете числа траекторий при блуждании по трехмерной
сетке между двумя заданными точками с ограничениями специального вида.
Доказывается ряд теорем для обоснования корректности алгоритма.

В разделе 1.7 приводится псевдокод алгоритма вычисления оценок обоб­
щающей способности для прямой последовательности и доказывается его поли­
номиальная вычислительная сложность.
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Результаты первой главы опубликованы в работах [1] и [3].
Во второй главе исследуется завышенность известных оценок обобща­

ющей способности для пороговых решающих правил по сравнению с достига­
емыми верхними оценками, рассчитанными с помощью алгоритма, описанно­
го в первой главе. Оценки вероятности переобучения (ВапникаҫЧервоненкиса,
расслоенияҫсвязности и Соколова) и оценки частоты ошибок на контрольной
выборке на основе Радемахеровской сложности оказываются завышенными на
несколько порядков. Показано, что точными оказываются оценки Гуза для ве­
личины полного скользящего контроля, откуда следует вывод о применимости
данных оценок в прикладных задачах, однако отмечается, что они накладывают
требования на распределение значений одномерного признака, то есть приме­
нимы только в частных случаях.

Результаты второй главы опубликованы в работе [1].
Третья глава посвящена теме трассерных (маркерных) исследований в

нефтегазовых месторождениях. В процессе проведения трассерного исследова­
ния осуществляется закачка меченой жидкости (трассера) в одну или в несколь­
ко нагнетательных скважин. После закачки начинают производить отбор проб
жидкости из устья добывающих скважин, которые далее анализируются в лабо­
ратории. В случае обнаружения меченой жидкости в пробах говорят о наличии
гидродинамической связи между скважинами и проводят расчеты для оценки
гидродинамических свойств пласта в межскважинном пространстве, направле­
ния и скорости распространения жидкости в пласте, что важно для решения
задач проектирования и мониторинга разработки месторождений.

В разделе 3.1 описываются принятые критерии выбора скважин при пла­
нировании трассерных исследований и отмечаются их недостатки. При построе­
нии программы не учитываются фактические динамические промысловые дан­
ные по эксплуатации скважин, вследствие чего среди выбранных скважин мо­
гут оказаться те, между которыми нет гидродинамической связи, и меченая
жидкость в таком случае в добывающей скважине обнаружена не будет. Та­
ким образом, список скважин, в которые закачивается трассер, оказывается
избыточным и приводит к более значительным затратам на проведение иссле­
дования. Для решения проблемы предлагается способ построения программы
исследований с применением методов машинного обучения. Согласно способу,
пара скважин нагнетательнаяҫдобывающая включается в программу на основе
ответа классификатора. Признаками для описания пары скважин являются ко­
эффициенты взаимовлияния по методам емкостно-резистивной модели и много­
параметрической регрессии, рассчитываемые на основе динамических данных
эксплуатации скважин. Апробация подхода на промысловых данных показа­
ла, что использование алгоритма машинного обучения позволяет уточнить про­
грамму трассерных исследований и повысить долю пар скважин с наличием
гидродинамической связи.

Классификатор в предложенном способе основан на алгоритме решающе­
го дерева для получения интерпретируемых результатов, а также в связи с
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ограниченным объемом накопленной цифровой базы с отчетами по результа­
там трассерных исследований, используемой для обучения модели. В разде­

ле 3.2 обсуждаются недостатки известных алгоритмов генерации дерева ре­
шений, связанные с явлением переобучения. Исследуются причины возникно­
вения переобучения, одна из которых заключается в смещенности критериев
выбора атрибута при построении разбиения в узле. В разделе 3.3 ставится за­
дача повышения обобщающей способности дерева решений путем модификации
критерия выбора атрибута. Рассматривается бинарное дерево, в котором атри­
бутом является одномерный пороговый классификатор [F ≤ θ], разделяющий
множество примеров, попавших в узел, на два множества. Порог θ определяет­
ся по методу МЭР. Выбор атрибута сводится к выбору признака F на основе
подвыборки примеров обучающей выборки, попавших в узел.

В разделах 3.5 и 3.6 описывается предлагаемый критерий для выбора
атрибута в узле и приводится псевдокод алгоритма построения дерева реше­
ний. Модификация состоит в применении несмещенных достигаемых верхних
оценок переобучения пороговых решающих правил: ожидаемой переобученно­
сти EOF и ожидаемой частоты ошибок на отложенной выборке CCV для метода
ПМЭР. Выбирается признак F , для которого значения критерия оптимальны.
Для вычисления критерия применяется алгоритм, разработанный в первой гла­
ве. В разделе 3.7 проводятся вычислительные эксперименты на промысловых
данных результатов трассерных исследований на примере двух месторождений
Западной Сибири. Результаты показывают, что применение комбинаторных оце­
нок в качестве критериев выбора атрибута в узле приводит к статистически зна­
чимому уменьшению переобученности и повышению точности дерева решений.
Таким образом, предложенный подход позволяет повысить эффективность про­
ведения трассерных исследований и снизить затраты на промысловые работы.

Результаты третьей главы опубликованы в работах [6] и [16].
В четвертой главе решается задача построения суррогатной модели для

быстрого вычисления приближенных оценок переобучения семейства порого­
вых решающих правил. Описывается процесс сбора обучающей выборки для
модели, которая состоит из пар «объект, ответ», и каждым объектом является
семейство пороговых решающих правил, ответом ҫ оценка обобщающей спо­
собности семейства. На основе имеющихся исследований оценок обобщающей
способности, проведенных в рамках комбинаторной теории переобучения, фор­
мируется перечень признаков, которые описывают объекты выборки. Рассмат­
риваются модели различной структуры. По результатам тестирования выбрана
модель нейронной сети с MAPE=2.8%. Анализ значимости признаков показы­
вает, что при построении оценок переобучения недостаточно учитывать только
количество классификаторов и минимальное число ошибок классификаторов,
необходимо использовать геометрическую структуру семейства (расслоение по
числу ошибок) и взаимосвязь между классификаторами (связность). Показано,
что использование модели позволяет сократить время вычисления оценок обоб­
щающей способности с O(L5) до O(L2) по сравнению с алгоритмом, описанным
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в первой главе, откуда следует вывод о практической значимости разработан­
ного подхода в задачах отбора признаков при построении деревьев решений,
нейронных сетей и в алгоритмах бустинга для контроля переобучения.

Результаты четвертой главы опубликованы в работе [4].

Заключение

Основные результаты данной работы заключаются в следующем:

1. Доказаны теоремы о представлении достигаемых верхних оценок обобща­
ющей способности произвольного семейства классификаторов в виде про­
изведения числа разбиений двух непересекающихся множеств объектов
генеральной совокупности.

2. Доказаны теоремы и разработан алгоритм полиномиальной сложности
для вычисления достигаемых верхних оценок обобщающей способности
семейства пороговых решающих правил над одномерным признаком при
варьировании параметра порога. В качестве характеристик обобщающей
способности используются функционалы вероятности переобучения, пол­
ного скользящего контроля и ожидаемой переобученности. Алгоритм ос­
нован на рекуррентном подсчете числа допустимых траекторий при блуж­
дании по трехмерной сетке между двумя заданными точками с ограниче­
ниями специального вида.

3. Проведен анализ завышенности известных оценок вероятности переобуче­
ния: ВапникаҫЧервоненкиса, расслоенияҫсвязности и Соколова. Показа­
но, что данные оценки завышены по сравнению с достигаемыми верхними
оценками, рассчитанными с помощью полученного алгоритма.

4. Полученный алгоритм применен для анализа завышенности известной
оценки Гуза для полного скользящего контроля. Показано, что оценки
Гуза являются достаточно точными для применения на практике в част­
ных случаях.

5. Проведен анализ завышенности оценки частоты ошибок на контрольной
выборке на основе Радемахеровской сложности по сравнению с достигае­
мыми верхними оценками, рассчитанными с помощью полученного алго­
ритма. Показано, что данные оценки оказываются точными только для
задач с высоким уровнем шума на границе классов. В противном случае,
когда граница между классами определяется четко, оценки Радемахеров­
ского типа являются завышенными на несколько порядков и непримени­
мыми на практике.

6. Полученные достигаемые верхние оценки полного скользящего контро­
ля и ожидаемой переобученности применены в качестве критерия отбора
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признаков при построении дерева решений. Проведены эксперименты на
промысловых данных трассерных исследований и показано статистически
значимое повышение обобщающей способности итогового классификато­
ра.

7. Построена суррогатная модель для вычисления приближенных оценок
обобщающей способности семейства пороговых решающих правил с высо­
кой точностью. Показано, что использование суррогатного моделирования
позволяет сократить сложность вычисления оценок переобучения с O(L5)
до O(L2) и может применяться в практических задачах для отбора при­
знаков при построении моделей машинного обучения.
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