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Yuriy Borisovi
h Germeyer (18.07.1918�24.06.1975) was born inAtkarsk town, in Saratovskiy region of Russia. In July of 1941 hegraduated from Fa
ulty of Me
hani
s and Mathemati
s of LomonosovMos
ow State University (MSU), and was sent to the aviation plant490 in Stalingrad for a position of an engineer-
al
ulator. For a longtime, he was 
on
erned with developing of new military air
rafts andtheir armament. Till the end of the Great Patrioti
 War he worked atseveral plants of the Ministry of aviation industry. At the same time he
ompleted the aspirant (PhD) program at MSU. He got his 
andidatedegree in 1947, and do
tor of s
ien
es in physi
s and mathemati
sdegree in 1963. His do
toral thesis examined some optimization problemsand sto
hasti
 pro
esses related to evaluation of the air
raft systemse�
ien
y. Sin
e 1966, and until the end of his life, Yu. B. Germeyer hasbeen working in Computing Center of the A
ademy of S
ien
es of theUSSR. In 1974 he organized a laboratory of Operations Resear
h there.He was also a founder of Operations Resear
h department at Fa
ultyof Computational Mathemati
s and Cyberneti
s of MSU in 1970. Sin
ethat time, he has also been a head of this department.Yu. B. Germeyer made an outstanding 
ontribution to thedevelopment of Operations Resear
h. He formulated the prin
iple ofthe maximal guaranteed result for de
ision making under random andun
ertain fa
tors, introdu
ed the 
on
ept of hierar
hi
al games andproposed e�
ient methods for 
omputation of their solutions. His books�Introdu
tion to Operations Resear
h� (1971) and �Non-antagonisti
games�(1976) remain basi
 textbooks for students at Lomonosov MSUand at Mos
ow Institute of Physi
s and Te
hnology.
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Dis
rete optimizationproblems
Optimization of sys
all sequen
es usingminimal spanning trees sear
hN.N. Efanov and E.S. ShtypaMos
ow Institute of Physi
s and Te
hnology,Dolgoprudnyy, Mos
ow Region, Russian Federation1. Introdu
tionModern 
omputer systems are mu
h high loaded by 
omplex tasks.Thereby, suspending and resuming the states of exe
utional instan
esis stri
tly important. The approa
h whi
h leads to system overheadminimization and re
onstru
tion in a natural way is pro
ess-treere
onstru
tion by sequen
es of system 
alls operations [1�2℄.Unfortunately, large 
ombinatorial 
omplexity of suitable tree generationdoes not allow to build naive dire
t sys
all-based re
onstru
tors [2℄.Alternatively, the formal grammar-based solution via derivation of
overing sys
all sequen
es from some pro
ess-tree is proposed [1℄. Themain advantages of a formal language model for restoring the OS pro
ess-tree are:
• Uni�
ation and simpli�
ation of the pro
ess of developing systemsof high-loaded and distributed 
omputing, virtualization and
he
kpoint-restore
• Elimination of ar
hite
tural �aws in 
he
kpoint re
overy systems,in
reasing their produ
tivity
• In
reasing the fault toleran
e and se
urity of 
he
kpoint-restoresystems and operating systems
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• Uni�
ation of 
he
kpoint-restore support tools
• Redu
tion of overhead and downtime for live migrationNevertheless, formal grammar approa
h has a list of drawba
ks. Firstof all, it is shortening: pro
esses 
an terminate by exit() sys
all, andinitial pro
ess-tree re
onstru
tion is possibly-feasible byreverse-reparenting with a set of heuristi
s, stri
t formal re
overy isimpossible in 
ommon 
ase be
ause of equivalen
e of su
h Chomskytype-0 grammar to universal Turing ma
hine [3℄. Another feature ofexisting sys
all grammar [1�2℄ is ambiguous by design: overwhelmingmajority of pro
ess-trees have more than one derivation tree, so thereare more than one sys
all sequen
e to 
onstru
t the 
ertain state ofsome pro
ess. For example, a 
hild pro
ess 
an be 
reated by a singlefork() 
all or by fork()-fork()-exit() sequen
e and so on. Di�erent sys
allsequen
es 
ommits di�erent overhead into system work�ow be
ause ofdi�erent amount of 
ontext-swit
hes and performing times. In this paper,the method of optimal sys
all sequen
es obtaining is designed. Grammarand pro�ling approa
hes are also dis
ussed, as the potential sour
es ofsys
all sequen
es, and graph-sear
hing-based algorithm is proposed.2. Problem Statement and De
ompositionGetting a 
ertain pro
ess tree L and set of sour
es: derivation trees

{D} that derives L, pro�le tra
es {P} of L 
onstru
tion and so on,
onstru
t build a dire
ted a
y
li
 graph (DAG) G, whi
h des
ribes allof available sys
all sequen
es, then obtain a
y
li
 oriented graph G′,whi
h 
ontains the optimal sequen
es of sys
alls for L 
onstru
tion, usinggraph G.The problem redu
tion to some known and solved problems of graphtheory is presented by the work in a set of statements:Statement 1 Graph G 
onstru
tion equals to tree into dire
ted a
y
li
graph merge problem [4℄.Proof. Ea
h instan
e from {D} is a tree by design. Ea
h instan
e from
{P} is re
eived by pro�ling of some program whi
h 
onsists of single ormultiple pro
esses and 
an be represented by sequen
e of sys
alls andstates a
hieved by these sys
alls, or set of su
h sequen
es, with some
ommon subsequen
es from start state to the point where fork() sys
allis exe
uted, 
an be merged into P_tree on input in O(N), where N isthe number of pro
ess' states. Thus, {D} and {P} 
ontains the treeswhi
h should be merged to 
onstru
t G. �Statement 2 The subproblem of G′ getting from G 
an be transformedinto minimal spanning tree sear
h problem.



14 Dis
rete optimization problemsProof. The method obtain sys
all sequen
es with minimal overhead onsystem, so for ea
h sequentially 
onne
ted nodes u, v ∈ G the mostsuitable bran
h from u to v should be 
hosen. If su
h bran
h is notunique, there are two ways to resolve ambiguity: a) strip the graph intoa set of graphs, ea
h of whi
h 
ontains only one bran
h from mentionedabove, so ea
h of those graphs is tree 
ontains of minimal 
ost sys
allsequen
es by design; b) introdu
e a rule of unique bran
h pi
king. Forexample, by alternative metri
 examining. Cases a) and b) determinesminimal spanning trees by de�nition [6℄. �Based on de
omposition and statements given above, the proposedsolution is redu
ed to well-known designed methods from graph theoryand dis
rete mathemati
s. The details of su
h subproblems solution aregiven in Se
tion 3.3. Tree Merging Details and Minimal Spanning Trees ObtainingThe problem of trees merging is well-investigated in di�erentappli
ations of graph theory and 
omputer s
ien
e. The wide set ofappli
ations produ
es the set of di�erent merge algorithms [4�5℄. Mostof those algorithms have O(N ·M) time and spa
e 
omplexity, where
N - the maximal number of nodes in any of M trees. Nevertheless, theauthors suggest to use relatively simple and generalized approa
h, whi
halso works in O(N ·M): the attributes, whi
h des
ribes an ea
h nodeposition (number, label and so on) should be logged into a list by DFS[6℄,then the same labels should be 
onne
ted by additional undire
ted edges
E′ in the pro
edure of dupli
ates 
he
king, then all of trees should beunited into the graph, with equal nodes dedupli
ation by rule

{(Vj , Ek)}
∣∣∣∣
Ek(Vj)→Vj

−→ {(Vj)} . (1)And redundant edges dedupli
ation via
{(Vj , E′′

k )}
∣∣∣∣|E′′

k
(Vj)→Vj+1|>1

−→ {(Vj , E′′
1 )} , (2)where E′′

k is the set outbound edges with same label, e.g. sys
all namefor the given problem. All of operation requires at 
ase, 4O(N ·M) �passes, so total 
omplexity is O(N ·M), and merged multi-tree stru
tureis the output of algorithm if at least one node in ea
h pair of trees isthe same. This 
ondition is a

omplished by the sour
e of problem and
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ribed in the Se
tion 2. Thus, merging the trees of {D} and {P} setsleads to DAG G.The subproblem of getting minimal spanning tree from G namedminimal spanning arbores
en
e requires to appli
ation of alreadydesigned methods of optimum dire
ted bran
hing sear
h like Edmond'ssear
h [7℄. It is proposed to use Tarjan modi�
ation of algorithm [8℄be
ause of relative sparsity of G: derivation trees and pro�ling tra
esnot 
over all of potential pat
hes between the nodes by pra
ti
al design[1℄, so the sparsity fa
tor of G is near 1
|V | , where |V | is the power ofnodes set. The Tarjan modi�
ation works in O(|E| log(|V |)) on sparseDAGs with |E| edges. Possible ambiguity in sear
hing 
an be solvedby bran
hes pi
king by some stri
t rules provided in Se
tion 2. The
ost metri
s, whi
h are supported by proposed method, are edge-weightadditive metri
s presented in the Se
tion 4. Thus, the total 
omplexityof des
ribed in Se
tion 2 problem is O(N ·M + log(N ·M)|E|).4. Cost Metri
sDi�erent sys
alls impa
t di�erent overhead into the programwork�ow be
ause of various times of operations performing. Moreover,thepro
edure of 
ontext swit
h from userspa
e to kernel 
ode during sys
allis relatively slow and potential se
urity-unsafe itself [9℄. Thus, 
ostmetri
s should 
onsider two independent fa
tors: whole number of
ontext swit
hes and average times of ea
h sys
all exe
ution. To handlethe fa
tors above e�e
tively, two 
ost metri
s are presented: 
ombinedtime-based (CT) and 
ontext swit
h metri
 (CS). The 
ombined time-based metri
s is de�ned as:

CT =

m∑

i=1

(ni · ti), (3)where ni is the number of sys
alls type i from the set of types 1 . . .m, tiis the average time of single sys
all type i performing. The minimizationin this metri
s is intended to a

ounting for the full overhead from thesystem 
alls exe
ution during runtime. Context swit
h metri
s is de�nedas:
CS =

m∑

i=1

ni, (4)



16 Dis
rete optimization problemswhere ni is the number of sys
alls type i from the set of types 1 . . .m. Theminimization in this metri
s is intended to ex
lude redundant 
ontext-swit
hes [9℄.A

ording to the optimization pro
edure and weights nature of CS,CT 
an be obtained from CS by setting all of times of kernel exe
utionto 1.5. Impa
t into the Formal Grammar of System Calls Analysisand Future WorkOptimal sys
all sequen
es obtaining is 
onstru
ted to improve ea
hof exe
ution environment te
hni
s: tra
es and pro�ling, heuristi
-basedmethods and formal grammar derivation. Nevertheless, the impa
tto the grammar-based solution [2℄ is extremely signi�
ant, be
auseof ambiguity of the designed grammar: it is potentially possible toimplement improved grammar parser: su
h parser should dynami
allyex
lude non-optimal bran
hes from derivation tree during the mainpro
edure of sequen
es and subtrees obtaining from an intermediaterepresentation. A

ording to the 
omplexity estimations above, theparser still be polynomial, and the degree of polynomial is bigger inworst 
ase on 2 than original. This 
omplexity is still 
ompetitive witha set of grammars frommild-
ontext-sensitive formalisms, whi
h also partially supportsshortening, like domain-based PMCFG [10℄ and so on. The further worksof the author will be fo
used on the pra
ti
al 
onstru
tion of su
h
onditional-analyti
al optimizing parser for sys
alls formal grammar [1℄,simultaneously with the grammar expansion.Referen
es1. Efanov N.N., Emelyanov P.V. Constru
ting the formal grammarof system 
alls // In Pro
eedings of the 13th Central & EasternEuropean Software Engineering Conferen
e in Russia (CEE-SECR'17). 2017. Arti
le 12. 5 pages.2. Efanov N.N., Emelyanov P.V. Postroenie formal'noj grammatikisistemnyh vyzovov // Informa
ionnoe obespe
henie matemati
hes-kih modelej. 2017. P. 83�91.3. Partee B.H., Ter Meulen A., Wall R.E. Turing Ma
hines,Re
ursively Enumerable Languages and Type 0 Grammars //Mathemati
al Methods in Linguisti
s (Studies in Linguisti
s andPhilosophy). 1993. V. 30. P. 505�525.4. Mailund T. Merging Trees into a DAG, 2004.
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rete optimization problems 175. Morozov D., Weber G. Distributed merge trees // In Pro
eedingsof the 18th ACM SIGPLAN symposium on Prin
iples and pra
ti
eof parallel programming (PPoPP'13). 2013. P. 93�102.6. Sedgewi
k R. Algorithms in C++ Part 5: Graph Algorithms, 3rdEdition // Pearson Edu
ation. 2002.7. Edmonds J. Optimum Bran
hings // Journal of Resear
h of theNational Bureau of Standards - B. Mathemati
s and Mathemati
alPhysi
s. 1967. V. 71B, no. 4. P. 233�240.8. Tarjan R.E. Finding Optimum Bran
hings // Networks. 1977. V. 7.P. 25�35.9. Hruby T., Crivat T., Bos H., Tanenbaum A. On so
kets andsystem 
alls minimizing 
ontext swit
hes for the so
ket API //In Pro
eedings of the 2014 International Conferen
e on TimelyResults in Operating Systems (TRIOS'14). 2014. P. 8.10. Hiroyuki S., Nakanishi R., Kaji Y., Ando S., Kasami T. Parallelmultiple 
ontext-free grammars, �nite-state translation systems,and polynomial-time re
ognizable sub
lasses of lexi
al-fun
tionalgrammars // In 31st Meeting of the Asso
iation for ComputationalLinguisti
s (ACL'93). 1993. P. 121�129.Heavy-ball method in un
onstrainedminimizationF.V. KostyukDorodni
yn Computing Center of Federal Resear
h CenterComputer S
ien
e and Control of Russian A
ademy of S
ien
es,Mos
ow, RussiaConsider the un
onstrained optimization problem
Π : F (x)→ min, x ∈ Rk,where F (x) is assumed to be 
ontinuously di�erentiable on

Rk, i.e.F (x) ∈ C1(Rk) and∇F (·) ∈ CLip(Rk, L) (CLip(X,L) denotes the
lass of ve
tor-valued fun
tions whi
h satisfy a Lips
hitz 
ondition on
X ∈ Rk with a 
onstantL > 0). We also assume that the Lebesgue sets

XL(f) = {x ∈ Rk | F (x) ≤ f} , f ∈ R1,are bounded for all f ∈ R1. Obviously under these assumptions theoptimal set
Xopt =

{
x ∈ Rk | F (x) = minx′∈Rk

F (x′) = fopt
}



18 Dis
rete optimization problemsis not empty and 
ompa
t.The stationary set Xstat of the problem Π is de�ned by
Xstat = {x ∈ Rk | ∇F (x) = 0},
learly Xstat is the set of all points satisfying the �rst order ne
essaryoptimality 
ondition for Π. Assume that Xstat is bounded.Let us 
onsider the following optimization algorithm whi
h is knownas "the heavy ball method"[1℄:

HBM : xn+1 = xn − α∇F (xn) + β(xn − xn−1),

n = 1, 2, . . . , (x0, x1) ∈ Rk ∗Rk,where α > 0, β ≥ 0 are parameters (step sizes); (x0, x1) is a pair ofstarting points.The method owes its name to the following physi
al analogy. Themotion of a body ("the heavy ball") in a potential �eld under the for
e offri
tion (or vis
osity) is des
ribed by a se
ond-order di�erential equation
θ
d2x(t)

dt2
= −∇F (x(t)) − κdx(t)

dt
(1.1)The body eventually rea
hes a lo
al minimum point of the potential

F (·) be
ause of energy loss 
aused by vis
osity. Thus, the heavy ballmethod "solves"the 
orresponding minimization problem. Consideringthe di�eren
e analogue of the equation (1.1), getting the iterative methodHBM. Note, for β = 0, HBM turns into the simplest algorithm of thegradient des
ent method:
GrM : xn+1 = xn − a∇F (xn), n = 1, 2, . . . , x1 ∈ Rk.In the 
ase β < 0 HBM 
an be 
onsidered as a gradient algorithm of theprox-method [2℄.There are two main reasons why the signi�
ant attention is beingdrawn to the heavy ball te
hnique:Firstly, standard gradient des
ent te
hnique possesses a wide range offairly good properties, i.e. the global 
onvergen
e to the optimal set or,in the multiextremal 
ase, to the stationary set Xstat and robustness, i.e.
omputational errors do not essentially a�e
t its 
onvergen
e. It worksunder unrestri
ted requirements on the obje
tive fun
tion's smoothness,unlike the 
onjugate gradient and the quasi-Newton te
hniques whi
h
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e di�erentiability of F (·) et
. But its 
onvergen
e rateto ill-posed solutions of the problem Π is too low. Thus, the �rstreason for developing the heavy ball te
hnique is the need in simply
onstru
ted algorithms whi
h solve optimization problems with on
edi�erentiable data more e�e
tively than the standard gradient des
entte
hnique. In parti
ular, Nesterov [3℄ suggested an original algorithmwhi
h 
onstru
tion in
ludes HBM's steps and proved that its 
onvergen
erate is O( 1
n2 ) on the 
lass of 
onvex problems with C1-data, and whatis important this 
onvergen
e rate on the 
lass of 
onvex di�erentiableproblems 
ay not be essentially improved be any iterative algorithm aswas shown by Nemirovski and Yudin [4℄.Se
ondly, HBM's traje
tories get the property to 
ross neighborhoodsof nondistin
t slantish lo
al minima like the physi
al analogy ofthe method thanks to kineti
 energy of the moving ball. Thus, inmultiextremal problems the attra
tion area of the global minima (i.e. theset of starting points of traje
tories 
onverging to the global minima) ofHBM is wider than su
h area for the standard gradient des
ent te
hnique.Furthermore, in the present paper it is shown that spe
ial algorithms ofHBM possess the property to 
ross neighborhoods of nondeep (but maybe sharp) lo
al minima. These properties are important for using HBMwithin the multistart method for the sear
h of a global minimum as wasshown by Rinnooy Kan [5℄. Thus, the se
ond reason for developing theheavy ball method is attra
tive global optimization properties of thislo
al des
ent te
hnique.Stability properties of the 
ontinuous pro
ess (1.1) were analyzed byZirilli, Parisi and Allu�-Pentini [6℄.Lo
al 
onvergen
e of HBM at a neighborhood of a nonsingularsolution x∗ of Π was explored in [7℄. It was assumed that F (·) is twi
e
ontinuously di�erentiable on a neighborhood of x∗,∇F (x∗) = 0, andthe eigenvalues λ1, . . . , λk of ∇2F (x∗) are as follows:

0 < λ1 ≤ · · · ≤ λkThe 
ondition µ of x∗ is de�ned by
µ :=

λk
λ1. It was obtained that for any (a, b) satisfying

(a, b) ∈ ΩP =

{
(a′, b′) | 0 ≤ b′ < 1, 0 < a′ <

2(1 + b′)

L

}
(1.2)
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rete optimization problemsthere exist real ǫ, q > 0, q = q(a, b) < 1, su
h that every traje
tory {xn}of HBM with x0, x1) ∈ Bǫ(x∗)×Bǫ(x∗) has the property
lim
n→∞

‖xn − x∗‖ = 0,and, moreover,
‖xn − x∗‖ ≤ C(q(a, b) + δ)n, n = 1, 2, . . . ,for any δ > 0 and the 
orresponding C = C(ǫ, δ) > 0. Furthermore,

min
(a,b)∈ΩP

q(a, b) =

√
µ− 1
√
µ+ 1

< q∗ =
µ− 1

µ+ 1where q∗ is the best possible 
hara
teristi
 of the linear 
onvergen
e rateto x∗ of the gradient des
ent method GrM (i.e. HBM with b = 0).Thus, when Π is ill-posed at x∗ (i.e. µ≫ 1) the 
onvergen
e rateof HBM with an appropriate (a0, b0) ∈ ΩP is mu
h better than the
onvergen
e rate of the standard gradient des
ent te
hnique. However,the 
ondition (1.2) does not guarantee the global 
onvergen
e of HBM.In the 
ase when F ()̇ is di�erentiable for the global 
onvergen
e ofHBM was proved that for any (a, b), satisfying
(a, b) ∈ ΩA =

{
(a′, b′) | 0 ≤ b′ < 1

3
, 0 < a′ <

2(1− 3b′)

L

}
(1.2)every traje
tory {xn} of HBM 
onverges to Xopt. Note that ΩA ⊂ ΩP .The present report 
on
erns the stability analysis of HBM atmultiextremal problems. We shall investigate global 
onvergen
eproperties of HBM and then 
onstru
t global optimization pro
eduresbased on this aproa
h.Consider an iterative pro
ess

xn+1 ∈ Ψ(n, xn, xn−1, xn−2, . . . , xn−s+1), (x1, . . . , xs) ∈ X1 × · · ·Xs,

n = s, s+ 1, . . .,where Ψ(·, ·) : N ×⊗si=1Rk → ℜ(Rk) (...ℜ(X) denotes the set of allsubsets of X,N = {1, 2, . . .}), X i ⊂ Rk, i = 1, . . . , s. Denote by X... theset of all traje
tories of the pro
ess.The pro
ess is said to be Lagrange stable if every traje
tory
{xn} ∈ X... is bounded. We say that a bounded traje
tory {xn}
onverges to a set A if

lt{xn} ⊂ A, (1.3)
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rete optimization problems 21where lt{xn} denotes the set of all limit points of {xn}. For a Lagrangestable pro
ess the set Ξ :=
⋃

{xn}∈X... lt{xn} is 
alled the attra
tor setof the pro
ess. Clearly that the attra
tor set is de�ned as the smallestset A with the property that every traje
tory of the pro
ess attra
ts to
A, i.e. (1.3) holds for every {xn} ∈ X....As a rule the global stability analysis of nonlinear optimizationmethods at multiextremal problems 
onsist in the following:i) to establish the Lagrange stability of the method;ii) to prove the 
onvergen
e of the method to the stationary set Xstat,i.e. to obtain the attra
tor set of the method;iii) to 
larify what kind of perturbations does not essentially a�e
ton the method's 
onvergen
e properties (it is important for the furtherdeveloping of the method). Expli
itly, it has 
onsidered the situationwhen the method deals at the n-th iteration with, for instan
e,
∇F (xn) + p1(n, x) instead of the exa
t value∇F (xn), n = 1, 2, . . ., where
p1(·, ·) : N ×Rk → Rk is a perturbation of the obje
tive fun
tion'sgradient. Then the aim is to �nd 
ondentions on p1(·, ·) guaranteeingthat the perturbed method still 
onverges to the original attra
tor set ofthe method (i.e. to the attra
tor set of the unperturbed method) and,moreover, possibly preserves the original 
onvergen
e rate. Certainlythese 
onditions appear to be rather restri
ted and, in parti
ular, implythat

lim
n→∞

‖p1(n, xn)‖ = 0on every traje
tory {xn} of the perturbed method.In the present paper all the problems i)-iii) of the global stabilityanalysis are 
onsidered. It appears that this modi�
ation providesto HBM the property to smooth a surfa
e under the moving ballwhi
h is very important for the appli
ation of the te
hnique to globaloptimization. Referen
es1. Polyak B.T. Introdu
tion to Optimization. New York:Optimization Software, In
., Publi
ation Division, 1987.2. Polyak B.T., W.S. Petrov and L.M. Krav
hukov. On the su�
ient
onditions in global optimization // E
onomi
s and Mathemati
alMethods. 1972. V. 8. P. 130�135.3. Nesterov Yu.E., An 0(l/k )-rate of 
onvergen
e method for smooth
onvex fun
tions minimization // Dokl. A
ad. Nauk SSSR. 1983.V. 269: P. 543�547, .



22 Dis
rete optimization problems4. Nemirovsky A., Yudin D. Problem 
omplexity and methode�
ien
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 method for global optimization // Mathemati
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Model of stabilization for inter-bran
hbalan
e by Leontiev∗

1A.S. Antipin, 2E.V. Khoroshilova, 3M. Ja
imovi
, and 3N. Mijajlovi

1Federal Resear
h Center ¾Computer S
ien
e and Control¿ of RAS,

2Lomonosov Mos
ow State University, Mos
ow, Russia
3University of Montenegro, Podgori
a, MontenegroIntrodu
tion. The inter-bran
h balan
e model is one of the mostfamous and popular models of e
onomi
 and mathemati
al modeling.Thousands of pages in s
ienti�
 texts are devoted to various versionsof this model. There are stati
 models, dynami
 
ontrolled models anddynami
ally un
ontrolled models, as well as their various 
ombinations.Models with 
ontrolled dynami
s are espe
ially popular in the theoryof optimal 
ontrol. The methodology of these models assumes that it ispossible to 
ompute in advan
e the program 
ontrol and the 
orrespond-ing program traje
tory over the entire time interval, for example, for oneyear. In this 
ase, the 
al
ulated traje
tory is quite adequate to re�e
tthe development in time of a real inter-bran
h balan
e. However, thepra
ti
e of 
al
ulation shows that very often serious di�
ulties arisewith an adequate des
ription of the real e
onomi
 pro
ess.The paper 
onsiders another approa
h to mathemati
al modeling ofthis dynami
 situation, namely, we assume that the 
ontrol goal is abalan
ed inter-bran
h balan
e at the end of the planning period. In this

∗This resear
h is supported by the Russian Foundation for Basi
 Resear
h (Proje
t18-01-00312)
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ase, the balan
ed state of the system at the end of the time intervalwill be 
onsidered the equilibrium state of the 
ontrol obje
t. However,often under the in�uen
e of various perturbing fa
tors, the obje
t losesits equilibrium and is far from the equilibrium point. In this 
ase, theproblem arises to sele
t the 
ontrol so that the obje
t is returned tothe equilibrium state. If, for example, program 
ontrol is 
al
ulated inadvan
e, then any su
h 
ontrol 
an always be 
onsidered as a disturbedstate of the 
ontrol obje
t. In this 
ase, we get the stabilization problemto return the 
ontrol obje
t from the disturbed state again to the equilib-rium state. The stabilization problem is one of the two main problemsof the general 
ontrol theory (another problem is the 
ontrollabilityproblem).Formulation of the problem. Consider a linear di�erential modelof optimal 
ontrol [1℄�[3℄. This model in
ludes 
ontrolled dynami
s anda boundary-value �nite-dimensional problem of the inter-bran
h balan
eby Leontiev. When the 
ontrol runs through the entire set of 
ontrols
u(·) ∈ U, then the linear 
ontrolled dynami
s of the problem generatestraje
tories x(·), t ∈ [t0, t1], whose right-hand ends x(t1) = x1 des
ribethe terminal set X1 = X(t1) ⊂ Rn, 
alled the rea
hability set. The
ontrol problem 
an be treated as a stabilization problem for the 
asewhen the 
ontrol obje
t needs to be transferred from an arbitrary initialstate to an optimal terminal state:

x∗1 ∈ Argmin

{
1

2
|(A− E)x1 − y|2 | x1 ∈ X1 ⊂ Rn

}
, (1)

d

dt
x(t) = D(t)x(t) +B(t)u(t), x(t0) = x0, x(t1) = x∗1, (2)

u(·) ∈ U ⊂ Lr2[t0, t1]. (3)The obje
tive �nite-dimensional fun
tion from (1) is generated by theinterbran
h balan
e model
x = Ax+ y,where A = aij , i = 1, ..., n; j = 1, ..., n. They show the amount of theprodu
t of the i-th industry, whi
h must be spent to produ
e a produ
tunit of j-th industry. The i-th 
omponent of x = (x1, ..., xn) is the grossoutput of j-th produ
t; ea
h 
omponent of y = (y1, ..., yn) is the �nal
onsumption. This model has been the subje
t of intensive s
ienti�
resear
h for almost 100 years [Lotov A.V. (1984)℄.



Continuous optimization problems 25The traje
tory of di�erential system (2) identi
ally satis�es 
ondition
x(t) = x(t0) +

∫ t

t0

(D(τ)x(τ) +B(τ)u(τ))dτ. (4)for almost all t ∈ [t0, t1] and is an absolutely 
ontinuous fun
tion. Theexisten
e of a solution of the dynami
 problem (1)-(3) is well-known fa
t.The formulated problem belongs to the 
lass of optimal 
ontrol prob-lems, for whi
h the maximum prin
iple is the main tool for 
onstru
tingiterative methods for solving problems. However, the maximum prin
ipleis a ne
essary 
ondition for optimality. This 
ondition does not guaranteethat the limit point is the solution to the problem. In fa
t, this meansthat su
h an approa
h is not 
on
lusive and justi�ed, and all solutionsobtained by this method require additional expert justi�
ation. But thisis already a sphere of heuristi
s, and not a proof theory. To get out ofthis situation, it is ne
essary to use su�
ient optimality 
onditions thatensure that the solution found is a true solution of the original problem.In reality, there are several types of su�
ient 
onditions foroptimality. First of all, these are su�
ient 
onditions based on theHamilton-Ja
obi inequalities [Krotov V.F. (1973), Dykhta V.A. (1995)℄,su�
ient 
ondi- tions generated by the �eld theory of extremals[Veli
henko V.V. (1974)℄. In our paper, we use su�
ient 
onditions ofthe duality theory, that is, saddle-point su�
ient 
onditions. On thebasis of these 
onditions, we 
onstru
t a saddle-point iterative methodsof extragradient type. The duality theory assumes the 
onvexity of theoriginal problem. But this 
ir
umstan
e is not a rigid restri
tion, sin
eany smooth problem 
an always be repla
ed by a sequen
e of 
onvexproblems.Following the proposed strategy, we linearize the initial problem ofterminal 
ontrol (1)-(3) and repla
e it with the linear programmingproblem formulated in the fun
tional spa
e
x∗1 ∈ Argmin{〈∇ϕ(x∗1), x1 − x∗1〉 | x1 ∈ X1 ⊂ Rn}, (5)

d

dt
x(t) = D(t)x(t) +B(t)u(t), x(t0) = x0, x(t1) = x∗1, (6)

u(t) ∈ U ⊂ Rn, u(·) ∈ Lr2[t0, t1], (7)where ϕ(x1) = 1
2 | (A−E)x1−y |2, the gradient∇ϕ(x1) = (A−E)T ((A−

E)x1 − y), and the linearized obje
tive fun
tion 〈∇ϕ(x1), x(t1)− x1〉 =
〈(A − E)T ((A − E)x1 − y), x(t1) − x1〉. Linearization is 
arried out atthe point x1 = x∗1, whi
h is the solution of the problem (1)-(3).



26 Continuous optimization problemsLagrangians with respe
t to primal and dual variables. Wewrite out the dual problem for system (1)-(3) in an expli
it form. Forthe s
alarized problem (5)-(7) we have the Lagrange fun
tion
L(ψ(·);x1, x(·), u(·)) =

= 〈∇ϕ(x∗1), x1 − x∗1〉+
∫ t1

t0

〈ψ(t), D(t)x(t) +B(t)u(t)− d

dt
x(t)〉dt, (8)for all (ψ(·);x1, x(·), u(·)).By de�nition, the saddle point (ψ∗(·);x∗(t1), x∗(·), u∗(·)) of the Lag-range fun
tion, formed by primal (x∗(t1), x∗(·), u∗(·)) and dual (ψ∗(·))variables, satis�es saddle-point inequalities

〈∇ϕ(x∗1), x∗1 − x∗1〉+
∫ t1

t0

〈ψ(t), D(t)x∗(t) +B(t)u∗(t)− d

dt
x∗(t)〉dt

≤ 〈∇ϕ(x∗1), x∗1 − x∗1〉+
∫ t1

t0

〈ψ∗(t), D(t)x∗(t) +B(t)u∗(t)− d

dt
x∗(t)〉dt

≤ 〈∇ϕ(x∗1), x1 − x∗1〉+
∫ t1

t0

〈ψ∗(t), D(t)x(t) +B(t)u(t) − d

dt
x(t)〉dt (9)for all (ψ(·);x1, x(·), u(·)).If the regularity 
onditions (Slater's 
ondition) are satis�ed, if theoriginal problem (1)-(3) has a primal and dual solution, then they forma saddle point for the Lagrange fun
tion. The 
onverse is also true: the
omponents of the saddle point of (9) are primal and dual solutions toproblem (1)-(3) and dual to it.Using 
onjugate operators, we write out the 
onjugate Lagrangian

LT (x1, ψ(·), x(·), u(·)) = 〈∇ϕ(x∗1)− ψ(t1), x∗1〉+

+

∫ t1

t0

〈DT (t)ψ(t) +
d

dt
ψ(t), x(t)〉dt

+

∫ t1

t0

〈BT (t)ψ(t), u(t)〉dt − 〈ψ(t1), x(t1)〉+ 〈ψ(t0), x(t0)〉 (10)for all (ψ(·);x1, x(·), u(·)). Both Lagrangians (primal and dual) have oneand the same the saddle point (ψ∗(·);x∗1, x∗(·), u∗(·)), whi
h satis�es thesaddle-point dual system.



Continuous optimization problems 27The saddle-point system generates mutually-dual problems, whi
hin turn generate a di�erential system with respe
t to primal and dualvariables:
d

dt
x∗(t) = D(t)x∗(t) +B(t)u∗(t), x∗(t0) = x0,

DT (t)ψ∗(t) +
d

dt
ψ∗(t) = 0, ∇ϕ(x1)− ψ∗(t1) = 0,

∫ t1

t0

〈BT (t)ψ∗(t), u∗(t)− u(t)〉dt ≤ 0, u(·) ∈ U. (11)This system is a saddle-point su�
ient optimality 
ondition. This 
ondi-tion make possible to 
onstru
t proving methods for solving very 
omplexproblems.As a result, we obtain an iterative pro
ess with two half-steps on oneiteration [1℄�[4℄:1) predi
tive half-step
d

dt
xk(t) = D(t)xk(t) +B(t)uk(t), xk(t0) = x0, (12)

d

dt
ψk(t) +DT (t)ψk(t) = 0, ψk1 = ∇ϕ(xk1), (13)

ūk(t) = πU (u
k(t)− αBT (t)ψk(t)); (14)2) basi
 half-step

d

dt
x̄k(t) = D(t)x̄k(t) +B(t)ūk(t), x̄k(t0) = x0, (15)

d

dt
ψ̄k(t) +DT (t)ψ̄k(t) = 0, ψ̄k1 = ∇ϕ(x̄k1), (16)

uk+1(t) = πU (u
k(t)− αBT (t)ψ̄k(t)), k = 0, 1, 2, ... (17)Con
lusion. The theorem on 
onvergen
e of the proposed method(12)�(17) to solution of the problem was proved. In parti
ular, it wasshown that 
onvergen
e in 
ontrols is weak, 
onvergen
e in state and
onjugate traje
tories is strong.Referen
es1. Antipin A.S., Khoroshilova E.V. Controlled dynami
 model withboundary-value problem of minimizing a sensitivity fun
tion //Optim. Lett. 2017. DO1 10.1007/s11590-017-1216-8. (Publishedonline: 17 November 2017).



28 Continuous optimization problems2. Antipin A.S., Khoroshilova E.V. Saddle point approa
h to solvingproblem of optimal 
ontrol with �xed ends // J. of GlobalOptimiza- tion. 2016. V. 65, Issue 1, P. 3�17.3. Antipin A.S., Ja
imovi
 M. and Mijajlovi
 N. Extragradientmethod for solving quasivariational inequalities // Optimization. AJournal of Mathemati
al Programming and Operations Resear
h.2018. V. 67, Issue 1. P. 103�112.4. Khoroshilova E.V. Extragradient method of optimal 
ontrol withterminal 
onstraints // Automation and Remote Control. 2012.V. 73. No 3. P. 517�531.A re�nement of the maximum prin
iple forstate 
onstrained optimal 
ontrol problemsunder a regularity 
ondition∗A.V. Arutyunov, D.Yu. Karamzin, and F.L. PereiraPeoples' Friendship University of Russia, Federal Resear
h Center�Computer S
ien
e and Control� of the Russian A
ademy of S
ien
es,Mos
ow, and University of Porto, PortugalIn this short note, we refer to the 
lassi
 monograph [1℄, see Chapter6 therein, in whi
h the state 
onstrained optimal 
ontrol problems havebeen investigated and 
orresponding optimality 
onditions derived. Wenoti
e that a 
ertain re�nement to this known result (originally obtainedby R.V. Gamkrelidze in [2℄) holds, namely, the fa
t that the measureLagrange multiplier is 
ontinuous. Continuity of the multiplier follows inview of the regularity 
onditions imposed on the optimal traje
tory w.r.t.the state 
onstraints. Below we provide rigourous proof for this fa
t. Thisproof is 
arried out by virtue of the same idea and similar arguments tothe ones suggested in [3℄, however, the hypothesis for smoothness of thedata is redu
ed. In [3℄, even the H�older 
ontinuity of the measure isestablished. However, the proof therein uses an extra smoothness w.r.t.the u-variable. Herein, we intend to use the same 
lass of smoothnessfor the data, as in [1℄. Moreover, unlike [3℄, geometri
al 
onstraints on
ontrol, given by an arbitrary feasible 
losed set U , are 
onsidered.
∗This work was supported by the Russian Foundation for Basi
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Continuous optimization problems 29The 
ontinuity of the measure-multiplier appears to be important fornumeri
al implementation in the framework of indire
t 
omputationalapproa
h. Indeed, the fa
t that the multiplier jumps, thereby havingsingularities, 
reates obsta
les on the way to apply the standard indire
tapproa
h and the shooting algorithm to resolve the 
o-state equation,as the �number of variables� is, in general, higher than the �number ofequations�. In what follows, we demonstrate the absen
e of singularitiesof this kind, if the above mentioned regularity 
onditions are satis�ed.Therefore, the presented theoreti
al aspe
ts may be useful in pra
ti
alappli
ations.Consider the following optimal 
ontrol problem with state
onstraints. Minimize ∫ 1

0

f0(x, u, t)dt,subje
t to ẋ = f(x, u, t),
x(0) = xA, x(1) = xB ,
u(t) ∈ U for a.a. t ∈ [0, 1],
g(x(t), t) ≤ 0 ∀ t ∈ [0, 1].

(1)Here, ẋ := dx
dt , t ∈ [0, 1] signi�es the time variable, x is the state variablewith values in Rn. The mappings f0 : Rn×Rm×R→ R, f : Rn×Rm×

R→ Rn, and g : Rn ×R→ Rk satisfy a 
ertain smoothness assumptionspe
i�ed below, the set U is a 
losed subset of Rm. The ve
tors xA and
xB in the state-spa
e are the so-
alled starting and terminal positions.The measurable bounded fun
tion u(·) is termed 
ontrol. The feasibletraje
tory x(·) is supposed to be absolutely 
ontinuous and to satisfythe di�erential 
onstraints ẋ(t) = f(x(t), u(t), t) for a.a. t ∈ [0, 1], andthe inequalities gj(x(t), t) ≤ 0 ∀ t ∈ [0, 1], j = 1, ..., k, whi
h de�ne thestate 
onstraints.Let u(·) be a 
ontrol fun
tion, and x(·) be a 
orresponding traje
tory.The pair (x, u) is said to be feasible pro
ess provided that the endpointand state 
onstraints and the 
ontrol 
onstraints: u(t) ∈ U for a.a. t ∈
[0, 1], are satis�ed. A feasible pro
ess (x∗, u∗) is termed optimal if thevalue of the 
ost integral is the least possible over the set of all feasiblepro
esses. This is the well-known notion of the so-
alled global minimum.The data will satisfy the following hypothesis.Hypothesis 1 Fun
tions f, f0 are C1-, and g is C2-smooth.The se
ond-order derivative for the ve
tor-valued fun
tion g, whi
h



30 Continuous optimization problemsde�nes state 
onstraints, is required due to the fa
t that the Gamkrelidzeset of ne
essary 
onditions is used in that whi
h follows.Re
all this set of 
onditions, [1,4,5℄. Consider the extended Hamilton-Pontryagin fun
tion
H̄(x, u, ψ, µ, λ, t) :=

〈
ψ, f(x, u, t)

〉
−
〈
µ,Γ(x, u, t)

〉
− λf0(x, u, t),where ψ, µ, λ are variables in Rn, Rk, and R respe
tively, and fun
tion

Γ is de�ned as follows
Γ(x, u, t) = g′x(x, t)f(x, u, t) + g′t(x, t).De�nition 1 The 
ontrol pro
ess (x∗, u∗) in Problem (1) is said tosatisfy the nondegenerate maximum prin
iple provided that there existLagrange multipliers: a number λ ≥ 0, an absolutely 
ontinuous fun
tion

ψ : [0, 1] → Rn, and a bounded fun
tion µ : [0, 1] → Rk, su
h that
µ 6= 0 on (0, 1) if λ = 0 and ψ = 0, ea
h 
omponent µj , j = 1, .., k, isde
reasing, thereby, de�ning a Borel measure, and

ψ̇(t) = −H̄ ′
x(x

∗(t), u∗(t), ψ(t), µ(t), λ, t) for a.a. t ∈ [0, 1],

max
u∈U

H̄(x∗(t), u, ψ(t), µ(t), λ, t) =

= H̄(x∗(t), u∗(t), ψ(t), µ(t), λ, t) for a.a. t ∈ [0, 1],
∫ 1

0

〈
g(x∗(t), t), dµ

〉
= 0.As is known, under natural regularity or 
ontrollability 
onditionsw.r.t. the state 
onstraints, any optimal pro
ess (x∗, u∗) satis�es thenondegenerate maximum prin
iple, [6℄. In that whi
h follows we aim toprovide a few of su
h regularity 
on
epts. In this regularity framework,the maximum prin
iple is not only nondegenerate, but also the measure-multiplier µ is 
ontinuous on (0, 1).Consider a feasible pro
ess (x∗, u∗). De�ne J(t) = {j : gj(x∗(t), t) =

0}, and let U(t) be the 
losure of u∗(t) w.r.t. the Lebesgue measure (seein [3℄). By 
onvention, we set U−(0) := U+(0), U+(1) := U−(1). By
U+(t) and U−(t) denote the right and the left 
losure w.r.t. measurerespe
tively.The de�nition that follows is an extension of the regularity 
onditionimposed on the optimal traje
tory in [1℄.



Continuous optimization problems 31De�nition 2 The feasible pro
ess (x∗, u∗) is said to be left-regular atpoint t ∈ [0, 1] w.r.t. the state 
onstraints, provided that for all u ∈ U−(t)there exists a ve
tor d = d(u, t) ∈ TU (u) ∩N∗
U (u) su
h that

〈∂Γj
∂u

(x∗(t), u, t), d
〉
> 0 ∀ j ∈ J(t). (2)Respe
tively, it is said to be right-regular at this point, provided that forall u ∈ U+(t) there exists a ve
tor d = d(u, t) ∈ TU (u)∩N∗

U (u) su
h that
〈∂Γj
∂u

(x∗(t), u, t), d
〉
< 0 ∀ j ∈ J(t). (3)Pro
ess (x∗, u∗) is said to be regular if it is either left-, or right-regularin ea
h point of the time interval.Here, TU (u) stands for the 
ontingent tangent 
one to the set U atpoint u, and N∗

U (u) is the dual 
one to the limiting normal 
one NU (u)de�ned in [7℄.It follows that, in the s
alar 
ase, that is, when k = 1 the regularity
on
ept 
an be weakened. (In fa
t, it 
an also be weakened for k > 1, butthen some extra rigid assumptions on the behavior of traje
tory arise,[3℄.) De�ne sets
T0 := {t ∈ [0, 1] : g(x∗(t), t) = 0},
Z(t) := {u ∈ U : Γ(x∗(t), u, t) = 0}.De�nition 3 The feasible pro
ess (x∗, u∗) is said to be regular w.r.t. thestate 
onstraints, provided that for all t ∈ T0 there exist u ∈ U(t) and

d ∈ TU (u) ∩N∗
U (u) su
h that
〈
Γ′
u(x

∗(t), u, t), d
〉
> 0 if u ∈ Z(t) ∩ U−(t),

〈
Γ′
u(x

∗(t), u, t), d
〉
< 0 if u ∈ Z(t) ∩ U+(t).

(4)Note that (2) is automati
ally satis�ed when U(t) ( Z(t).This type of regularity is weaker than the one in De�nition 2. Thus,we will also term these types as weakly regular, and strongly regular,respe
tively. Note that: Any feasible pro
ess is weakly regular providedthat for all x ∈ Rn, u ∈ U , and t ∈ [0, 1] su
h that g(x, t) = 0, Γ(x, u, t) =
0, there exist ve
tors d+, d− ∈ TU (u) ∩N∗

U (u) su
h that
〈
Γ′
u(x, u, t), d+

〉
> 0, while 〈Γ′

u(x, u, t), d−
〉
< 0. (5)



32 Continuous optimization problemsIt is possible to point out to various 
lasses of 
ontrol problems withstate 
onstraints for whi
h this global and a priori veri�
ation 
onditionworks.The following lemma is our main result.Lemma 1 Let (x∗, u∗) be an extremal pro
ess w.r.t. the nondegeneratemaximum prin
iple. Assume that at least one of the following 
onditionsis satis�ed:i) pro
ess (x∗, u∗) is strongly regular in the sense of De�nition 2,while the set U satis�es the regularity property that, for any u ∈
U , d ∈ TU (u), there exists a fun
tion o(·) : R → Rm su
h that
u+ εd+ o(ε) ∈ U ∀ ε > 0, and o(ε)/ε→ 0 as ε→ 0;∗ii) pro
ess (x∗, u∗) is weakly regular in the sense of De�nition 3, and
k = 1.Then, for any set of the Lagrange multipliers (ψ, µ, λ) 
orrespondingto (x∗, u∗) by virtue of De�nition 1, the measure Lagrange multiplier µ(·)is 
ontinuous on (0, 1). Referen
es1. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mish-
henko, E.F.: The Mathemati
al Theory of Optimal Pro
esses,Inters
ien
e, New York (1962)2. Gamkrelidze, R.V.: Optimal 
ontrol pro
esses with restri
ted phase
oordinates, Izv. Akad. Nauk SSSR S
r. Mat., 24, 315�356 (1960)3. Arutyunov, A.V., Karamzin, D.Yu. On Some Continuity Propertiesof the Measure Lagrange Multiplier from the Maximum Prin
iplefor State Constrained Problems. SIAM Journal on Control andOptimization, 53, 4 (2015)4. Neustadt, L.W.: An abstra
t variational theory with appli
ationsto a broad 
lass of optimization problems. II: Appli
ations, SIAMJ. Control, 5 (1967)5. Arutyunov, A.V., Karamzin, D.Yu., Pereira, F.L.: The MaximumPrin
iple for Optimal Control Problems with State Constraints byR.V. Gamkrelidze: Revisited. J. Optim. Theory Appl., 149 (2011)

∗This means that the 
ontingent tangent 
one 
oin
ides everywhere with the innertangent 
one.



Continuous optimization problems 336. Arutyunov, A.V.: Optimality 
onditions: Abnormal andDegenerate Problems. Mathemati
s and Its Appli
ation. KluwerA
ademi
 Pub-lisher (2000)7. Mordukhovi
h, B.S., Variational Analysis and GeneralizedDi�eren-tiation. Volume I. Basi
 Theory. Springer-Verlag, 2006,Grundlehren der Mathematis
hen Wissens
haften [FundamentalPrin
iples of Mathemati
al S
ien
es℄, Berlin.Proje
tion onto a 
onvex quadrati
 surfa
eV.A. BereznevFederal Resear
h Center of Computer S
ien
e and Control,Mos
ow, RussiaWe 
onsider the problem of 
omputing the proje
tion of the ve
tor
x0 ∈ Rn on a 
onvex quadrati
 surfa
e bounding a 
ertain 
onvex set X ,
min
x∈X
‖x− x0‖, X = {x ∈ Rn | g(x) =

1

2
〈x,Hx〉 − 〈c, x〉+ b ≤ 0}, (1)where H is symmetri
 positive de�nite matrix n × n, c ∈

Rn, b ∈ R1. Without loss of generality, we 
an assume that
x0 = 0. Denote by x̂ = H−1c is a point of un
onditional minimumof the fun
tion g(x). In addition, we assume that X 6= ⊘ and satis�esthe Slater's regularity 
ondition , i.e. g(x̂) < 0.If the point x0 ∈ X , then obviously, it is a solution of (1). Assumethat x0 /∈ X , that is g(x0) = b > 0. Sin
e the set of X is 
onvex, thenthe solution of the problem (1) is the proje
tion of x∗ of a point x0 on
X . Moreover, it is obvious that x∗ belongs to the boundary of X , i.e.
g(x∗) = 0. Thus, the (1) problem is equivalent to the

min
x∈X0

1

2
‖x‖2, X0 = {x ∈ Rn | g(x) = 0}. (2)Problem (2) 
an be solved using number of methods. One of themost e�e
tive the rate of 
onvergen
e is the Newton-Lagrange method.It should be noted, however, that this method is iterative, and ea
hiteration is asso
iated with the solution of system of equations. Below weprovide the method (
all it a two-surfa
e method) that provides a solutionto (2) over one iteration, whi
h undoubtedly should be 
onsidered anadvantage in 
omparison with Newton-Lagrange method.



34 Continuous optimization problemsFirst of all, we note the situation in whi
h the solution of (2) is easilyguessed. Let c 6= 0 and
H−1c− µc = 0, (3)for some µ > 0, that is, the ve
tor c is the eigenve
tor of the operator

H−1. Then, as is easy to see, the solution is x∗ = λ∗H−1c, where
λ∗ = 1−

√
1− 2b

〈c,H−1c〉 .Assume that (3) does not hold. Consider the set
M = {x ∈ Rn | 〈g′(x), x〉 = 0}. It is easy to see that M is aquadrati
 surfa
e in Rn, namely,

M = {x ∈ Rn | 〈x,Hx〉 − 〈c, x〉 = 0}.Denote by S a subset of the set M that has a non-empty interse
tionwith the set X . It is easy to make sure that x̂ ∈ M ∩X , whi
h impliesthat S =M ∩X 6= ∅.We introdu
e a fun
tion of one variable ϕ(ξ) under
ξ ∈ [0, 1). The 
omputation of the values of ϕ(ξ) is redu
ed toseveral elementary steps. In parti
ular, 
onsider the ray x̃(ξ) = ξx̂ andnote that at ea
h point ξ ∈ [0, 1) gradient g′(x̃(ξ)) = ξHx̂− c = (ξ− 1)cis equally dire
ted and it di�ers only in the length of the ve
tor. Let
x̃(ξ) be an arbitrary point of the spe
i�ed part of the beam. Let us takea step from this point in the dire
tion of the antigradient of the fun
tion
g(x) before 
rossing with the set S. So we have

u(α, ξ) = x̃(ξ)− αg′(x̃(ξ)) = ξH−1c− α(ξ − 1)c, (4)where the step α = α(ξ) > 0 is subje
t to the 
ondition
〈Hu(α, ξ)− c, u(α, ξ)〉 = 0, (5)and the gradient of the fun
tion g(x) at the point u(α, ξ) is equal to

Hu(α, ξ)− c.We 
an show that for any �xed ξ ∈ [0, 1) the equation (5) is solvablewith respe
t to α = α(ξ), and there is a positive root of this equations.In parti
ular,
α =

(2ξ − 1)‖c‖2 −
√
(2ξ − 1)2‖c‖4 − 4ξ(ξ − 1)〈c,Hc〉〈c,H−1c〉

2(ξ − 1)〈c,Hc〉 . (6)



Continuous optimization problems 35Note also that for any u ∈ s there exists su
h λ ∈ (0, 1) that thepoint xλ = λu ∈ X0. It is enough to solve the square equation
λ2

2
〈u,Hu〉 − λ〈c, u〉+ b = 0. (7)Taking into a

ount that for any u ∈ M we have the equality

〈u,Hu〉 = 〈c, u〉 > 0 and given that λ ∈ (0, 1), we have
λ = 1−

√
1− 2b

〈c.u〉 . (8)Thus, �xing ξ ∈ [0, 1), we 
an uniquely 
al
ulate α(ξ) by the formula(6), then u(ξ) = u(α, ξ) by the formula (4) and λ(ξ) by the formula (8).Finally, we obtain x(ξ) = λ(ξ)u(ξ). Then we have the followingTheorem. The point x∗ = x(ξ∗) is the solution of (2) if and only if
ξ∗ is the solution of the equation

ϕ(ξ) = 〈g′(x(ξ)), g′(u(ξ))〉 = 0. (9)Proof. Ne
essity. Let x∗ = x(ξ∗) be the solution problems (2). Thenby theorem of Karush-Kuhn-Tu
ker there is a number γ > 0, that
x∗ = −γg′(x∗). Substituting from this equality the expression for g′(x∗)into the formula (9), we get

ϕ(ξ∗) = − 1

γ
〈x∗, g′(u(ξ∗))〉 = −λ

γ
〈u(ξ∗), g′(u(ξ∗))〉 = 0,sin
e u(ξ∗) ∈M .Su�
ien
y. Let ϕ(ξ∗) = 0. The statement of the theorem will beproved if there is su
h a number γ > 0 that x(ξ∗) = −γg′(x(ξ∗)), whi
his a su�
ient 
ondition for the optimality of x∗ = x(ξ∗) due to the sameKarush-Kuhn-Tu
ker theorem.Assume that su
h γ > 0 does not exist. Note that for any ξ ∈ [0, 1)the following equality hold true:

g′(u(ξ)) = ξc− α(ξ − 1)Hc− c = (ξ − 1)c− α(ξ − 1)Hc,

g′(x(ξ)) = g′(λu(ξ)) = (λξ − 1)c− αλ(ξ − 1)Hc.In other words, the ve
tors g′(u(ξ)) and g′(x(ξ)) belong to the plane
π = {x ∈ Rn | x = µ1c+ µ2Hc, µ1, µ2 ∈ R1}, stret
hed over ve
tors cand Hc. Therefore, this plane 
ontains the straight line

l = {x ∈ Rn | x = u(ξ) + τg′(u(ξ)), τ ∈ R1}.



36 Continuous optimization problemsConsider a point ũ(α̃, ξ∗) = x(ξ∗)− α̃g′(x(ξ∗) = λu(ξ∗)− α̃g′(x(ξ∗)),where α̃ is sele
ted so that ũ(α̃, ξ∗) ∈ m. Multiply s
alar this equalityon g′(u(ξ∗)). So we have
〈ũ(α̃, ξ∗), g′(u(ξ∗))〉 = λ〈u(ξ∗), g′(u(ξ∗)〉 − α̃〈g′(x(ξ∗)), g′(u(ξ∗))〉 = 0,i.e. ve
tors ũ(α̃, ξ∗) and u(ξ∗) are orthogonal to g′(u(ξ∗)). It follows that
ũ(α̃, ξ∗) = u(ξ∗), be
ause only one perpendi
ular 
an be omitted fromthe origin of the π plane on the line l. Thus, the ve
tors u(ξ∗) and
g′(x(ξ∗) are 
ollinear, taking into a

ount them in the opposite dire
tionhave u(ξ∗) = −ρg′(x(ξ∗)), ρ > 0, or

x(ξ∗) = λ(ξ∗)u(ξ∗) = −λ(ξ∗)ρg′(x(ξ∗)) = −γg′(x(ξ∗)),where γ = λ(ξ∗)ρ > 0, whi
h proves the theorem. �So, to solve the problem (2) it is enough to solve the equation (9)with respe
t to the only variable ξ. We 
an use the iterative pro
edureto do this, proposed in [1℄ and 
hara
terized by very low 
omputing in
omparison with the Newton-Lagrange method, as shown by the resultsof the 
omputational experiment. However, it is possible spe
ify a moree�
ient pro
edure for 
al
ulating the proje
tion on a 
onvex quadrati
surfa
e. The validity of the following statement is easily veri�ed.Lemma. For the fun
tion ϕ(ξ) in the interval ξ ∈ [0, 1) the relationsare valid: ϕ(0) ≥ 0; lim
ξ→1

ϕ(ξ) < 0.Based on the statement of lemma, we 
an des
ribe the s
heme ofsolving the problem.
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ulate H−1 and verify that the 
ondition (3) is hold. If(3) is hold, then put x∗ = λ∗H−1c and stop. Otherwise, go to step 2.Step 2. Cal
ulate ϕ(0). If ϕ(0) = 0, then put x∗ = α0λ0c, where
α0 =

‖c‖2
〈c,Hc〉 , λ0 = 1−

√
1− 2b

α0‖c‖2
,and stop. Otherwise, put δ = 10−2, ξ1 = 0, and go to step 3.Step 3. Cal
ulate ϕ(1 − δ) and go to step 4.Step 4. If ϕ(1−δ) < 0, then put ξ2 = 1−δ and go to step 5. Otherwise,put δ = δ/2 and go to step 3.Step 5. Solve the problem of �nding zero of the fun
tion ϕ on theinterval [ξ1, ξ2] and stop.Example. Let

H =

(
1 2
2 5

)
, c =

(
4
7

)
, b = 5.2.To obtain a solution x∗ = (0.65325444; 0.71858815) with a givena

ura
y required �ve iterations of the Newton-Lagrange method. Toobtain the same solution using the iterative pro
edure of the two-surfa
emethod [1℄ required forty iterations. Finally, the above algorithm alsoyields x∗.Taking into a

ount the result obtained in [2℄, there is every reasonto believe, that on the basis of the given algorithm a new e�e
tiveversion of the method of sequential quadrati
ally 
onstrained quadrati
programming 
an be developed.Referen
es1. Bereznev V.A. Proe
tion of ve
tor on quadrati
 surfa
e //Theoreti
al and applied problems of nonlinear analysis. 2015, P.3-11.2. Bereznev V.A. A polynomial algorithm for the quadrati
programming problem // Russian Journal of Numeri
al Analysisand Mathemati
al Modelling, 2014, V.29, Issue 3, P.139-144.



38 Continuous optimization problemsAn approa
h to solve spe
ial 
lasses ofmulti-extremal problems∗I.A. BykadorovSobolev Institute of Mathemati
s SB RAS,Novosibirsk State University,Novosibirsk State University of E
onomi
s and Management,Novosibirsk, RussiaWe suggest an approa
h to optimize the monotone 
ombination (e.g.,sum, produ
t) of several fun
tions. The main attention is paid to theminimization of the sum of two fun
tions. We assume that e�e
tivealgorithms are known to solve the problems fi(x) → minx∈X , i = 1, 2,whereX ⊂ Rn while fi are fun
tions de�ned onX . Consider the problem
(P ) : f(x) = f1(x) + f2(x)→ min

x∈X
.For problem (P ), the e�e
tive algorithms are known only for the 
asewhen the set X is polyhedral and the fun
tions fi have a spe
ial form.Let us only mention some works: [1℄, [2℄, [3℄. A feature of the mentionedworks is that they take into a

ount spe
ial kind of problem, so they
annot be transferred dire
tly to the more general form of fun
tions fi.Let us asso
iate with ea
h νi ∈ R the following subsets of the set X :

Xi (νi) = {x ∈ X : fi(x) ≤ νi} , i = 1, 2, and 
onsider the problems
(P1 (ν2)) : f1(x)→ min

x∈X2(ν2)
, (P2 (ν1)) : f2(x)→ min

x∈X1(ν1)
.Let xP1(ν2) and xP2(ν1) be the solutions of the problems (P1 (ν2)) and

(P2 (ν1)), respe
tively. Of 
ourse, for arbitrary 
hoi
e of ν1 and ν2, itis possible that problems (P1 (ν2)) and (P2 (ν1)) have no solutions. Butif ν0i = minx∈X fi(x), i = 1, 2, then problems (P1

(
ν02
)) and (P2

(
ν01
))are solvable and f1 (xP2(ν0

1)

)
= ν01 , f2

(
xP1(ν0

2)

)
= ν02 . Let us denote

ν001 = f1

(
xP1(ν0

2)

) and ν002 = f2

(
xP2(ν0

1)

). A pair (ν1, ν2) is said tobe attainable if a point x ∈ X exists su
h that fi(x) = νi, i = 1, 2..Pairs (ν01 , ν002 ) and (ν001 , ν02
) are attainable. Let x∗ be the solution ofProblem (P ) and fi (x∗) = ν∗i ∈

[
ν0i , ν

00
i

]
, i = 1, 2. Consider the rightisos
eles triangle ABC with verti
es A =
(
ν01 + ν01,2, ν

0
2

), B =
(
ν01 , ν

0
2

),
C =

(
ν01 , ν

0
2 + ν01,2

), where ν01,2 = min
{
ν001 − ν01 , ν002 − ν02

} (see Fig. 1).
∗The work was supported by the program of fundamental s
ienti�
 resear
hes ofthe SB RAS No I.5.1., proje
t No 0314-2016-0018. Supported in part by RFBR grants16-01-00108, 16-06-00101 and 18-010-00728.
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Fig. 1. Triangle ABC.Now, problem (P ) is equivalent to the following: in triangle ABC,�nd a point su
h that its 
oordinates (ν1, ν2) form an attainable pair andmoreover ν1 + ν2 = ν∗1 + ν∗2 . Let us denote Ti = [

ν0i , ν
00
i

]
, i = 1, 2. Inwhat follows, we assume that the following 
ondition is ful�lled.Condition (A). For any pair (ν1, ν2) ∈ T1 × T2, the points x′ ∈ Xand x′′ ∈ X exist su
h that f1 (x′) = ν1, f2 (x

′) = f2
(
xP2(ν1)

)
, f1 (x

′′) =

f1
(
xP1(ν2)

)
, f2 (x

′′) = ν2.If fun
tions f1, f2 are quasi-
onvex on X , then Condition (A)holds. Let (ν1, ν2) ∈ T1 × T2. Under Condition (A), the pairs(
ν1, f2

(
xP2(ν1)

))
,
(
f1
(
xP1(ν2)

)
, ν2
) are attainable. De�ne de
reasingfun
tion G : T1 → R as G (ν1) = min {f2(x) : x ∈ X1 (ν1) , ν1 ∈ T1}.Consider the set Y = {(ν1, G (ν1)) : ν1 ∈ T1}. We asso
iate with ea
hpair (ν1, ν2) ∈ Y the line H (ν1, ν2) passing through it and parallel tothe hypotenuse of triangleABC (see Fig. 2). The pair (ν∗1 , ν∗2 ) (the values

Fig. 2. Curve Y and lines H (ν1, ν2).of the fun
tions f1 and f2 in the optimum) is 
hara
terized as follows: forea
h pair (ν1, ν2) ∈ Y , the line H (ν1, ν2) lies �above� the line H (ν∗1 , ν
∗
2 ).The algorithm suggested is iterative and 
onsists in the sequentialre�nement of the estimates of the values ν∗1 , ν∗2 and ν∗1 + ν∗2 , as well asthe redu
tion the total area of the region 
ontaining the point (ν∗1 , ν∗2 ).Let ν1 ∈ [ν01 , ν01 + ν01,2

]. Let us set ν2 = G (ν1). Note that (ν1, ν2) ∈ Yby the de�nition of set Y . The following 
ases are possible:



40 Continuous optimization problems1. (see Fig. 3) ν1 + ν2 < ν0 ≡ ν01 + ν02 + ν01,2;
Fig. 3. Case 1: ν1 + ν2 < ν0 ≡ ν01 + ν02 + ν01,2.2. (see Fig. 4) ν1 + ν2 = ν0;

Fig. 4. Case 2: ν1 + ν2 = ν0.3. (see Fig. 5) ν1 + ν2 > ν0, ν2 < ν02 + ν01,2;
Fig. 5. Case 3: ν1 + ν2 < ν0 ≡ ν01 + ν02 + ν01,2.4. (see Fig. 6) ν1 + ν2 > ν0, ν2 ≥ ν02 + ν01,2.
Fig. 6. Case 4: ν1 + ν2 < ν0 ≡ ν01 + ν02 + ν01,2.In ea
h of these 
ases we 
an ex
lude from further 
onsideration theregions that do not 
ontain the point of our interest (ν∗1 , ν∗2 ). These areas
orrespond to the shaded parts of the triangle. This way, the bounds for



Continuous optimization problems 41value ν∗1 +ν∗2 are re�ned, and the area of the region, whi
h is guaranteednot 
ontaining the point (ν∗1 , ν
∗
2 ), is in
reased. In the next steps, thepro
edure is applied to ea
h of the obtained unshaded triangles, or toone of them (for example, the largest, �the most perspe
tive�).Remark 1. As initial lower bounds for ν∗1 , ν∗2 and ν∗1 + ν∗2 , we
an take, for example, the values ν1 = ν01 , ν2 = ν02 , ν = ν1 + ν2,while as the upper bounds, the values ν1 = f1(x

1), ν2 = f2(x
2), ν =

min {ν1 + ν2, ν1 + ν2} , where xi ∈ {x ∈ X : fi(x) = νi} , i = 1, 2.Remark 2. If ν1 = (ν1 + ν1) /2, ν2 = f2
(
xP2(ν1)

)
, then we 
andelete from the triangle the region whose area is not less than half thearea of the triangle, see Fig. 3 � Fig. 6. So, at ea
h iteration, we 
anex
lude from 
onsiderate triangle a part whose area is not less thanhalf the area of the entire triangle. This allows us to tell about thee�e
tiveness of the algorithm.Remark 3. The disadvantage of the approa
h is the possible in
reasein the number of resulting triangles. In this 
ase, one triangle 
an be
hosen (for example, the largest one, i.e., �perspe
tive�) and temporarily�forget� about the others (see Fig. 7), thus obtaining new estimates

Fig. 7. Sele
tion of the most �perspe
tive� triangle.of the quantities ν∗1 , ν∗2 and ν∗1 + ν∗2 for this sele
ted triangle. Thesenew estimates may allow us to ex
lude some of the �forgotten� trianglesfrom further 
onsideration, sin
e we remove all parts of the triangleslying �above� the 
orresponding hypotenuse (this part may 
oin
ide withthe whole triangle, see �gure Fig. 8). Thus, the number of 
onsidered
Fig. 8. The situation when the number of triangles de
reases.triangles does not ne
essarily in
rease and, moreover, may even de
rease.



42 Continuous optimization problemsRemark 4. See details in [4℄. The approa
h 
an be applied to themonopolisti
 
ompetition models, see e.g. [5℄, [6℄, [7℄, [8℄.Referen
es1. Falk J.E., Palo
say S.M. Optimizing the sum of linear fra
tionalfun
tions //Re
ent Advan
es in Global Optimization. Prin
eton:Prin
eton University Press, 1992. P. 221�258.2. Kuno T. A bran
h-and-bound algorithm for maximizing the sumof several linear ratios // Journal of Global Optimization. 2002.V. 22, No. 1-4. P. 155�174.3. Gruzdeva T., Strekalovsky A. On a Solution of Fra
tional Programsvia D.C. Optimization Theory // CEUR Workshop Pro
eeding.2017. V. 1987. P. 246�252.4. Bykadorov I. Solution of Spe
ial Classes of Multi-extremalProblems // CEUR Workshop Pro
eeding. 2017. V. 1987. P. 115�122.5. Dixit A.K., Stiglitz J.E. Monopolisti
 Competition and OptimumProdu
t Diversity // Ameri
an E
onomi
 Review. 1977. V. 67,No. 3. P. 297�308.6. Krugman P.R. In
reasing returns, monopolisti
 
ompetition andinternational trade // Journal of International E
onomi
s. 1979.V. 9, No. 4. P. 469�479.7. Bykadorov I., Gorn A., Kokovin S., Zhelobodko E. Why are lossesfrom trade unlikely? // E
onomi
s Letters. 2015. V. 129. P. 35�38.8. Aizenberg N., Bykadorov I., Kokovin S. Bene�
ial welfare impa
t ofbilateral tari�s under monopolisti
 
ompetition // Abstra
ts of theTenth International Conferen
e Game Theory and Management.Saint Petersburg: Saint Petersburg State University, 2017. P. 5�7.



Continuous optimization problems 43On the shape of power �ow feasibility setand Ja
obian singularity 
urvesI.P. BogdanovKeldysh Institute of Applied Mathemati
s of RAS, Mos
ow, RussiaExploring the stru
ture of power �ow feasibility set for alternating
urrent (AC) grid is a 
onsiderable part of resear
h works, related topower market analysis, stability assessment and fuel 
ost optimization.A simpli�ed model of AC grid in
ludes buses (
hara
terized by
omplex voltage and power inje
tion values: U = |U | · eiδ and S =
P + Q · i respe
tively), 
onne
ted by a set of transmission lines(
hara
terized by impedan
e and transformation ratio). Power �ow inan AC grid is des
ribed by a system of nonlinear equations, whi
hformalize power balan
e in ea
h bus and re�e
t relationships between
omponents of nodal voltages and power inje
tions. Ve
tors of nodalpowers, guaranteeing the existen
e of solution for the regarded systemof equations, form the power �ow feasibility set.The analysis of power �ow feasibility boundary enables us todetermine power reserves, obtain upper estimates for operationalparameter values (e.g. in e
onomi
 dispat
h and stability assessmentproblems) and ignore obviously non-physi
al modes.Consider the power network model, 
onsisting of n + 1 buses. 0-th bus is the sla
k bus with �xed voltage magnitude value |U0| andzero phase angle value δ0 = 0. Buses from 1 to m are the PV-buses with spe
i�ed a
tive power (real part of 
omplex power inje
tion)values P1, . . . , Pm and spe
i�ed voltage magnitude values |U1|, . . . , |Um|.Buses from m + 1 to n are the PQ-buses with spe
i�ed a
tive powervalues Pm+1, . . . , Pn and spe
i�ed rea
tive power (imaginary part of
omplex power inje
tion) values Qm+1, . . . , Qn. Voltage magnitudes
|Um+1|, . . . , |Un| and phase angles δ1, . . . , δn are determined from thesolution of power �ow equations:




Pk = |Uk|
n∑

l=0

|Ul||Ykl| cos (δk − δl − argYkl), k = 1, . . . , n,

Qj = |Uj |
n∑

l=0

|Ul||Yjl| sin (δj − δl − argYjl), j = m+ 1, . . . , n,

(1)where Ykl (Yjl) denote the elements of the admittan
e matrix [1℄. Power�ow feasibility set for the regarded grid is a (2n − m)−dimensional
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omprising all ve
tors (P1, . . . , Pn, Qm+1, . . . , Qn), whi
hprovide the existen
e of a solution for (1).One of the most 
ommon approa
hes for nodal power limitsinvestigation implies identifying interse
tion of power �ow feasibilityboundary with linear traje
tory:
{
Pk = λ · aPk + P 0

k , k = 1, . . . , n,

Qj = λ · aQj +Q0
j , j = m+ 1, . . . , n,

(2)where λ is a s
alar parameter, P 0
1 , . . . , P

0
n , Q0

m+1, . . . , Q
0
n 
orrespond tosome basi
 mode and aP1 , . . . , a

P
n , aQm+1, . . . , a

Q
n are given 
oe�
ients,determining the dire
tion of regarded traje
tory. Thus, we obtain thefollowing nonlinear optimization problem:

λ→ max(
λ,

δk,Pk, k=1,...,n,
|Uj |,Qj , j=m+1,...,n

),subje
t to power �ow equations (1) (where P1, . . . , Pn, Qm+1, . . . , Qnare treated as variables, while |U1|, . . . , |Um| are given and �xed) and
onstraints (2).Various numeri
al te
hniques � dire
t methods, sequential quadrati
programming, augmented Lagrangian fun
tion algorithm, 
ontinuationmethods et
. � were proposed to solve this problem [1℄. However,in general, power �ow feasibility domain is non-
onvex [2℄ � forinstan
e, it 
an be star-shaped or ring-shaped [3, 4℄. Moreover, Ja
obianmatrix of power �ow equations is singular on the outer boundary ofpower �ow feasibility set and on 
omplex-shaped 
urves inside thisdomain. In the vi
inity of these singularity 
urves Ja
obian matrixbe
omes ill-
onditioned. Des
ribed pe
uliarities weaken the performan
eof numeri
al algorithms, mentioned above, indu
ing divergen
e or
onvergen
e to lo
al extrema, 
orresponding to unstable mode.The paper presents a set of power �ow feasibility domains' andJa
obian singularity 
urves' images, 
onstru
ted for a 3-bus test powersystem (Figure 1). Test system 
onsists of one sla
k bus and twoPV-buses, 
onne
ted with three transmission lines (i.e. power �ow isformalized by two equations, des
ribing a
tive power balan
e at PV-buses). Parameter values (line impedan
es and voltage magnitudes) aresimilar to those, regarded in [4℄. Complex numbers beside transmissionlines (shown in Figure 1) denote resistan
e (real part) and rea
tan
e(imaginary part) of the 
orresponding line.
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Fig. 1. 3-bus test network.Plots, presented in the paper (Figures 2 and 3), demonstrate theevolution of the power �ow feasibility domain's non-
onvexities and theshape of Ja
obian singularity 
urves, a

ording to the in
reasing value ofrea
tan
e of the line, whi
h 
onne
ts PV-buses (X12 in Figure 1). Datafor plotting were obtained via appli
ation of Maple tools for nonlinearequation solving (one of the possible alternative approa
hes implies theusage of Euler homotopy method [5℄).Further resear
h e�orts may in
lude implementation of analyti
alresults, 
on
erning su�
ient 
onditions of 
onvexity or non-
onvexity [6℄,for the regarded and similar examples, developing algorithms for non-
onvex parts approximation and investigation of te
hni
al and se
urity
onstraints' impa
t on the geometry of redu
ed feasibility set (e.g. inoptimal power �ow problems).Referen
es1. Bogdanov I.P. Mathemati
al methods for 
omputing the extremalpower values in the nodes of a
 ele
tri
 power systems //Computational Mathemati
s and Modeling. 2012. V. 23, N 2.P. 175�194.2. Makarov Y.V., Dong Z.Y., Hill D.J. On 
onvexity of power �owfeasibility boundary // IEEE Transa
tions on Power Systems.2008. V. 23, N 2. P. 811�813.3. Tarasov V.I. Theoreti
al foundations for analysis of the load-�owproblem in ele
tri
 power systems. Novosibirsk: Nauka, 2002. (in
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Fig. 2. Power �ow feasibility sets.Russian)4. Vasin V.P. Region of existen
e of an ele
tri
al system steady-stateregime. Mos
ow: Mos
ow Power Engineering Institute, 1982. (inRussian)5. Hiskens I.A., Davy R.J. Exploring the power �ow solution spa
eboundary // IEEE Transa
tions on Power Systems. 2001. V. 16,N 3. P. 389�395.6. Polyak B.T., Gryazina E.N. Convexity/non
onvexity 
erti�
atesfor power �ow analysis // Advan
es in Energy SystemOptimization. Springer (Trends in Mathemati
s series), 2017.P. 221�230.
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Fig. 3. Ja
obian singularity 
urves.On solving saddle point problems andmonotone equationsO. BurdakovLink�oping University, Link�oping, SwedenWe 
onsider the problem of �nding the saddle point z∗ = [x∗, y∗] ∈
Rn of fun
tion f(x, y), whi
h is assumed to be su�
iently smooth,strongly 
onvex in x ∈ Rnx and strongly 
on
ave in y ∈ Rny , where
nx +ny = n. By the de�nition, the saddle point z∗ is required to satisfythe inequalities

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), ∀x ∈ Rnx , y ∈ Rny .The assumptions 
on
erning f(x, y) guarantee that z∗ exists, and it isunique.



48 Continuous optimization problemsIn the 
ase when ny = 0, the variable y vanishes in f , and then thesaddle point problem is redu
ed to minimization of f(x) in x ∈ Rnx .This allows us to view the approa
hes presented here as an extension ofthose available in the un
onstrained optimization.Denote F (z) = E∇f(z), where
E =

[
Inx

0
0 −Iny

]
.Sin
e the fun
tion f(z) is strongly 
onvex-
on
ave, the mapping F isstrongly monotone, that is there exists a s
alar c > 0 su
h that

〈F (u)− F (v), u − v〉 ≥ c‖u− v‖2, ∀u, v ∈ Rn.Furthermore, the saddle point problem is equivalent to solving the systemof nonlinear equations F (z) = 0.In [1, 2℄, iterative pro
esses of the form
zk+1 = zk + αkpkwere 
onsidered. Here pk ∈ Rn is a sear
h dire
tion, and the step length

αk is obtained by solving the equation
〈F (zk + αkpk), pk〉 = 0.Sin
e the fun
tion f(x, y) is strongly 
onvex-
on
ave, the solution to thisequation exists and unique for any nonzero ve
tor pk.This orthogonality-based prin
iple of 
hoosing αk was introdu
ed in[1, 2℄. It is an extension of the exa
t line sear
h used in the un
onstrainedoptimization. In the saddle sear
h problem, the resulting point zk+1provides in the line zk + αpk a kind of a unique trade-o� for x and

y in the following sense.We use the partitioning
pk = [px, py] and ∇xf(zk+1) = [∇xf,∇yf ],where px,∇xf ∈ Rnx and py,∇yf ∈ Rny . Suppose that 〈∇xf, px〉 6= 0.Then 〈∇yf, py〉 6= 0, be
ause E∇f(zk+1) ⊥ pk. Given ε > 0, 
onsiderthe two problems

f∗
x = min

t∈[−ε,ε]
f(xk+1 + tpx, yk+1)
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f∗
y = min

t∈[−ε,ε]
f(xk+1, yk+1 + tpy).It 
an be easily seen that, for all su�
iently small ε > 0 the twooptimal values of t are lo
ated in the opposed ends of the interval [−ε, ε].Furthermore,

f∗
x = f(zk+1)− ε|〈px,∇xf〉|+ o(ε2)and
f∗
y = f(zk+1) + ε|〈py,∇yf〉|+ o(ε2).Thus, the gain in minimizing f(x, yk+1) along px is equal to the gain inmaximizing f(xk+1, y) along py to the �rst-order approximation. Thismeans that the orthogonality-based line sear
h provides in the resultingpoint zk+1 a kind of `equal rights' for a lo
al minimization over px anda lo
al maximization over py.The orthogonality-based line sear
h works well for the Newtonsear
h dire
tion pk = −(f ′′(zk))

−1∇f(zk), be
ause it inherits the samequadrati
 rate of 
onvergen
e to z∗ (see [1, 2℄) as the Newton methodwith the exa
t line sear
h in the un
onstrained optimization.Consider the 
ase when f(z) is a quadrati
 fun
tion, or equivalently,when F (z) is a linear mapping. Denote A = Ef ′′ = F ′(z). The matrix
A is non-symmetri
 and positive de�nite. This feature was exploited in[1, 2℄. Following [3℄, we 
all non-zero ve
tors p0, p1, . . . , pm A-pseudo-orthogonal if

〈Apj , pi〉 = 0, ∀i, j, 0 ≤ i < j ≤ m.They are linearly independent. The aforementioned iterative pro
esswith the orthogonality-based line sear
h results in the orthogonality
〈F (zm+1), pk〉 = 0, ∀k, 0 ≤ k ≤ m.For any n A-pseudo-orthogonal dire
tions, this property implies 
onver-gen
e to the saddle point z∗ in at most n iterations. When ny = 0, theexa
t line sear
h is performed along 
onjugate dire
tions.In [1, 2℄, some 
onjugate dire
tion methods, whi
h are used for un
on-strained minimization, were extended to �nding saddle points of non-quadrati
 fun
tions f(x, y) and to solving systems of non-linear equations

F (z) = 0, where F is a monotone mapping. It was proved in [1, 2℄ thatthe rate of 
onvergen
e of these extensions is quadrati
.Here we survey the aforementioned approa
hes. Based on them, wedeveloped a new limited memory 
onjugate-dire
tion-type algorithm for



50 Continuous optimization problemssolving large-s
ale linear systems originating from saddle point problemsand monotone equations. The memory size is a parameter whi
h 
an betuned for a 
ertain 
lass of problems to be solved. Results of numeri
alexperiments are presented. They show that the new algorithm is 
om-peting with the most e�
ient of the existing algorithms.In the Barzilai-Borwein (BB) un
onstrained minimization algorithm[4℄, a step is made along the steepest des
ent dire
tion −∇f(xk) withthe step size 
omputed by a spe
ial formula. This algorithm is oftenused for solving large s
ale minimization problems. It 
ompetes withthe 
onjugate gradient algorithm. Here we extend the BB algorithm tosolving saddle point problems and nonlinear monotone equations. In theextended algorithm, a proper step is made along the dire
tion −F (zk).We present results of numeri
al experiments for this algorithm in solvingproblems for linear and non-linear mapping F .Referen
es1. Burdakov O.P. Conjugate dire
tion methods for solving systems ofequations and �nding saddle points. I // Engineering Cyberneti
s.1982. V. 20, N 3. P. 13�19.2. Burdakov O.P. Conjugate dire
tion methods for solving systems ofequations and �nding saddle points. II // Engineering Cyberneti
s.1982. V. 20, N 4. P. 23�32.3. Voevodin V.V. On methods of 
onjugate dire
tion // USSR Com-putational Mathemati
s and Mathemati
al Physi
s. 1979. V. 19,N 5. P. 228�233.4. Barzilai J., Borwein J.M. Two-point step size gradient methods //IMA Journal of Numeri
al Analysis. 1988. V. 8, N 1. P. 141�148.Variations of the v-
hange of timein problems with state 
onstraints∗A.V. Dmitruk and N.P. OsmolovskiiCentral E
onomi
s and Mathemati
s Institute of RAS, Mos
ow,University of Te
hnology and Humanities, Radom, PolandWe give a new proof of the maximum prin
iple for optimal 
ontrolproblems with running state 
onstraints. The proof uses the so-
alledmethod of v−
hange of the time variable introdu
ed by Dubovitskii
∗This resear
h was supported by the RFBR grants 16-01-00585 and 17-01-00805.



Continuous optimization problems 51and Milyutin. In this method, the time t is 
onsidered as a new statevariable satisfying the equation dt/dτ = v, where v(τ) > 0 is a new
ontrol and τ a new time. Unlike the general v−
hange with an arbitrary
v(τ), we use a pie
ewise 
onstant v(τ). Every su
h v−
hange redu
esthe original problem to a problem in a �nite dimensional spa
e, with a
ontinuum number of inequality 
onstrains 
orresponding to the state
onstraints. The stationarity 
onditions in every new problem, beingwritten in terms of the original time t, give a weak* 
ompa
t set ofnormalized tuples of Lagrange multipliers. The family of these 
ompa
tais partially ordered by in
lusion and possesses a maximal element. Anarbitrary tuple of Lagrange multipliers belonging to the latter ensuresthe maximum prin
iple.The idea of v-
hange of the time variable, proposed in [1℄, is as follows.Consider the time t, varying in an interval [t0, t1], as a new state variable
t = t(τ) that depends on a new time τ, varying in an interval [τ0, τ1].Let the fun
tion t(τ) satisfy the equation

dt(τ)

dτ
= v(τ), t(τ0) = t0, v(τ) > 0 a.e. in [τ0, τ1],where the fun
tion v(τ) is a new 
ontrol, measurable and essentiallybounded. It follows that t(τ) is a nonde
reasing fun
tion, mapping atime interval [τ0, τ1] onto the original time interval [t0, t1]. The fun
tion

t(τ) enables to mat
h for any 
ontrol u(t) a new 
ontrol ũ(τ) = u(t(τ))on the set M+ := {τ ∈ [τ0, τ1] : v(τ) > 0}, while on the set M0 :=
{τ ∈ [τ0, τ1] : v(τ) = 0} the new 
ontrol 
an be de�ned arbitrarily,with the only 
ondition that u(τ) ∈ U. Assume e.g. that v(τ) vanishesjust on an interval [τ ′, τ ′′] ⊂ [τ0, τ1] of a positive measure. Then we
an put ũ(τ) ≡ u∗ on this interval, where u∗ ∈ U is an arbitrary �xedvalue, while on the 
omplement to [τ ′, τ ′′] we 
an use the formula ũ(τ) =
u(t(τ)). Thus, we obtain a new 
ontrol ũ(τ), while a new traje
tory x̃(τ)is de�ned simply as x̃(τ) = x(t(τ)) for all τ ∈ [τ0, τ1]. In this way, we
an transform the initial optimal 
ontrol problem with the independentvariable t into a new problem, 
orresponding to this 
hange, with theindependent variable τ. Moreover, one 
an easily show that, under thistransformation, any optimal pro
ess of the initial problem transformsinto an optimal pro
ess of the new problem.Furthermore, it is possible to return from the variable τ to the originalvariable t using the �inverse� (to be more pre
ise, right inverse) 
hange.Namely, for any t ∈ [t0, t1], let τ(t) be the smallest root of the equation
t(τ) = t. Then, obviously, t(τ(t)) ≡ t, ũ(τ(t)) = u(t), and x̃(τ(t)) = x(t)



52 Continuous optimization problemson [t0, t1].It might seem that the sele
ted value u∗ does not play any role in su
htransition, sin
e the interval [τ ′, τ ′′] maps into a single point t∗ ∈ [t0, t1].However, this is true only for the given 
ontrol v(τ). But what happensif the fun
tion v(τ) is perturbed by a uniformly small variation v̄(τ) su
hthat still v(τ) + v̄(τ) > 0 a.e. in [τ0, τ1]? Then the interval [τ ′, τ ′′] mapsonto a small interval [t′, t′′] with u(t) = u∗ on it, so we obtain a needleshape variation of the original 
ontrol! It is this fa
t that was used byDubovitskii and Milyutin to obtain the MP by means of the v-
hange [1℄,and they systemati
ally used this approa
h in other works. The v-
hangeturned out to be a very powerful tool for obtaining ne
essary optimality
onditions in the form of MP.Note that though the v-variations are mu
h alike the needlevariations, they have some advantages. Whereas the usage of needlevariations requires the assumption of pie
ewise 
ontinuity of the optimal
ontrol, for the usage of v-variations this assumption is not needed, andthe optimal 
ontrol 
an be an arbitrary measurable bounded fun
tion.Moreover, the v-variations generate a smooth 
ontrol system, wellde�ned for v(τ) of arbitrary sign, where the requirement v(τ) > 0
an be regarded as a separate standard 
onstraint, while the needlevariations 
an be 
onsidered only for nonnegative widths of the needles,so one obtains fun
tions de�ned just on the positive orthant in a �nite-dimensional spa
e, whi
h is not 
onvenient to di�erentiate. By thesereasons, the v-
hange of time is a more preferable tool in resear
h ofoptimality than the needle variations.Note however, that for an arbitrary nonnegative v(τ), the v-
hangeis rather 
ompli
ated te
hni
ally. To make the proof of MP moresimple, A.A. Milyutin proposed in 2001 to use the v-
hange with apie
ewise 
onstant fun
tion v(τ) This idea was realized in [2, 3℄. It gavea quite simple proof of MP for a general optimal 
ontrol problem ofthe Pontryagin type, i.e. without state 
onstraints. Su
h a primitive v-
hange allowed to pass to a family of smooth optimization problems in�nite dimensional spa
es (ea
h of whi
h 
orresponds to the parametersof the given v-
hange), i.e. to problems of mathemati
al programming,and then to use the well-known ne
essary optimality 
onditions inea
h problem. A proper arranging of the obtained family of optimality
onditions made it possible to pass from them to one universal 
ondition,whi
h had the form of MP. We show that this approa
h works alsofor problems with state 
onstraints [4℄, of 
ourse, with some additional
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hni
al results, espe
ially in the 
ase of several state 
onstraints.One of those results relates to the fa
t that the state 
onstraintspresent an in�nite number of inequality 
onstraints on the parameters ofthe problem, so the latter is not a standard smooth problem of mathema-ti
al programming. Su
h problems are now 
alled semi-in�nite. However,they admit a simple version of a generalized Lagrange multipliers rule,involving Lebesgue�Stieltjes measures as multipliers at the state 
onst-raints [5℄. Another result 
on
erns the 
ompa
tness of the tuples ofLagrange multipliers in ea
h su
h problem, where we should 
onsiderthose measures in the weak-* topology and use the Helly theorems ontheir 
onvergen
e. Referen
es1. Dubovitskii A.Ya. and Milyutin A.A. Extremum problems in the pre-sen
e of restri
tions // USSR Comput. Math. and Math. Phys. 1965. v.5, no. 3, p. 1�80.2. Milyutin A.A., Dmitruk A.V., Osmolovskii N.P. Maximum prin
iple inoptimal 
ontrol. Mos
ow: Me
h-Math Fa
ulty of Mos
ow State Univ.,2004 (in Russian).3. Dmitruk A.V., Osmolovskii N.P. On the Proof of Pontryagin'sMaximum Prin
iple by Means of Needle Variations // J. of Math.S
ien
es. 2016. Vol. 218, no. 5, p. 581�598.4. Dmitruk A.V., Osmolovskii N.P. Variations of the type of v−
hangeof time in problems with state 
onstraints // Pro
. Inst. of Math. andMe
h., the Ural Bran
h of RAS. 2018. Vol. 24, no. 1 (in Russian).5. Dmitruk A.V., Osmolovskii N.P. A General Lagrange MultipliersTheorem // In: "Constru
tive Nonsmooth Analysis and RelatedTopi
s (CNSA-2017)". IEEE Xplore Dig. Lib., 2017. DOI:10.1109/CNSA.2017.7973951
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al solutions of nonlinear equations∗A.F. Izmailov, A.S. Kurennoy, and M.V. SolodovMos
ow State University, Mos
ow, Russia,Tambov State University, Tambov, Russia,IMPA, Rio de Janeiro, Brazil1. Introdu
tion and the key assumptionWe 
onsider a nonlinear equation
Φ(u) = 0,where Φ : Rp → Rp is a given smooth mapping. Even though here wedeal solely with the 
ase when the number of equations is the sameas the number of variables, it will never be assumed that the solutionin question is isolated, and moreover, the 
ase of nonisolated solutionswill be of spe
ial interest. Observe that any nonisolated solution ū isne
essarily singular in a sense that Φ′(ū) is a singular matrix.In [7℄, it was shown that a solution ū of the un
onstrained equation�survives� perturbations in large 
lasses if Φ is smooth enough, and thereexists v̄ ∈ kerΦ′(ū) su
h that Φ is 2-regular at ū in the dire
tion v̄, thelatter meaning that

imΦ′(ū) + Φ′′(ū)[v̄, kerΦ′(ū)] = Rp.Importantly, su
h v̄ may exist even if ū is a nonisolated solution.Furthermore, as demonstrated in [7℄, if ū is a singular solution, theneeded v̄ 
annot belong to TΦ−1(0)(ū), and hen
e it 
an never exist if
TΦ−1(0)(ū) = kerΦ′(ū). The latter is one of the two ingredients of the
on
ept of non
riti
ality of solution ū, as introdu
ed in [7℄ The se
ondingredient is Clarke regularity of Φ−1(0) at ū, and as demonstrated in[7℄, under the appropriate smoothness assumptions, this 
ombination ofproperties is equivalent to the lo
al Lips
hitzian error bound

dist(u, Φ−1(0)) = O(‖Φ(u)‖) as u ∈ Rp tends to ū,whi
h is known to be equivalent to the following upper Lips
hitzianproperty:
dist(u(w), Φ−1(0)) = O(‖w‖) as w ∈ Rp tends to 0,

∗Resear
h of A.F. Izmailov was supported by the Russian S
ien
e FoundationGrant 17-11-01168 (Se
tion 2). A.S. Kurennoy was supported by the RussianFoundation for Basi
 Resear
h Grant 17-01-00125. M.V. Solodov was supported inpart by CNPq Grant 303724/2015-3, and by FAPERJ Grant 203.052/2016.



Continuous optimization problems 55where u(w) is any solution of the perturbed equation
Φ(u) = w,
lose enough to ū. In addition, the results in [7℄ imply that singularnon
riti
al solutions of the un
onstrained equation 
an only be stablesubje
t to very spe
ial perturbations. At the same time, 
riti
al solutions(i.e., those whi
h are not non
riti
al), or, more pre
isely, those solutionsfor whi
h TΦ−1(0)(ū) is a proper subset of kerΦ′(ū), 
an naturally satisfythe 2-regularity 
ondition with some v̄ ∈ kerΦ′(ū), and hen
e, be stablesubje
t to wide 
lasses of perturbations.In this work, we demonstrate that 2-regularity in a dire
tion v̄ ∈

kerΦ′(ū) (whi
h is our key assumption, and whi
h may never hold atnon
riti
al singular solutions, as dis
ussed above) makes ū spe
iallyattra
tive for sequen
es generated by Newton-type methods. Apart formthe basi
 Newton method (NM), we will 
onsider some modi�
ationsof it, intended spe
ially for ta
kling the 
ase of nonisolated solution.Spe
i�
ally, these are the Levenberg�Marquardt method (L-MM) andthe LP-Newton method (LP-NM).2. Perturbed Newton methodWe de�ne the perturbed Newton method (pNM) for equation inquestion as follows: for a 
urrent iterate uk ∈ Rp, the next iterate is
uk+1 = uk + vk, with vk 
omputed as a solution of linear equation

Φ(uk) + (Φ′(uk) + Ω(uk))v = ω(uk),where Ω : Rp → Rp×p and ω : Rp → Rp 
hara
terizes perturbation.The following 
an be regarded as an extension of [5, Lemma 5.1℄ fromthe basi
 NM to pNM.Every u ∈ Rp is uniquely de
omposed into the sum u = u1 + u2,
u1 ∈ (kerΦ′(ū))⊥, u2 ∈ kerΦ′(ū). Let Π be the orthogonal proje
toronto (imΦ′(ū))⊥, and assume that the norm is Eu
lidian. Let S standfor the unit sphere in Rp.Theorem. Let Φ be twi
e di�erentiable near ū ∈ Rp, with its se
ondderivative Lips
hitz-
ontinuous with respe
t to ū. Let ū be a solution ofthe nonlinear equation in question, and assume that Φ is 2-regular at ūin a dire
tion v̄ ∈ kerΦ′(ū) ∩ S. Let Ω : Rp → Rp×p and ω : Rp → Rpsatisfy the estimates

Ω(u) = O(‖u − ū‖), ΠΩ(u) = O(‖u1 − ū1‖) +O(‖u − ū‖2),
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ω(u) = O(‖u− ū‖2), Πω(u) = O(‖u − ū‖‖u1 − ū1‖) +O(‖u− ū‖3).Then there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0 su
h that any startingpoint u0 ∈ Rp \ {ū} satisfying

‖u0 − ū‖ 6 ε,

∥∥∥∥
u0 − ū
‖u0 − ū‖ − v̄

∥∥∥∥ 6 δuniquely de�nes the sequen
e {uk} ⊂ Rp of the pNM, uk2 6= ū2 for all k,the sequen
e {uk} 
onverges to ū, and
lim
k→∞

‖uk+1 − ū‖
‖uk − ū‖ =

1

2
, ‖uk+1

1 − ū1‖ = O(‖uk − ū‖2).Theorem above establishes the existen
e of a set with nonemptyinterior, whi
h is star-like with respe
t to ū, and su
h that the pNMinitialized at any point of this set 
onverges linearly to ū. Moreover, if Φis 2-regular at ū in at least one dire
tion v̄ ∈ kerΦ′(ū), then set of su
h
v̄ is open and dense in kerΦ′(ū)∩S: its 
omplement is the null set of thenontrivial homogeneous polynomial detΠΦ′′(ū)[·]|ker Φ′(ū) 
onsidered on
kerΦ′(ū)∩S. The union of 
onvergen
e domains 
oming with all su
h v̄ isalso a star-like 
onvergen
e domain with nonempty interior. In the 
asewhen Φ′(ū) = 0 (full singularity) this domain is quite large. In parti
ular,it is �asymptoti
ally dense�: its 
omplement is �asymptoti
ally thin�, andthe only ex
luded dire
tions are those in whi
h Φ is not 2-regular at ū,whi
h is the null set of a nontrivial homogeneous polynomial.The assumptions on perturbations in Theorem automati
ally hold if

Ω(u) = O(‖Φ(u)‖), ω(u) = O(‖u− ū‖‖Φ(u)‖).3. Levenberg�Marquardt methodThe L-MM is a well-established tool for ta
kling possibly nonisolatedsolutions. The iteration subproblem of this method has the formminimize 1

2
‖Φ(uk) + Φ′(uk)v‖2 + 1

2
σ(uk)‖v‖2, v ∈ Rp,where σ : Rp → R+ de�nes the regularization parameter. In parti
ular,from the results in [8℄ it follows that being initialized near a non
riti
alsolution, the L-MM with σ(u) = ‖Φ(u)‖2 generates a sequen
e whi
h isquadrati
ally 
onvergent to a (nearby) solution.



Continuous optimization problems 57The L-MM subproblem is equivalent to the linear system
(Φ′(uk))TΦ(uk) + ((Φ′(uk))TΦ′(uk) + σ(uk)I)v = 0,
hara
terizing stationary points of that 
onvex optimization problem.From [5, Lemma 3.1℄ it 
an be seen that v̄ in Theorem applied tothe basi
 NM 
omes with a �
oni
 neighborhood� su
h that for every uin it, Φ′(u) is invertible, and (Φ′(u))−1 = O(‖u − ū‖−1). Multiplyingboth sides of the iteration system by (((Φ′(uk))T)−1 = (((Φ′(uk))−1)T,we now obtain

Φ(uk) + (Φ′(uk) + σ(uk)(((Φ′(uk))−1)T)v = 0,whi
h is the pNM iteration system with the perturbation terms
Ω(u) = σ(u)(((Φ′(u))−1)T = O(‖u− ū‖−1σ(u)), ω ≡ 0as u→ ū, and therefore, the needed requirements on Ω will hold, e.g., if

σ(u) = ‖Φ(u)‖τ with τ > 2.Moreover, in the 
ase when Φ′(ū) = 0 (full singularity) the appropri-ate values are all τ > 3/2.
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Fig. 1. Levenberg�Marquardt method with τ = 1.Example. Consider the equality-
onstrained optimization problemminimize x2 subje
t to x2 = 0.Stationary points and asso
iated Lagrange multipliers of this problemare 
hara
terized by the Lagrange optimality system whi
h has the form
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Fig. 2. Levenberg�Marquardt method with τ = 3/2.of a nonlinear equation with Φ : R2 → R2, Φ(u) = (2x(1+λ), x2), where
u = (x, λ). The unique feasible point (hen
e, the unique solution, andthe unique stationary point) of this problem is x̄ = 0, and the set ofasso
iated Lagrange multipliers is the entire R. Therefore, the solutionset of the Lagrange system (i.e., the primal-dual solution set) is {x̄}×R.The unique 
riti
al solution is ū = (x̄, λ̄) with λ̄ = −1, the one for whi
h
Φ′(ū) = 0 (full singularity).In Figures 1 and 2, the verti
al gray line 
orresponds to the primal-dual solution set. These �gures demonstrate some iterative sequen
esgenerated by the L-MM, and the domains from whi
h 
onvergen
e tothe 
riti
al solution was dete
ted.4. LP-Newton methodA more re
ent approa
h, alternative to the L-MM, is the LP-NM



Continuous optimization problems 59proposed in [2℄. The iteration subproblem of this method has the formminimize γsubje
t to ‖Φ(uk) + Φ′(uk)v‖ 6 γ‖Φ(uk)‖2,
‖v‖ 6 γ‖Φ(uk)‖,
(v, γ) ∈ Rp × R.With l∞ norm, this is a linear programming problem. As demonstratedin [2, 3℄, lo
al 
onvergen
e properties of the LP-NM (near non
riti
alsolutions!) are the same as for L-MM.The �rst 
onstraint in the LP-NM subproblem 
an be interpreted asthe pNM with Ω ≡ 0 and some ω(·), whi
h will satisfy the assumptionsin Theorem if the optimal value γ(u) of the LP-NM subproblem with

uk = u satis�es
γ(u) = O(‖Φ(u)‖−1‖u− ū‖)as u→ ū.In order to establish the needed estimate on γ(·), suppose again that

u belongs to the �
oni
 neighborhood� of v̄ where the basi
 NM step v(u)is uniquely de�ned, and v(u) = O(‖u − ū‖). Then the point (v, γ) =
(v(u), ‖v(u)‖/‖Φ(u)‖) is feasible in the LP-N subproblem, and hen
e,

γ(u) 6 γ = ‖Φ(u)‖−1‖v(u)‖ = O(‖Φ(u)‖−1‖u− ū‖)as u→ ū.Figure 3 has the same meaning as Figure 2, but for LP-NM insteadof L-MM, with the same 
on
lusions.A detailed exposition of these results 
an be found in [6℄. The exten-sions of these and related results to 
onstrained equations 
an be foundin [1℄, [4℄. Referen
es1. A.V. Arutyunov and A.F. Izmailov Stability of possibly nonisolatedsolutions of 
onstrained equations, with appli
ations to 
omple-mentarity and equilibrium problems. Set-Valued Var. Analys. 26(2018), 327�352.2. F. Fa

hinei, A. Fis
her, and M. Herri
h. An LP-Newton method:Nonsmooth equations, KKT systems, and nonisolated solutions.Math. Program. 146 (2014), 1�36.3. F. Fa

hinei, A. Fis
her, and M. Herri
h. A family of Newtonmethods for nonsmooth 
onstrained systems with nonisolated solu-tions. Math. Methods Oper. Res. 77 (2013), 433�443.
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Fig. 3. LP-Newton method.4. A. Fis
her, A.F. Izmailov, and M.V. Solodov. Lo
al attra
tors ofNewton-type methods for 
onstrained equations and 
omplemen-tarity problems with nonisolated solutions. J. Optim. Theory Appl.2018. DOI 10.1007/s10957-018-1297-2.5. A. Griewank. Starlike domains of 
onvergen
e for Newton's methodat singularities. Numer. Math. 35 (1980), 95�111.6. A.F. Izmailov, A.S. Kurennoy, and M.V. Solodov. Criti
al solutionsof nonlinear equations: lo
al attra
tion for Newton-type methods.Math. Program. 167 (2018), 355�379.7. A.F. Izmailov, A.S. Kurennoy, and M.V. Solodov. Criti
al solutionsof nonlinear equations: stability issues. Math. Program. 168 (2018),475�507.8. N. Yamashita and M. Fukushima. On the rate of 
onvergen
e ofthe Levenberg�Marquardt method. Computing. Suppl. 15 (2001),237�249.
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ale non-
onvexoptimization problem with linear 
onstraintsA. El Mouatasim1 and J. Oudaani2
1,2 Laboratory LabSI, Ibn Zohr University - FPO,Ouarzazate 45800, Moro

oIntrodu
tionIn this work, the following non
onvex optimization problem withlinear 
onstraints (NCOPLC) is 
onsidered:





Minimize f(x)subje
t to Ax = b,
x ≥ 0,

(1)where f(.) is twi
e 
ontinuously di�erentiable on IRn, A is an m × nmatrix with full row rank and b ∈ IRm.There exist several appli
ation areas for NCOPLCs like pumpingwater operation, optimal 
ontrol, ma
hine learning see for instan
e [1,2℄.Many algorithms have been proposed for solving NCOPLCs, su
has the redu
ed gradient method [1℄ 
onsisting of solving a sequen
e ofsubproblems in whi
h the number of variables is impli
itly redu
ed.These redu
ed problems are obtained by using the linear 
onstraintsto express 
ertain variables, designated as 'basi
', as fun
tions of othervariables.We are mainly interested in the situation of NCOPLC where, on onehand, f is non
onvex and, on the other hand, the rank of matrix A 
anbe less than or equal to m.In this work, we propose an algorithm of sto
hasti
 perturbationof redu
ed gradient (SPRG) method for optimizing a large-s
ale non
onvex di�erentiable fun
tion subje
t to linear equality 
onstraints andnonnegativity bounds on the variables. In parti
ular, at ea
h iteration,we 
ompute a sear
h dire
tion by redu
ed gradient and optimal stepsizeby bise
tion algorithm.Redu
ed gradient methodWe introdu
e basi
 and nonbasi
 variables a

ording to
A = [B,N ], x =

[
xB
xN

]
, xN ≥ 0 and xB > 0. (2)



62 Continuous optimization problemsWe denote by IB and IN the index sets of basi
 variables and nonbasi
variables, respe
tively.The redu
ed gradient method starts with a basis B and a feasiblesolution xk = (xkB ,x
k
N ) su
h that xkB > 0. The solution x is notne
essarily a basi
 solution, i.e. xN does not have to be identi
ally zero.Su
h a solution 
an be obtained e.g. by the usual �rst phase pro
edureof simplex method. Using the basis B form BxB +NxN = b, we have
xB = B−1b−B−1NxN ,hen
e the basi
 variables xB 
an be eliminated from the problem (1):





Minimize fN(xN )subje
t to B−1b−B−1NxN > 0,
0 ≤ xN ,

(3)where fN(xN ) = f(x) = f(B−1b −B−1NxN ,xN ). Using the notation
∇f(x)t =

[
∇Bf(x)t,∇Nf(x)t

]
,the gradient of fN , whi
h is the so-
alled redu
ed gradient, 
an beexpressed as

∇fN (x)t = −
(
∇Bf(x)tB−1N) + (∇Nf(x)t

)
.Now let us assume that the basis is nondegenerate, i.e. only thenonnegative 
onstraints xN ≥ 0 might be a
tive at the 
urrent iterate

xk. Let the sear
h dire
tion be a ve
tor dt = (dtB , d
t
N ) in the null spa
eof the matrix A de�ned as dB = −B−1NdN and dN ≥ 0. If we de�neso, then the feasibility of xk+ηd is guaranteed as long as xkB+ηdB ≥ 0,i.e. as long as

η ≤ ηmax = min
i∈B,di<0

{−x
k
i

di
}.We still need to de�ne dN ≥ 0 su
h that it is a des
ent dire
tion of

fN proje
ted to the 
oordinate hyperplane a
tive at the 
urrent point
xkN . So we have
dkj =





0 if xkj = 0 and ∂fN(x
k
N )

∂xj
≥ 0,

−∂fN(x
k
N )

∂xj
otherwise, j ∈ N.
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tion algorithm see for instan
e [1℄ we 
an determinethe optimal stepsize as
ηk = argmin

0≤η≤ηmax

f(xk + ηdk).Algorithm of redu
ed gradientStep 0 (Initialization). Choose a feasible point x0 ∈ Rn and I0B, I0N su
hthat B0 is nonsingular. Set the iteration 
ounter k = 0.Step 1 (Independent variables 
hoi
e). If k 6= 0 
hoose the sets IkB and IkN .Step 2 (Compute a sear
h dire
tion):1. Let (dN )j =

{
0 if (xN )j = 0 and rj ≥ 0,
−rj otherwise.2. If dN is equal to zero stop, the 
urrent point is a solution.Otherwise 
al
ulate dB = −B−1NdN .Step 3 (Compute optimal stepsize).Cal
ulate ηmax and ηk su
h that

ηmax = min
i∈B,di<0

{−x
k
i

di
} and ηk = argmin

0≤η≤ηmax

f(xk + ηdk).Step 4 (Compute the next point). Put xk+1 = xk + ηkd
k.Step 5 If ηk < ηmax return to Step 2. Otherwise update B and N .Step 6 (Basi
 variables 
hoi
e). Choose Ik+1

B and Ik+1
N .Let k = k + 1 and go to Step 1.Sto
hasti
 perturbation of the redu
ed gradient methodSin
e we have the linear equality 
onstraints, the sequen
e of realsvariables {xkN}k≥0 is repla
ed by a sequen
e of random variables

{Xk
N}k≥0 involving a random perturbation PNk of the deterministi
iteration:
• The nonbasi
 random perturbation PNk for nonbasi
 variables isde�ned as

Xk+1
N = Xk

N + ηkd
k
N + PNk . (4)



64 Continuous optimization problems
• Using the proje
tion, the basi
 random perturbation PBk for basi
variables has the form

Xk+1
B = B−1b−B−1NXk+1

N . (5)This pro
edure generates a sequen
e Uk = f(Xk) and by 
onstru
tionthis sequen
e is de
reasing and there exist a 
onstant l∗ su
h that
∀k ≥ 0, l∗ ≤ Uk+1 ≤ Uk. (6)Then, there exist U ≥ l∗ su
h that Uk → U for k → +∞.Numeri
al experimentsIn the tables presented below:

• n is the number of variables.
• ksto is the number of sto
hasti
 perturbations.
• f∗ is the optimal value a
hieved by the algorithm.Problem 1: The problem is de�ned as follows:





minimize n∑
i=1

cos(2πxi sin(
π
20 ))subje
t to xi − xi+1 = 0.4, i = 1, . . . , n− 1.Problem Algorithm

n m CPU time Iter. ksto f∗100 99 0.1094 3 1 -3.7032250 249 0.1250 3 1 -4.6087500 499 0.1875 2 1 -4.01471000 999 1.578 3 1 -4.98292500 2499 13.25 2 1 -5.01175000 4999 107.43 2 1 -2.04916000 5999 165.84 2 1 -5.0372Table 1. Results of SPRG algorithm for problem 1.



Continuous optimization problems 65Problem 2: Consider Rastrigin's fun
tion




minimize n∑
i=1

(x2i − 10 cos(2πxi) + 10)subje
t to n∑
i=1

xi = 0,

−5.12 ≤ xi ≤ 5.12, i = 1, 2, . . . , n.Problem Algorithm
n m CPU time Iter. ksto f∗100 1 5.3125 46 50 2.75e-9250 1 3.5156 20 75 9.72e-5500 1 10.6875 55 75 3.53e-4750 1 12.5156 15 300 3.00e-41000 1 24.5313 16 500 3.10e-31500 1 22.0781 11 550 1.14e-42000 1 19.3438 7 700 9.80e-3Table 2. Results of SPRG algorithm for problem 2.The last numeri
al results to the large-s
ale problems (NCOPLCs)whi
h are presented, show that this approa
h give a e�
ient results.Referen
es1. El Mouatasim A. Implementation of redu
ed gradient withbise
tion algorithms for non-
onvex optimization problem viasto
hasti
 perturbation. Journal of Numeri
al Algorithms. 2018.V. 78, N 1. P. 41�62.2. El Mouatasim A. Mathemati
al programming and appli
ation.S
holars Press, 2018.Adaptive 
onditional gradient algorithmZ.R. GabidullinaKazan (Volga Region) Federal University, Kazan, RussiaOur goal is to study the following problem:

min
x∈D

f(x), (1)where f(x) - is a 
ontinuously di�erentiable pseudo
onvex fun
tion sa-tisfying the so-
alled Condition A (introdu
ed in [1℄) on a 
onvex 
losed
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lidean spa
e Rn. For solving this problem,we present a new e�
ient algorithm whi
h has the estimates of the rateof its 
onvergen
e and allows adaptive 
ontrolling both the parameter ofan ε−normalization of a des
ent dire
tion and the step length.We start with some notations: g(x) is the gradient of the fun
tion
f(x) at the point x, x0 stands for the starting point of the iterative sequ-en
e 
onstru
ted by minimizing the obje
tive fun
tion, f∗ = min

x∈D
f(x),

D∗ = {x ∈ D : f(x) = f∗}, L = {0, 1, . . .}, and p∗k 
orresponds toa proje
tion of the iterative point xk on the set D∗, k ∈ L.To the best of our knowledge, the use of the extension of smooth
onvex fun
tions, namely the 
ontinuously di�erentiable pseudo
onvexones, was pioneered by Mangasarian in [2℄.De�nition 1 A fun
tion f(x) given and 
ontinuously di�erentiable onan open 
onvex set G from Rn is 
alled a pseudo
onvex one if for
∀x, y ∈ G it holds the following impli
ation:

〈g(x), y − x〉 ≥ 0⇒ f(x) ≤ f(y),or the equivalent impli
ation:
f(y) < f(x)⇒ 〈g(x), y − x〉 < 0.De�nition 2 We say that a 
ontinuous fun
tion f(x) satis�es Condi-tion A on the 
onvex set D ⊆ Rn if there exist a positive 
onstant µ anda nonnegative symmetri
 fun
tion τ(x, y) su
h that

f(αx+ (1− α)y) ≥ αf(x) + (1 − α)f(y)− α(1− α)µτ(x, y),
∀x, y ∈ D,α ∈ [0, 1].For x, y ∈ D ⊆ Rn, we 
all the fun
tion τ(x, y), the symmetri
 one if
τ(x, y) = τ(y, x), τ(x, x) = 0. Condition A des
ribes a su�
iently broad
lass of fun
tions A(µ, τ(x, y)) . It was shown in [1℄,[3-4℄ that the 
lass
A(µ, ‖x − y‖2), in parti
ular, is wider than C1,1(D) - the well-known
lass of fun
tions whose gradients satisfy the Lips
hitz 
ondition on the
onvex set D ⊂ Rn. By the way, let us note that namely the Lips
hitzianproperties of gradients for this 
lass of fun
tions have been sought asfavorable assumptions in justi�
ation of the theoreti
al estimates of therate of 
onvergen
e for the various modern di�erentiable optimizationalgorithms. In [4℄, there is given a variety of examples of fun
tions thatsatisfy Condition A. For fun
tions from A(µ, τ(x, y)), we also investiga-ted their prin
iple properties and 
riteria whi
h allow to 
ategorize somefun
tion as belonging to the treated 
lass.
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ular, it was proved in [4℄ that for a 
ontinuously di�eren-tiable fun
tion satisfying Condition A on a 
onvex set D the followingextremely important inequality holds:
f(x) − f(y) ≥ 〈g(x), x − y〉 − µτ(x, y).De�nition 3 For fun
tions from A(µ, ‖x−y‖v), v ≥ 2, the ve
tor s 6= 0is 
alled an ε−normalized des
ent dire
tion (ε > 0) of the fun
tion f atthe point x ∈ D if the following inequality holds: 〈g(x), s〉 + ε‖s‖v < 0.If some des
ent dire
tion s is not ε−normalized, then the ve
tor 
on-stru
ted in su
h a way that ŝ = t · s/ε‖s‖v satis�es the above de�nitionwhen 0 < t ≤ |〈g(x), s〉|.Under the 
ondition v = 2, we �x some point x ∈ Rn, then it isnot hard to see that all the points z ∈ Rn, for whi
h the ve
tors z − xare ε−normalized dire
tions of des
ent at the point x, belong to the

n−dimensional ball of radius R = ‖g(x)‖/2ε with 
enter at the point
u = x− g(x)/2ε.Let

ζ =

{
(ε · µ−1)1/(v−1), if ε < µ,

1, if ε ≥ µ.We further present the very useful new properties of the
ε−normalized des
ent dire
tions:Theorem 1 If s is an ε−normalized des
ent dire
tion for the fun
tion fat the point x, then for ∀β ∈ (0, 1) there exists a 
onstant λ̂ = λ̂(β) > 0

(λ̂ = (1− β)1/(v−1)ζ) su
h that for all λ ∈ (0, λ̂] it holds
f(x)− f(x+ λs) ≥ −λβ · 〈g(x), s〉, (2)
f(x) − f(x+ λs) ≥ λβ · ε‖s‖v. (3)Theorem 2 If s is an ε−normalized dire
tion of des
ent for the fun
tion

f at the point x, then there exists a 
onstant λ̂ > 0 (λ̂ = ζ) su
h thatfor all λ ∈ (0, λ̂] it is ful�lled
f(x)− f(x+ λs) ≥ −λ · (〈g(x), s〉 + ε‖s‖v) ≥ 0. (4)A

ording to Theorems 1�2, we 
an des
ribe the rules of 
al
ulatingthe step-size satisfying (2)�(4). Let s be some ε−normalized dire
tionof des
ent for f at the point x. Besides, let be ful�lled the following
onditions: β ∈ (0, 1), η = (1−β)1/v−1, î = 1, J (̂i) = {î, î+1, î+2, . . .}.



68 Continuous optimization problemsWe further determine i∗ as the least index i ∈ J (̂i) for whi
h the following
ondition holds:
f(x)− f(x+ ηis) ≥ −ηiβ · 〈g(x), s〉, (5)or the more weak 
ondition:
f(x)− f(x+ ηis) ≥ ηiβ · ε‖s‖v. (6)Next, we set λ = ηi
∗

. The step-size 
al
ulated in a

ordan
e with theserules satis�es to (2) or (3), respe
tively. For the next rule of the 
hoi
eof λ, we 
hoose η ∈ (0, 1) and set î = 0. There should be found further
i∗ - the smallest index i ∈ J (̂i) su
h that

f(x)− f(x+ ηis) ≥ −ηi · (〈g(x), s〉 + ε‖s‖v), (7)and λ = ηi
∗

. In the 
ase of �nding λ from (5) or (6) under the assumptionthat 0 < ε < µ, we prove that λ > (εµ−1 · (1 − β)2)1/v−1 > 0.Consequently, it holds µ > ε · (1 − β)2λ1−v. This implies that thepro
edure of diminishing the step length is �nite.Algorithm.Step 0. Initialization. Sele
t x0 ∈ D, β ∈ (0, 1), ε0 > 0, 0 < σ0 ≤ 1,
0 < α ≤ α0. Set iteration 
ounter k = 0.Step 1. Choose the point yk, k = 0, 1, . . . in su
h a way that under the
onditions 0 < σ ≤ σk ≤ 1, 0 < α ≤ αk it holds

〈g(xk), yk − xk〉 ≤ max{σkmin
x∈D
〈g(xk), x− xk〉, −αk}.If 〈g(xk), yk − xk〉 = 0, then we terminate the implementation of thealgorithm (sin
e xk is a solution of problem (1)). In a di�erent way, weset

sk =




yk − xk, if 〈g(xk), yk − xk〉+ εk‖yk − xk‖v ≤ 0,
tk(yk − xk)
εk‖yk − xk‖v

, otherwise.Here tk = |〈g(xk), yk − xk〉|.Step 2. Let ik be the least index i ∈ J (̂i) for whi
h there holds the
ondition of a 
hoi
e of the iterative step-size for x = xk, s = sk, ε = εk.Then set λk = ηik .Step 3. Compute the next iterate xk+1 = xk + λksk.Step 4. Update εk+1 = ζkεk. Here,
ζk =

{
(1 − β)1−ik , in the 
ase of 
hoi
e λk from (5) or (6),
η(1−ik)(v−1), in the 
ase of 
hoi
e λk from (7).



Continuous optimization problems 69Set k = k + 1 and go to Step 1.The following theorem justi�es a stopping 
riterion of the algorithmpresented above.Theorem 3 Let f(x) be a 
ontinuously di�erentiable pseudo
onvexfun
tion on the 
onvex set D ⊆ Rn. Then for the fun
tion f(x) toattain its minimum value on D at the point xk ∈ D it is ne
essaryand su�
ient to hold
〈g(xk), yk − xk〉 = 0.Let {xk} be the sequen
e 
onstru
ted by the algorithm. Furthermore,let it be ful�lled xk /∈ D∗, ∀k = 0, 1, . . . For the purpose of exploringthe 
onvergen
e of the numeri
al methods in the 
ase of pseudo
onvexfun
tions, there is usually de�ned in the literature on optimization anauxiliary numeri
 sequen
e {θk} as follows.

θk > 0, 0 < θk · (f(xk)− f(x∗)) ≤ 〈g(xk), xk −x∗〉, x∗ ∈ D∗, k ∈ L. (8)From the de�nition of pseudo
onvexity, it follows that for pseudo
onvexfun
tions su
h values θk must exist. In parti
ular, if f(x) is a smooth
onvex fun
tion, then θk = 1, k = 0, 1, . . . The properties of elements ofthe sequen
e {θk} were investigated, for instan
e, in [1℄,[4℄.We further 
onsider the theorem establishing 
onditions for 
onver-gen
e of the sequen
e {xk} generated by the algorithm to a solution ofproblem (1).Theorem 4 1. If f(x) is a 
ontinuously di�erentiable pseudo
onvexfun
tion on the 
onvex and 
losed set D ⊆ Rn satisfying Condition Awith 
onstant µ and fun
tion τ(x, y) = ‖x− y‖v, v ≥ 2,2. a numeri
 sequen
e {θk} de�ned by (8) satis�es the 
ondition: ∃θ > 0su
h that θk ≥ θ, ∀k,3. there exists a 
onstant γ > 0 su
h that ‖g(x)‖ ≤ γ <∞, ∀x ∈ D,4. the Lebesgue set of the fun
tion f(x) at the point x0 ∈ D, denoted by
MD(f, x0) = {x ∈ D : f(x) ≤ f(x0)}, is bounded,5. {αk}, {σk} are su
h that ∃η > 0 : ‖xk − yk‖ ≤ η, ∀k,6. the step-size λk, ∀k ∈ L is 
hosen in a

ordan
e with one of the rulesdes
ribed in (5)�(7).Then the sequen
e {xk}, k ∈ L is weakly 
onvergent, i.e.

f(xk)− f∗ ∼ O(1/k),or equivalently, there exists the 
onstant C > 0 su
h that it holds
f(xk)− f∗ ≤ C · k−1.



70 Continuous optimization problemsFor details of the proof of the pre
eding theorem, see [4℄. Let us notethat for estimating the rate of 
onvergen
e in the 
ase of 
onvexity ofthe minimized fun
tion f(x), the fourth 
ondition of Theorem 4 
an be
hanged to the 
laim of boundedness of D∗.Without evaluating the rateof 
onvergen
e, there 
an be proved the 
onvergen
e of {xk}, k ∈ L toa solution of problem (1) under the more weak 
onditions. Indeed, thereis true the following theorem.Theorem 5 Let the 1, 4, 5 
onditions of Theorem 4 be ful�lled, then forthe sequen
e {xk}, k ∈ L generated by the algorithm it holds:1. lim
k→∞

〈g(xk), yk − xk〉+ εk‖yk − xk‖v = 0,2. Any limit point of {xk}, k ∈ L belongs to D∗, i.e. lim
k→∞

‖xk−p∗k‖ = 0.Finally, we note that the presented algorithm as 
ompared with the
lassi
al Frank-Wolfe algorithm has the advantage 
onsisting in a possibi-lity of inexa
t solving of the dire
tion �nding subproblem and handlingthe a

ura
y of its solution. Referen
es1. Gabidullina Z.R. Relaxation methods with step regulationfor solving 
onstrained optimization problems // Journal ofMathemati
al S
ien
es. 1995. V. 73, N 5. p. 538�543.2. Mangasarian O.L. Pseudo-
onvex fun
tions// J.So
. Industr.andAppl. Math.- Ser.A Control. 1965. V. 3, p. 281�290.3. Gabidullina Z.R. Convergen
e of the 
onstrained gradient methodfor a 
lass of non
onvex fun
tions // Journal of SovietMathemati
s. 1990. V. 50, N 5. p. 1803-1809.4. Gabidullina Z.R. Adaptive methods with step length regulationfor solving pseudo
onvex programming problems// Dissertationfor the Degree of Candidate of S
ien
e in Physi
s and Mathemati
s.Kazan. 1994. 125 p.On solution of bilevel problems witha matrix game at the lower levelT.V. Gruzdeva and A.V. OrlovMatrosov Institute for System Dynami
s and Control Theoryof SB of RAS, Irkutsk, Russia
1. Introduction. This paper addresses one new approach to a spe-

cial type of bilevel optimization problems [1] with an equilibrium at
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the lower level. Such problems arise in modeling of hierarchical systems,
which are characterized by a disparate status of the participants, where
one leader is connected with several followers. There are a lot of applica-
tions of the bilevel programming problems (BPPs) in control, economy,
traffic, telecommunication networks, etc. [2].

As known, according to Pang [3] hierarchy and equilibrium are the
promising paradigms in mathematical programming in recent years.
Therefore, developing the efficient numerical methods even for the sim-
plest classes of BPPs with an equilibrium is a challenge of modern Op-
erations Research. In this work we consider bilevel problem with a para-
metric matrix game [4] at the lower level and with a linear goal function
subject to linear constraints at the upper level.

In order to elaborate numerical methods for the solving of BPPs
with a matrix game at the lower level we reformulate it as a single
level optimization problem using a reduction theorem. This auxiliary
problem turns out to be a global optimization problem with a nonconvex
feasible set (see, e.g., [5–7]). Further for solving the single level problem
obtained we apply a special Global Search Theory [7–10] developed by
A.S. Strekalovsky for optimization problem with d.c. functions.

2. Problem formulation. Let us formulate the simplest case of
BPPs with an equilibrium in the following way:

〈c, x〉+ 〈d1, y〉+ 〈d2, z〉 ↑ max
x,y,z

, x ∈ X, (y, z) ∈ C(ΓM(x)), (BPΓM )

where X = {x ∈ IRm | Ax ≤ a, x ≥ 0, 〈b1, x〉+ 〈b2, x〉 = 1},
C(Γ(x)) is the set of saddle points of the game

〈y,Bz〉 ↑ max
y
, y ∈ Y (x) = {y | y ≥ 0, 〈en1, y〉 = 〈b1, x〉},

〈y,Bz〉 ↓ min
z
, z ∈ Z(x) = {z | z ≥ 0, 〈en2 , z〉 = 〈b2, x〉};

}
(ΓM(x))

c, b1, b2 ∈ IRm; y, d1 ∈ IRn1 ; z, d2 ∈ IRn2 ; a ∈ IRp; b1 ≥ 0, b1 6= 0,
b2 ≥ 0, b2 6= 0; A,B are matrices and en1 = (1, ..., 1), en2 = (1, ..., 1) are
vectors of appropriate dimension.

The expression 〈b1, x〉 + 〈b2, x〉 = 1 can be interpreted as some re-
source, which should be distributed by the leader among the followers.

In order to elaborate numerical methods for the solving of bilevel
problem (BPΓM ) we need to reformulate it as a single level problem.

Let us set ξ1 := 〈b1, x〉, ξ2 := 〈b2, x〉 (x is fixed) and formulate matrix
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game with parameters ξ1, ξ2:

〈y,Bz〉 ↑ max
y
, y ∈ Y = {y | y ≥ 0, 〈en1 , y〉 = ξ1 > 0},

〈y,Bz〉 ↓ min
z
, z ∈ Z = {z | z ≥ 0, 〈en2 , z〉 = ξ2 > 0}.

}
(ΓM)

Further we formulate optimality conditions for generalized matrix
game (ΓM). These conditions are a generalization of classical optimality
conditions in a matrix game [4].

Theorem 1. The tuple (y∗, z∗) ∈ C(ΓM) if and only if there exists a
number v∗ (an optimal value of the game (ΓM)) such that the following
system is fulfilled:

ξ1(Bz
∗) ≤ v∗en1 , z∗ ≥ 0, 〈en2 , z〉 = ξ2;

ξ2(y
∗B) ≥ v∗en2 , y∗ ≥ 0, 〈en1 , y〉 = ξ1.

}
(1)

Note, conditions (1) represent finite numbers of equalities and in-
equalities. Now we can replace a game at the lower level by its optimal-
ity conditions. Hence, for the bilevel problem (BPΓM ) it is possible to
formulate the following equivalent single level problem:

f0(x, y, z)
△
= 〈c, x〉+ 〈d1, y〉+ 〈d2, z〉 ↑ max

x,y,z,v
,

Ax ≤ a, x ≥ 0, 〈b1, x〉+ 〈b2, x〉 = 1,
y ≥ 0, 〈en1 , y〉 = 〈b1, x〉, z ≥ 0, 〈en2 , z〉 = 〈b2, x〉,
〈b1, x〉(Bz) ≤ ven1 , −〈b2, x〉(yB) ≤ −ven2 .





(PM)

More precisely, the following theorem takes place.
Theorem 2. The triplet (x∗, y∗, z∗) is a global optimistic solution of

the bilevel problem (BPΓM ), if and only if there exist a number v∗ such
that the 4-tuple (x∗, y∗, z∗, v∗) is a global solution of problem (PM).

It can readily be seen, that problem (PM) is a global optimization
problem with a nonconvex feasible set (see, e.g., [5–7]). A nonconvexity
in the problem (PM) is generated by two vector constraints (two groups
of (n1 + n2) bilinear constraints in total). These constraints have arisen
from optimality conditions for the generalized matrix game at the lower
level of the bilevel problem (BPΓM ). It is known, that bilinear function is
represented as a difference of two convex functions (i.e. bilinear function
is d.c. function) [4]. Therefore, problem (PM) belongs to the class of
nonconvex optimization problems with d.c. constraints [7–10] and we
can apply the Global Search Theory for solving this class of nonconvex
problems.
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3. D.C. decomposition. The first stage of the application of the
Global Search Theory to the problem under scrutiny is a decomposition
of nonconvex function as a difference of two convex functions. As noted
above, (n1 + n2) bilinear constraints generate the basic nonconvexity in
the problem (PM).

Therefore we should find an explicit decomposition of functions fi by
the difference of two convex functions. As an example, let us obtain an
evident d.c. representation of the i-th scalar constraint of the first group:

fi(x, z, v) = 〈b1, x〉〈(B)i, z〉 − v ≤ 0, i = 1, . . . , n1, (2)

where (B)i is an i-th row of the matrix B.

Introduce a denotation QTi = (b
(1)
1 (B)i; b

(2)
1 (B)i; . . . ; b

(m)
1 (B)i),

where b
(j)
1 is a j-th component of the vector b1. Hence, we can reduce (2)

to a standard bilinear form fi(x, z, v) = 〈xTQi, z〉−v ≤ 0, i = 1, . . . , n1.
And we can use here the known d.c. representation which is based on
the property of a scalar product [4]:

fi(x, z, v) = gi(x, z, v)− hi(x, z), (3)

where gi(x, z, v) =
1

4
‖xQi+z‖2−v, hi(x, z) =

1

4
‖xQi−z‖2. The remain

part of constraints can be decomposed analogously.
Therefore we obtain the following problem with d.c. constraints:

f0(x, y, z) ↓ min
x,y,z,v

, (x, y, z) ∈ S,
fi(x, z, v) := gi(x, z, v)− hi(x, z) ≤ 0, i = 1, . . . , n1,

fi(x, y, v) :=gi(x, y, v)−hi(x, y) ≤ 0, i = n1+1, . . . , n1+n2,





(P)

where the functions f0 and gi, hi, i ∈ I = {1, ..., n1 + n2}, as well as the
set S = {x, y, z ≥ 0 | Ax ≤ a, 〈b1, x〉 + 〈b2, x〉 = 1, 〈en1 , y〉 = 〈b1, x〉,
〈en2 , z〉 = 〈b2, x〉} , are convex.

4. Local and Global search. As mentioned above, for the purpose
of solving the d.c. constraint problem (P), we develop the Global Search
Algorithm based on the Global Search Theory (GST) [7–9] using d.c.
decomposition constructed above. According the GST, the algorithm
for the solving of problem (P) should consist of two principal stages:
1) a special local search method (LSM), which takes into account the
structure of the problem under scrutiny [10]; 2) the procedure based on
Global Optimality Conditions (GOCs) [7–9], that allow to improve the
point provided LSM [10].
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In order to find a local solution to problem (P), we suppose that the

feasible set D := {(x, y, z) ∈ S | fi(·) ≤ 0, i ∈ I } of problem (P) is not
empty and the optimal value V(P) := inf{f0(x, y, z) | (x, y, z, v) ∈ D}
of problem (P) is finite: V(P) > −∞.

Furthermore, let us denote w := (x, y, z, v) ∈ IRm+n1+n2+1 and
assume that a feasible starting point w0 ∈ D is given and, in addi-
tion, after several iterations it has derived the current iterate ws ∈ D,
s ∈ Z+ = {0, 1, 2, . . .}.

In order to propose a LSM for problem (P), apply a classical idea of
linearization with respect to the basic nonconvexity of the problem (i.e.
with respect to hi(·), i ∈ I) at the point ws [10]. Thus, we obtain the
following linearized problem:

f0(x, y, z) ↓ min
x,y,z,v

, (x, y, z) ∈ S,
ϕis(x, z, v) := gi(x, z, v)− 〈∇hi(xs, zs), (x, z)− (xs, zs)〉−

−hi(xs, zs) ≤ 0, i = 1, . . . , n1,
ϕis(x, y, v) := gi(x, y, v)− 〈∇hi(xs, ys), (x, y)− (xs, ys)〉−

−hi(xs, ys) ≤ 0, i = n1 + 1, . . . , n1 + n2.





(PLs)

Suppose the point ws+1 is provided by solving problem (PLs), so that

ws+1 ∈ Ds = {(x, y, z) ∈ S | ϕis(·) ≤ 0, i ∈ I}

and inequality f0(x
s+1, ys+1, zs+1) ≤ V(PLs) + δs holds. Here V(PLs)

is the optimal value to Problem (PLs) and the sequence {δs} satisfies

the following condition functions
∞∑
s=0

δs < +∞.

Therefore, the LSM generates the sequence {ws}, ws ∈ Ds, s ∈ Z+,
of solutions to problems (PLs). As it was proven in [10], the cluster point
w∗ ∈ D∗ of the sequence {ws} is a solution to the linearized problem
(PL∗) (which is problem (PLs) with w∗ instead of ws), and w∗ can be
called the critical point with respect to the LSM. Thus, the algorithm
constructed in this way provides critical points by employing suitable
convex optimization methods for any given accuracy τ . The following
inequality:

f0(x
s, ys, zs)− f0(xs+1, ys+1, zs+1) ≤ τ

2
, δs ≤

τ

2
,

can be chosen as a stopping criterion for the LSM [10].
Finally, we recall that the Global Search Procedure for finding a

global solution to the problem (P) are based on GOCs [7–9] and their
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so-called algorithmic (constructive) property. If there exist a point, which
violates these conditions, then we can find a new point, which is better
than the current point in problem (P) (it works even for critical points
and local solutions). In order to find such violative points we use the
solution of linearized problems, local search, and a constructing of the
level surface approximation of the convex function which generates the
basic nonconvexity in the problem (P).
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Antipodal theorems extended∗
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N.I. Kalashnykova4
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Since 1909 when Brouwer proved the first fixed-point theorem named
after him, the fixed-point results in various settings play an important
role in the optimization theory and applications. This technique has
proven to be indispensable for the proofs of multiple results related to
the existence of solutions to numerous problems in the areas of opti-
mization and approximation theory, differential equations, variational
inequalities, complementary problems, equilibrium theory, game theory,
mathematical economics, etc. It is also worthwhile to mention that the
majority of problems of finding solutions (zero-points) of functions (op-
erators) can be easily reduced to that of discovering of fixed points of
properly modified mappings.

Not only theoretical but also practical (algorithmic) developments are
based on the fixed-point theory. For instance, the well-known simplicial
(triangulation) algorithms help one to find the desired fixed points in a
constructive way. That approach allows one to investigate the solvability
of complicated problems arising in theory and applications.

In this thesis, making use of the triangulation technique, we extend
some antipodal and fixed-point theorems to the case of non-convex, more
exactly, star-shaped sets. Also, similar extensions are made for set-valued
mappings defined over star-shaped sets. From now onward, we briefly
explain the main points of our extensions.

The techniques using various fixed-point theorems have always been
widely applied in Operations Research, Mathematical Programming,
Game Theory, and other areas of optimization. Such techniques are

∗The research activity of the first and the fourth authors was financially supported
by the R&D Department “Optimization and Data Science” of the Tecnológico de
Monterrey (ITESM), Campus Monterrey, as well as by the SEP-CONACYT projects
CB-2013-01-221676 and FC-2016-01-1938 (Mexico)
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appropriate in establishing the existence of solutions to mathemati-
cal programming problems, convex games, mathematical programs with
equilibrium constraints (MPEC), to mention only few. Because of that,
any extensions of the classical fixed-point theorems (like the Brouwer
theorem for single-valued mappings and Kakutani theorem for multi-
valued mappings) are interesting and important. In other words, topo-
logical tools are of a very high importance and use in the development
of optimization theory and applications.

The Brouwer fixed point theorem and the Borsuk-Ulam theorem can
be characterized as two most powerful topological tools of extremely
similar structure. Most topology textbooks that include these theorems,
such as, for example, Krasnosel’skii [1], Herings [2], Yang [3], do not
mention that the two are tightly related (for instance, the Borsuk-Ulam
theorem implies the Brouwer Fixed Point Theorem).

The majority of fixed-point theorems have been established for the
mappings defined on convex domains. However, in many applications
and real-life problems, the domains need not be convex; for example, the
feasible sets of bilevel programming problems mostly lack this property
even for linear bilevel problems (cf., [4]). In this abstract, we outline
how we extend the Borsuk-Ulam (antipodal) theorem to more general
domains and to the case of multi-valued mappings as well. First, we recall
the definition of star-shaped sets and some properties of projections onto
them.

Definition 1 A star-shaped region centered at x0 in Rn is a set D ⊂ Rn

such that for every x ∈ D and t ∈ [0, 1] one has γx (t) := x0+t (x− x0) ∈
D.

Consider Rn with the maximum metric:
d∞(x, y) := max{|xi − yi|}ni=1, where x, y ∈ Rn.

In order to work with the projections of the points inside and outside
a star-shaped subset to its boundary, we need the following notation.

Definition 2 Let D be a closed, bounded, and star-shaped region D cen-
tred at x0 = 0. For an r > 0, such that D ⊂ Cn(r) := {x ∈ Rn : ‖x‖∞ ≤
r}, we define the following:

• For x ∈ Cn(r) \ D define θx := max{t ∈ [0, 1] : γx (t) ∈ D} and
α (x) := γx (θx).

• For y ∈ D let uy := inf{t ∈ [1,∞) : γy (t) /∈ D} and λ(y) :=
γy (uy).



78 Continuous optimization problems
• For z ∈ Cn(r) let sz := inf{t ∈ [1,∞) : γz (t) /∈ Cn(r)} and
ω (z) := γz (sz).

The antipodal property is the key feature of the functions examined in
the Brouwer and Borsuk-Ulam theorems.

Definition 3 Let D ⊂ Cn(r) be a closed star-shaped set and
ρ : D −→ Rn a continuous function. The function is said to have the
antipodal property, if for every x ∈ ∂D it holds that ρ(x) = −ρ(λ(−x))
if (−x) ∈ D and ρ(x) = −ρ(α(−x)) when (−x) /∈ D.

The well-known extension of the antipodal property is the nonparallel
condition defined below.

Definition 4 Let D ⊂ Cn(r) be a closed star-shaped set and ρ : D −→
Rn a continuous function. This function satisfies the nonparallel condi-
tion if for every x ∈ ∂D it holds: for all c ≥ 0, ρ(x) 6= cρ(λ(−x)) if
(−x) ∈ D and ρ(x) 6= cρ(α(−x)) otherwise, that is, when (−x) /∈ D.
We say that ρ satisfies the weakly nonparallel condition when for all
c > 0, ρ(x) 6= cρ(λ(−x)) if (−x) ∈ D and ρ(x) 6= cρ(α(−x)) otherwise,
i.e., if (−x) /∈ D.

Similar to the constructive proofs presented in [5–6], we deduce
important existence results concerning zero points.

Theorem 1 Let D ⊂ Cn (r) a closed, bounded, and star-shaped set and
ρ : D −→ Rn a continuous function which satisfies the weakly nonparallel
condition. Then, there exists x∗ ∈ D such that ρ (x∗) = 0.

Next, we extend the above results to multi-valued mappings. In order
to do that, we refer to the distance between sets as introduced in [8–10].

Definition 5 Let A,B be subsets of Rn. The distance between A and B
is defined as follows: d(A,B) := infx∈A y∈B{‖x− y‖}.

Now we can extend the antipodal and nonparallel conditions to the case
of multi-valued mappings defined on star-shaped sets.

Definition 6 Let D ⊂ Cn(r) be a closed star-shaped set and
ρ : D −→ S (Rn) a multi-valued mapping. The mapping is said to have
the antipodal property if for every x ∈ ∂D one has ρ(x) = −ρ(λ(−x)) if
(−x) ∈ D and ρ(x) = −ρ(α(−x)) if (−x) /∈ D; here −ρ(w) := {−z :
z ∈ ρ(w)}.



Continuous optimization problems 79

Definition 7 Let D ⊂ Cn(r) be a closed, bounded, and star-shaped set
and ρ : D −→ S (Rn) a multi-valued mapping. The mapping satisfies the
nonparallel condition if for every x ∈ ∂D and c ≥ 0 one has y1 6= cy2
for all y1 ∈ ρ(x), y2 ∈ ρ (λ(−x)) whenever (−x) ∈ D. Otherwise, if
(−x) /∈ D, then y1 6= cy2 for all y1 ∈ ρ(x), y2 ∈ ρ (α(−x)) . If the above
inequalities are claimed for (only) c > 0 we say that ρ satisfies the weakly
nonparallel condition.

First, we demonstrate that the problem of finding zeros of a multi-valued
mapping defined on a closed bounded star-shaped subset of Rn satisfying
the nonparallel condition can be reduced to the problem of finding zeros
of an extended multi-valued mapping boasting the antipodal property
on some cube Cn(r).

Lemma 1 Let D ⊂ Cn(r) be a closed, bounded, and star-shaped
set and ρ : D −→ S (Rn) a multi-valued mapping satisfying the
weakly nonparallel condition. Then ρ can be extended to a mapping
Ψ : Cn (r) −→ S (M) with the antipodal property and such that x∗ ∈ D
whenever (0, . . . , 0) ∈ Ψ(x∗).

Now the main result obtained for the multi-valued mappings on star-
shaped set follows.

Theorem 2 Let ρ : D ⊂ Cn (r) −→ S (Rn) be an upper semicontinuous
mapping defined on a star-shaped subset D satisfying the weakly non-
parallel condition. Then there exists x∗ ∈ D such that 0 ∈ ρ(x∗).

The abstract finishes with an extension of the nonparallel condition-
related result for mappings defined on a star-shaped set times an inter-
val D × [0, 1] and having convex compact subsets of Rn as its values.
Moreover, we will study a connected set of zero points intersecting both
D × {0} and D × {1} in order to extend the Browder theorem.

Theorem 3 Let ρ : D × [0, 1] −→ H (Rn) be a
multi-valued mapping from D × [0, 1] to H (Rn), where
H (Rn) = {A ∈ S (Rn) : A is a convex set} and D is a compact
star-shaped set in Rn with respect to the origin. Suppose that the
following conditions hold for ρ:

1. ρ is upper semicontinuous.

2. For every t ∈ [0, 1], the restriction ρt : D −→ C (Rn) defined by
ρt(x) := ρ(x, t) satisfies the nonparallel condition. Then



80 Continuous optimization problems
there exists a connected subset Z in D × [0, 1] such that
Z ∩D × {0} 6= ∅, Z ∩D × {1} 6= ∅, and if x ∈ Z then 0 ∈ ρ(x).

To conclude, we have presented the extensions of both the antipodal
(Borsuk-Ulam) theorem and Browder theorem to the cases comprising
both a star-shaped domain of the considered mapping and a multi-valued
structure of that mapping. Moreover, an explicit algorithm constructing
the desired connected path of the zero points of the mapping is devel-
oped. The properties of the latter algorithm are used in the proof of
the extended Browder Theorem, similar to the existence proofs in the
pioneer works by van der Laan and Talman [5–6].

In our future research, we are going to extend the above-mentioned
results to other classes of non-convex domains of the examined multi-
valued mappings.
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Numerical comparison of the centered
cutting plane methods for solving convex
nondifferentiable optimization problems∗

A.V. Kolosnitsyn
Melentiev Energy Systems Institute SB RAS, Irkutsk, Russia

We consider the convex optimization problem in the following form:

minimize f(x)
subject to Ax ≤ b,

where f is convex but not necessarily differentiable function, A is m×n
matrix, x ∈ Rn and b ∈ Rm. The feasible set X = {x ∈ Rn : Ax ≤ b} is
supposed to be nonempty and bounded.

We aim to compare different centered cutting plane methods with
the following general scheme:

Step 0. Set X0 = X , k = 0.

Step 1. Define xk – the center of the set Xk.

Step 2. Find a vector αk:

f(x)− f(xk) ≥ (αk)T (x− xk).

Step 3. Define the set Xk+1:

Xk+1 = Xk
⋂
{x : (αk)T (x− xk) ≤ 0}.

Step 4. Increment k = k + 1 and move to the Step 1.

Different techniques of determine the center of the set X from the
general scheme lead to a bunch of centered cutting plane methods. We
consider the following ways of finding the center of the set Xk.

Center of the inscribe ellipsoid with maximal volume. Solution of the
problem

maximize
n∑
j=1

ln δj,

subject to
n∑
j=1

aijxj +

√
n∑
j=1

a2ijδ
2
ij ≤ bi, i = 1, . . . ,m

∗This research is supported by RFBR, research project No. 18-07-01432.
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is the pair (x⋆, δ⋆), where x⋆ is the center of maximal volume ellipsoid,
δ⋆ defines the length of ellipsoid semiaxes. Ellipsoid E ⊂ X is defined as
follows:

E =



x ∈ Rn :

n∑

j=1

(xj − x∗j )2
(δ∗j )

2
≤ 1



 .

Center of the inscribe parallelepiped with maximal volume. Let us
consider the following convex optimization problem

maximize
n∑
j=1

ln δj ,

subject to
n∑
j=1

aijxj +
n∑
j=1

|aij |δij ≤ bi, i = 1, . . . ,m.

Optimal solution (x⋆, δ⋆) has the following sense: x⋆ is the center of the
maximal volume parallelepiped Π ⊂ X :

Π =
{
x ∈ Rn : x∗j − δ∗j ≤ xj ≤ x∗j + δ∗j , j = 1, . . . , n

}
,

and 2δ⋆ defines the length of the parallelepiped sides.
Center of the inscribe rhombus with maximal volume. In current case

we solve the following convex optimization problem

maximize
n∑
j=1

ln δj ,

subject to
n∑
j=1

aijxj + |aij |δij ≤ bi, i = 1, . . . ,m, j = 1, . . . , n.
(1)

Let the pair (x∗, δ∗) be a solution of the problem (1). Then x∗ is the
rhombus center and δ∗ defines the length of its semiaxes. Rhombus R ⊂
X has the form

R =



x ∈ Rn :

n∑

j=1

|xj − x∗j |
δ∗j

≤ 1



 .

Analytical center. An analytical center of the set X is the point x⋆:

x∗ = argmax

{
n∑

i=1

ln(bi −Aix) : x ∈ Rn
}
.

Circumscribe sets. We consider two types of circumscribe localization
sets: minimal volume ellipsoid [1, 2] with modifications developed in [3]
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and minimal volume simplex [4] with cutting plane shift modifications
[5].

All the algorithms based on defined centers of the feasible set were
tested on the nondifferentiable convex optimization problem that has the
form

minimize max
1≤i≤m

{fi(x)},
subject to Ax ≤ b,

where fi(x) = xTQix+ pix+ ri, Q
i are n× n positive definite matrixes,

pi ∈ Rn, i = 1, 2, ...,m, r ∈ Rm, b ∈ Rm, A is m× n matrix. The results
of the numerical experiment will be given in this work.

At last we notice one practical applications of the demonstrated cen-
tered cutting plane methods. Such approaches of solving convex non-
differentiable optimization problems are useful in two-stage stochastic
linear programming problems [6]. In avoidance of huge amount of the
variables it is reasonable to formulate the dual problem for the second
stage. But in this case we obtain nondifferentiable optimization problem
that can be solved by the suggested methods.
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Some way to minimize a function with

extra variable

V.V. Koulaguin
Institute of Problems in Mechanical Engineering,

Russian Academy of Sciences, St. Petersburg, Russia

A mathematical programming problem for function of two vari-
ables, where minimum is taken over one of the variables, [1-5] is talked.
Examples, existence conditions, and applications [6-13] are considered.

1. Introduction. The problem is some mathematical tool to make
decision and control design under uncertainty. There are many ways to
make decision under uncertainty. They all supposed to have an uncer-
tainty parameter domain known and bounded (as minimax principle, for
example). In our way to tackle uncertainty, the uncertainty parameter
domain is a whole space of its values. As a result, we get a system that
is effective (robust, reliable) for the maximal (in a certain sense) set of
values of the uncertainty parameter. This set is the basic (attributive)
property of the system we construct under that kind of uncertainty.

2. The minimization problem. There are a function f(x, y), x ∈
Ex, y ∈ Ey ; a set

A = {(x, y) | x = argmin
x
fy(x)},

where fy(x) – a cross-section of function f(x, y) by a variable y fixed;
and a set

Y (x) = {y | (x, y) ∈ A},
which characterizes the element x ∈ Ex and is named an effectiveness
set of element x ∈ Ex. The sets Ex, Ey are some finite-dimensional or
infinite-dimensional spaces.

The problem is to find an element x0 so that

Y (x0) ⊇ Y (x), ∀x ∈ Ex. (∗)
Here x0 – a maximally effective element, Y (x0) – a maximal effectiveness
set.

2.1. An example of the problem (*). Existence of a solution
depends on a type of space Ex. Here is an example. First, let function
f(x, y) be f(x, a, b, c) = ax2 + bx + c; where x ∈ R1, y = (a, b, c) ∈ R3.
Effectiveness sets Y (x) don’t have common elements [3]; That means a
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solution of the problem (*) doesn’t exist. Now let element x be a function
of an argument (a, b, c), x = x(a, b, c). In that case, (by properties of
parabolas) a maximally effective element is x0 = −b/2a, a maximal
effectiveness set is R3.

2.2. One more example of the problem (*). In [1], a control
function was constructed that moves, in minimum time, a single mass
point to the origin of the phase coordinates – for any initial motion data.

2.3. A trivial solution. A solution of the problem (*) always ex-
ists, when element x ∈ Ex is a function x(y). This solution cannot be
acceptable for decision maker, because parameter y a priori isn’t known.
Usually, the decision maker knows a part of uncertainty parameter y,
i.e. x = x(ȳ), ȳ ∈ y. The more of y he knows the more likely that the
solution of problem (*) exists.

2.4. Some condition of existence. Let’s consider a set

X(y) = {x | (x, y) ∈ A}
and a problem to find an element x+, so that

x+ ∈
⋂

y

X(y). (∗∗)

Theorem [3]. An element x is a solution of problem (*), if and only
if this element is a solution of problem (**).

3. Decision making problem. Let x be a decision, y be an uncer-
tainty, a pair (x, y) be an act of decision making, which is estimated by
functionals gi(x, y), hj(x, y), J(x, y). Let A be a set of pairs (x, y), such
that

gi(x, y) 6 0, (3.1)

hj(x, y) = 0, (3.2)

J(x, y) = min
x
Jy(x, y), (3.3)

where Jy(x, y) – a cross-section of function J(x, y) by a variable y fixed.
It should be noted that for fixed y the relation (3.1-3.3) is an ordinary
problem of conditional minimization.

To each decision x we associate the set

Y (x) = {y | (x, y) ∈ A},

which characterizes the element x ∈ Ex and is named a robustness set
of element x ∈ Ex.
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The problem is to find an element x0 so that either

Y (x0) ⊇ Y (x), ∀x ∈ Ex, (i)

or

f(Y (x0)) = max
x

f(Y (x)), (ii)

where f(·) – some function of the set Y (x). Here x0 – a maximally robust
element, Y (x0) – a maximal robustness set.

4. Control design problem. In such applications, element x ∈ Ex
is supposed to be a function of time and/or a function of phase variables
of the system controlled. If element x is a function of time x(t), then
a robustness sets Y (x) are usually empty or contain only one element.
On the contrary, if element x is a function of phase variables and time,
then often a solution of problem (i) or problem (ii) might be obtained.
In [2], one can find some technique how to construct function f(·). In
particular, the problem (ii) can take the form

maxxrootyρ(x, y), (4.1)

where root denotes the root of equation ρ(x, y) = 0, ρ(x, y) is some dis-
tance from the ball of radius y inscribed in the set Y (x) to the set Y (x).
Some problem (ii) in the form (4.1) is considered in [8]. The solution is
obtained by using the relation

maxxrootyρ(x, y) = rootymaxxρ(x, y), (4.2)

which is valid under certain assumptions.
In [6-9] some control design problems in the form (i) or (ii) are con-

sidered.
5. Engineering problem. In [10] the problem of reliability was

formulated as a problem of robustness of machines and structures. In
[11] the problem of maximal robustness shock absorber in form (ii) is
considered.

6. Game theory. In [12-13] zero-sum game with constrained payoff
is investigated. In this game, there is the equilibrium (4.2).

Conclusion. In this report some way to minimize a function that
is burdened by an additional variable is discussed. The area of change
of the additional variable is the entire space. Applying the proposed
method, we obtain the system which is effective (robust, reliable) for
maximal (in the sense (i), (ii)) set of values of the variable y.
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A new two-stage non-Euclidean proximal
method of solving the problem of

equilibrium programming∗

V.V. Semenov
Taras Shevchenko Kiev National University, Kiev, Ukraine

Consider the equilibrium problem for nonempty convex closed set
C ⊆ Rd and bifunction F : C × C → R:

find x ∈ C such that F (x, y) ≥ 0 ∀ y ∈ C, (1)

where F (y, y) = 0 for all y ∈ C.
The equilibrium problem (1) (problem of equilibrium programming,

Ky Fan inequality) is very general in the sense that it includes, as special
cases, many applied mathematical models such as: variational inequali-
ties, fixed point problems, optimization problems, saddle point problems,
and Nash equilibrium point problems.

In this report, we propose and analyze a new iterative method for
solving the equilibrium problem. Namely, using the Bregman distance
(Bregman divergence) instead of the Euclidean we modifies the two-
stage proximal algorithm from [1, 2]. The Bregman distance allows to
take into account the geometry of an admissible set effectively in some

∗This research is supported by the Ministry of Education and Science of Ukraine
(project 0116U004777).
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cases. We note that in the particular case of a variational inequality the
obtained algorithm coincides with the version of the method of mirror
descent recently studied by the author [3, 4].

We assume that the bifunction F satisfies the following conditions:

(A1) for all x, y ∈ C from F (x, y) ≥ 0 it follows that F (y, x) ≤ 0
(pseudo-monotonicity);

(A2) F : C × C → R is lower semicontinuous on C × C;

(A3) for all x ∈ C the function F (x, ·) in convex on C;

(A4) for all y ∈ C the function F (·, y) is upper semicontinuous on C;

(A5) for all x, y, z ∈ C the next inequality holds

F (x, y) ≤ F (x, z) + F (z, y) + a ‖x− z‖2 + b ‖z − y‖2 ,

where a, b are positive constants (the Lipschitz-type property).

Let us consider the dual equilibrium problem:

find y ∈ C such that F (x, y) ≤ 0 ∀x ∈ C. (2)

The sets of solutions for problems (1) and (2) we denote as S and S∗.
In the considered case the sets S and S∗ are equal and are convex and
closed. Further, we assume that the solution set S is nonempty.

Let’s recall some facts about Bregman distance. Let ϕ : Rd → R be
the continuous convex function on C, continuously differentiable on C.
Assume that the function ϕ is strongly convex with the parameter σ > 0
in the norm ‖ · ‖, i. e.

ϕ(a)− ϕ(b) ≥ (∇ϕ(b), a− b) + 2−1σ‖a− b‖2 ∀a ∈ C, b ∈ C.

The Bregman divergence (generated by function ϕ) on the set C is de-
fined by

Dϕ(a, b) = ϕ(a)− ϕ(b)− (∇ϕ(b), a− b) ∀a ∈ C, b ∈ C.

The useful three-point identity holds

Dϕ(a, c) = Dϕ(a, b) +Dϕ(b, c) + (∇ϕ(b)−∇ϕ(c), a − b).

The minimization problem

F (a, y) + λ−1Dϕ(y, b)→ miny∈C (a, b ∈ C, λ > 0)
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always has only one solution. Suppose, that we have an ability to solve
efficiently this problem. For example, it is possible in the case of pro-
bability simplex, linearity F for the second argument and the Kullback-
Liebler divergence.

Now, we introduce the following iterative algorithm for solving of the
equilibrium problem (1).

Algorithm 1.

For x1, y1 ∈ C generate the sequences of elements xn, yn ∈ C with the
iterative scheme

{
xn+1 = argminy∈C

(
F (yn, y) +

1
λDϕ(y, xn)

)
,

yn+1 = argminy∈C
(
F (yn, y) +

1
λDϕ(y, xn+1)

)
,

where λ > 0.
In Algorithm 1, at each iterative step, we must solve two optimization

programs onto C with strongly convex functions.
If ϕ(·) = 1

2‖ · ‖22 , then the Algorithm 1 takes the form

{
xn+1 = proxλF (yn,·) xn,

yn+1 = proxλF (yn,·) xn+1,
(3)

where proxg is the proximal operator, associated with convex lower semi-
continuous proper function g

Rd ∋ x 7→ proxg x = argminy∈dom g

(
g(y) +

1

2
‖y − x‖22

)
∈ dom g.

Two-step proximal algorithm (3) was introduced in [1]. Also, it was re-
ported at the VIII Moscow International Conference on Operations Re-
search [2]. In the special case of variational inequality problem, i. e., if
F (x, y) = (Ax, y − x), it takes the form





x1 ∈ C, y1 ∈ C,
xn+1 = PC(xn − λAyn),
yn+1 = PC(xn+1 − λAyn),

where PC is the operator of metric projection onto the set C.
For variational inequalities the Algorithm 1 has the form





x1 ∈ C, y1 ∈ C,
xn+1 = ΠC

(
(∇ϕ)−1(∇ϕ(xn)− λAyn)

)
,

yn+1 = ΠC
(
(∇ϕ)−1(∇ϕ(xn+1)− λAyn)

)
,
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where ΠC is the Bregman projection operator onto the set closed convex
C defined by the rule

ΠCx = argminy∈C Dϕ(y, x).

This method was introduced in [3]. Its convergence was discussed at the
conference CNSA–2017 [4].

We note first, that if for some number n ∈ N next equalities are
satisfied

xn+1 = xn = yn (4)

than yn ∈ S and the following stationarity condition holds

yk = xk = yn ∀ k ≥ n.
Further, we assume that for all numbers n ∈ N the condition (4)

doesn’t hold.
Lemma 1. Let sequences (xn), (yn) be generated by the Algorithm

1, and let z ∈ S∗. Then, we have

Dϕ(z, xn+1) ≤ Dϕ(z, xn)−
(
1− 2λb

σ

)
Dϕ(xn+1, yn)−

−
(
1− 4λa

σ

)
Dϕ(yn, xn) +

4λa

σ
Dϕ(xn, yn−1).

Lemma 2. Let λ ∈
(
0, σ

2(2a+b)

)
. Then all limit points of the sequence

(xn) belong to the set S.
Lemma 2 is valid without the assumption (A1) about the pseudo-

monotonicity of the bifunction F .
Lemma 3. Sequences (xn), (yn) generated by the Algorithm 1 con-

verge to the solution z̄ ∈ S of the problem (1).
Summing up, we formulate the main result.
Theorem 1. Let C ⊆ Rd be a nonempty convex closed set, for

bifunction F : C×C → R the conditions (A1)–(A5) are satisfied and S 6=
∅. Assume that λ ∈

(
0, σ

2(2a+b)

)
. Then sequences (xn), (yn) generated

by the Algorithm 1 converge to the solution z̄ ∈ S of the equilibrium
problem (1).
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Accelerated subgradient method with
Polyak’s step∗

P.I. Stetsyuk
V.M.Glushkov Institute of Cybernetics, Kiev, Ukraine

1. Formulation of the problem. Let f(x) be a convex function,
x ∈ Rn. Denote its minimal value as f∗ = f(x∗) and, without loss of
generality, assume that the point x∗ is the unique minimum point. A
subgradient ∂f(x) satisfies the following condition:

(x− x∗, ∂f(x)) ≥ f(x)− f∗, ∀x ∈ Rn. (1)

Here (x, y) is the scalar product of vectors x ∈ Rn and y ∈ Rn.
If f∗ is known, then to find an approximation to the point x∗ ∈ Rn

one can use the Polyak’s subgradient method [1]:

xk+1 = xk − hk
∂f(xk)

‖∂f(xk)‖
, hk =

f(xk)− f∗

‖∂f(xk)‖
, k = 0, 1, 2, . . . . (2)

The step hk is called the Polyak’s step (or the Agmon-Motzkin-Schoen-
berg step). For the first time, Polyak’s step was used for minimization
of piecewise linear convex functions. In 1954 Agmon [2] and Motzkin,
Schoenberg [3] used this step in relaxation method for finding at least
one of the solutions of feasible system of linear inequalities. In 1965
Eremin [4] generalized this relaxation method for the systems of convex
inequalities.

∗This research is supported by Volkswagen Foundation, grant No 90 306.
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The geometric sense of the method (2) is the following. The function
f(x) is approximated by a linear function f̃(x) = f(xk)+(∂f(xk), x−xk)
and the step is selected so that this approximation function becomes
equal to f∗ (i. e. f̃(xk+1) = f∗). For convex function f(x) the step
hk determines the value of the maximum shift in the direction of the
normalized antisubgradient, which under condition (1) guarantees that
angle between the antisubgradient and the direction from the point xk+1

to the minimum point will not be obtuse.
Consider the Polyak’s subgradient method and its accelerated version

for finding an approximation to the minimum point of ravine convex
functions. As a stopping criterion, we use condition f(xk) − f∗ 6 ε; for
an arbitrarily small ε > 0 it allows us to find the point x∗ε = xk f(x

∗
ε) 6

f∗+ε. We consider methods for a more general case of a convex function
f(x), when its subgradient ∂f(x) satisfies the following condition:

(x− x∗, ∂f(x)) ≥ m(f(x)− f∗), ∀x ∈ Rn, (3)

where parameterm > 1. Here the parameterm is introduced to take into
account special classes of convex functions: for example, for a piecewise
linear nonsmooth function m = 1, for a quadratic smooth function m =
2.

2. Method A (the Polyak’s subgradient method). If the convex
function f(x) satisfies condition (3) and f∗ is known, then to find the
point x∗ε ∈ Rn such that f(x∗ε) 6 f∗ + ε, one can use the following
iterative method.

Initialization. Let f∗ and m > 1 are given. Let’s select the point
x0 ∈ Rn and the value ε > 0 and go to the next iteration with the value
x0.

Iterative process. Let the point xk ∈ Rn be found on the k-th iter-
ation. To proceed to the (k + 1)-th iteration, we perform the following
actions.

A1. Calculate f(xk) and ∂f(xk). If f(xk)−f∗ 6 ε, then STOP (k∗ = k,
x∗ε = xk).

A2. Calculate the next point

xk+1 = xk − hk
∂f(xk)

‖∂f(xk)‖
, hk =

m(f(xk)− f∗)

‖∂f(xk)‖
,

A3. Go to the (k + 1)-th iteration with xk+1.
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Theorem 1 The sequence {xk}k

∗−1
k=0 generated by method A satisfies the

inequalities

‖xk+1 − x∗‖2 6 ‖xk − x∗‖2 −
m2(f(xk)−f∗)2

‖∂f(xk)‖2
, k = 0, 1, 2, . . . (4)

Proof. From A2 for an arbitrary k (0 6 k 6 k∗ − 1) we have

‖xk+1 − x∗‖2 =

∥∥∥∥xk − x∗ − hk
∂f(xk)

‖∂f(xk)‖

∥∥∥∥
2

=

= ‖xk − x∗‖2 − 2hk
(xk − x∗, ∂f(xk))
‖∂f(xk)‖

+ h2k.

Taking into account that from (3) it follows

(
xk − x∗, ∂f(xk)

)

‖∂f(xk)‖
>
m
(
f(xk)− f∗

)

‖∂f(xk)‖
= hk,

we have

‖xk+1 − x∗‖2 6 ‖xk − x∗‖ − h2k = ‖xk − x∗‖2 −
(
m(f(xk)− f∗)

‖∂f(xk)‖

)2

,

that gives the inequalities (4). Theorem is proved.
Theorem 1 guarantees that in Polyak’s subgradient method the dis-

tance to the minimum point decreases monotonically.
The disadvantage of method A is its slow convergence for ravine func-

tions. For example, for nonsmooth function in two variables f(x1, x2) =
|x1| + t |x2|, t > 1, the rate of convergence of method A is determined
by the geometric progression with the common ratio

q =
√
1− 1/t2 (5)

and will be very slow for large values of t. An analogous situation holds
also when minimizing the ravine quadratic function f(x1, x2) = (x1)

2
+

t (x2)
2
, t≫ 1. For example, if t = 100,m = 2 and ε = 0.01, then method

A generates the sequence x0 = (1.00, 1.00)T , x1 = (0.99,−0.01)T , . . . ,
x5 = (0.238,−0.002)T , . . . , x8 = (0.058, 0.058)T , x9 = (0.057,−0.001)T .

Below we consider the modification of the subgradient method with
Polyak’s step, where the accelerated convergence with respect to method
A can be provided by choosing the space transformation matrix.
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3. Method B (subgradient method with Polyak’s step in the trans-
formed space of variables). Let’s make the substitution of variables x =
By, where B is a nonsingular n × n-matrix (that is, there exists an
inverse matrix A = B−1). The subgradient ∂ϕ(y) of the convex function
ϕ(y) = f(By) at the point y = Ax of the transformed space of variables
satisfies inequality

(y − y∗, ∂ϕ(y)) ≥ m(ϕ(y)− ϕ∗), ∀y ∈ Rn, (6)

where ∂ϕ(y) = BT ∂f(x), ϕ∗ = ϕ(y∗) = f(By∗), y∗ = Ax∗. Indeed, since
A = B−1 and x = By, inequality (3) can be rewritten in the form

(A(x− x∗), BT ∂f(x)) ≥ m(f(By)− f(By∗)), ∀By ∈ Rn,

whence we obtain inequality (6).
To find the point x∗, the subgradient method with the Polyak’s step

in the transformed space (defined by the nonsingular matrix B) has the
following form:

xk+1=xk−hkB
BT ∂f(xk)

‖BT ∂f(xk)‖
, hk=

m (f(xk)− f∗)

‖BT ∂f(xk)‖
, k = 0, 1, 2, . . . . (7)

Here hk is the Polyak’s step (the Agmon-Motzkin-Schoenberg step), but
in the transformed space of variables y = Ax. This follows from the fact
that in the transformed space of variables method (7) is written as a
subgradient process

yk+1 = yk − hk
∂ϕ(yk)

‖∂ϕ(yk)‖
, hk =

m
(
ϕ(yk)− ϕ∗

)

‖∂ϕ(yk)‖
, k = 0, 1, 2, . . . . (8)

The Polyak’s step in the transformed space of variables has the same
properties as the Polyak’s step in the original space. They are defined
by an a priori knowledge of the minimum value of the function and the
inequality (6) associated with it.

To find the point x∗ε ∈ Rn for which f(x∗ε) 6 f∗ + ε, the subgradient
method with the Polyak’s step in the transformed space is represented
by the next iterative procedure.

Initialization. We have f∗ and m > 1. We choose the point x0 ∈ Rn,
the nonsingular n × n matrix B, and the value ε > 0. We move to the
next iteration with the value x0.

Iterative process. Let xk ∈ Rn be found on the k-th iteration. To
proceed to the (k + 1)-th iteration, we perform the following actions.
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B1. Calculate f(xk) and ∂f(xk). If f(xk)−f∗ 6 ε, then STOP (k∗ = k,

x∗ε = xk).

B2. Calculate the next point

xk+1 = xk − hkB
BT ∂f(xk)

‖BT ∂f(xk)‖
, hk =

m(f(xk)− f∗)

‖BT∂f(xk)‖
,

B3. Go to the (k + 1)-th iteration with xk+1.

Theorem 2 The sequence {xk}k
∗−1
k=0 generated by method B satisfies the

inequalities

‖A(xk+1−x∗)‖2 6 ‖A(xk−x∗)‖2−
m2(f(xk)− f∗)2

‖BT∂f(xk)‖2
, k = 0, 1, . . . (9)

Proof. From B2 for an arbitrary k (0 6 k 6 k∗ − 1) we have

‖A(xk+1 − x∗)‖2 =

∥∥∥∥A(xk − x∗)− hk
BT∂f(xk)

‖BT∂f(xk)‖

∥∥∥∥
2

=

= ‖A(xk − x∗)‖2 − 2hk
(xk − x∗, ∂f(xk))
‖BT∂f(xk)‖

+ h2k.

Taking into account that from (3) it follows the inequality

(
xk − x∗, ∂f(xk)

)

‖BT∂f(xk)‖
>
m
(
f(xk)− f∗

)

‖BT ∂f(xk)‖
= hk,

we have
‖A(xk+1 − x∗)‖2 6 ‖A(xk − x∗)‖ − h2k =

= ‖A(xk − x∗)‖2 −
(
m(f(xk)− f∗)

‖BT∂f(xk)‖

)2

,

which gives the inequalities (9). Theorem is proved.
Theorem 2 guarantees that in subgradient method (8) with Polyak’s

step in the transformed space of variables the distance to the minimum
point decreases monotonically in the transformed space.

If the matrix B is chosen such that in the transformed space of vari-
ables the level surfaces of ravine functions are less elongated than in
the original space of variables, then method B will converge faster than
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method A [5, 6]. For example, if the matrix B = diag(1, 0.5), then for
function f(x1, x2) = |x1|+t |x2|, t > 1, the rate of convergence of method
B is determined by the geometric progression with the common ratio
q′ =

√
1− 4/t2, which is greater than q =

√
1− 1/t2 for method A (see

the formula (5)). If m = 2, B = diag(1, 0.5) and ε = 0.01, then while

minimizing function f(x1, x2) = (x1)
2
+ 100 (x2)

2
method B generates

sequence x0 = (1.00, 1.00)T , x1 = (0.96,−0.01)T , x2 = (0.184, 0.184)T ,
x3 = (0.177,−0.002)T , x4 = (0.034, 0.034)T , x5 = (0.033,−0.000)T .
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Multiplicatively Barrier Methods for Linear
Cone Programming Problems∗

V.G. Zhadan
Dorodnicyn Computing Centre,

FRC “Computer Science and Control” of RAS, Moscow, Russia

The linear cone programming problem is considered. This problem is
the convex optimization problem in which a linear function is minimized
over the intersection of the affine linear manifold with the convex closed
cone [1]. Important cases of such cones are second order cone and the cone
of positively semidefinite symmetric matrices [2]. Of particular interest
are the cone programming problems with Cartesian product of various
cones.

∗This research was supported by the Russian Foundation for Basic Research
(project no. 17-07-00510).
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Numerical methods for solving cone programming problems are usu-

ally constructed by adjusting to these problems appropriate methods
from linear programming. In this paper we give the generalizations of
primal affine scaling algorithm and Newton’s method proposed earlier for
solving linear and nonlinear programming problems. Both these meth-
ods can be treated as special ways for solving optimality conditions for
primal and dual cone problems. Variants of these methods for problems
with second order cones were considered in [3,4]. The convergence of
both methods is discussed.

1. Problem formulation and optimality conditions. Assume
that in Rn there is the convex closed pointed cone K with nonempty
interior K0 = intK, which induces in Rn a partial order: x1 �K x2, iff
x1−x2 ∈ K. The strong inequality x1 ≻K x2 means that x1−x2 ∈ intK.

The linear cone programming problem is

min 〈c, x〉, Ax = b, x ∈ K, (1)

where A is a m× n matrix, c = [c1; . . . ; cn] ∈ Rn and b = [b1; . . . ; bm] ∈
Rm are nonzero vectors. Here and in what follows a semicolon in the
enumeration of vectors or components of a vector indicates that one of
them is placed under another. The dual problem to (1) is

max 〈b, u〉, v = c−ATu, v ∈ K∗, (2)

where K∗ = {y ∈ K : 〈x, y〉 ≥ 0} is a dual cone to K. We assume that
both problems (1) and (2) have solutions and the rows of the matrix A
are linear independent. We denote also the feasible set in problem (1)
by XP . Usually in the standard formulation of the cone programming
problem set that x = [x1; . . . ;xr] and K = K1×· · ·×Kr, where xi ∈ Ki

and Ki is a convex closed cone in Rni .
The necessarily and sufficient optimality conditions for problems (1)

and (2) can be written as

〈x, v〉 = 0, Ax = b, v = c−ATu, (3)

in which x ∈ K, v ∈ K∗.
The equality 〈x, v〉 = 0 with regard for inclusions x ∈ K, v ∈ K∗ can

be replace by n other inequalities. Assume that there is the differentiable
mapping x = ξ(y) such that the image ξ (Rn) of the space Rn coincides
with K. Then omitting inclusion x ∈ K, we derive the problem

min f̃(y), g̃(y) = 0m, y ∈ Rn, (4)
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where f̃(y) = 〈c, ξ(y)〉 and g̃(y) = b−Aξ(y). If y∗ is a solution of problem
(4), then x∗ = ξ(y∗) is a solution of (1).

Introduce the Lagrange function for problem (1) L̃(y, u) = f̃(y) +
〈u, g̃(y)〉, where y ∈ Rn, u ∈ Rm, and denote by J̃(y) = ξy(y) the Jaco-
bian of the mapping ξ(y). It follows from Karush–Kuhn–Tucker condi-
tions for problem (4) that

L̃y(y, u) = f̃y(y) + g̃Ty (y)u = 0n, L̃u(y, u) = g̃(y) = 0m. (5)

Let f(x) = 〈c, x〉 and g(x) = b − Ax. Derivatives of the functions
f̃(y), g̃(y) and f(x), g(x) are connected between themselves by relations:
f̃y(y) = J̃T (y)fx(ξ(y), g̃

T
y (y) = J̃T (y)gTx (ξ(y). Therefore, introducing

into consideration the Lagrange function L(x, u) = f(x) + 〈u, g(x)〉, we
get from (5) the equalities: J̃T (y)Lx(ξ(y), u) = 0n, Lu(ξ(y), u) = 0m.

If y is a nonsingular point of the mapping ξ(y), then in some neigh-
borhood of x = ξ(y) there is the inverse mapping y = ξ−1(x), and we
obtain in x-space

JT (x)Lx(x, u) = 0n Lu(x, u) = g(x) = 0m. (6)

Here J(x) = J̃(ξ−1(x)). Hence, the vector Lx(x, u) = c−ATu = v must
belong to the null-space of the matrix JT (x).

Denote by F(x|K) the cone of feasible directions with respect to a
cone K at the point x ∈ K, and denote by F∗(x|K) the dual cone to
F(x|K). Moreover, let N (x|JT ) be the null-space of the matrix JT (x).
We impose at the mapping ξ(y) the following condition.

The compatibility condition. Matrix J(x) is defined in some do-
main containing the cone K, and at every point x ∈ K the equality

N (x|JT ) = lin F∗(x|K),

takes place, where lin F∗(x|K) is a linear hull of the cone F∗(x|K).

Proposition 1. Let the differentiable mapping ξ(y) : Rn → K be
such that the compatibility condition holds for the matrix J(x). Then for
x ∈ K and v ∈ K∗ the equality 〈x, v〉 = 0 is valid iff

G(x)v = G(x)
(
c−ATu

)
= 0n, (7)

where G(x) is an arbitrary square matrix with the null-space, coinciding
with the null-space of the matrix JT (x).
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Remark. If x ∈ intK, then the matrix G(x) must be nonsingular.

This matrix is singular iff x is a boundary point of K.
In cone programming of particular important are convex cones which

can be represent with the help of quadratic mappings (see [2]). Consider
two examples of such cones K. They are self-dual, i.e. K∗ = K.

1) K = Rn+. This cone is polyhedral. The problem (1) with the
cone Rn+ is the ordinary linear programming problem. Introduce the
Hadamard product x ◦ y between vectors x, y ∈ Rn

x ◦ y = [x1y1; . . . ; xnyn] , (8)

and denote by x2 = x ◦ x. Then it is possible to define the quadratic
mapping x = ξ(y) = 1

2y
2. The cone Rn+ is the image of the space Rn

under the mapping ξ(y). The corresponding Jacobian J(x) has the di-
agonal form J(x) =

√
2D1/2(x), where D(x) is a diagonal matrix with a

vector x at its diagonal. For x, v ≥ 0n, the first equality from (3) holds
iff x ◦ v = 0n. Taking for example the matrix G(x) = D(x), we have

x ◦ v = G(x) v = G(v)x = G(x)G(v) ē. (9)

Here ē is n-dimensional vector of ones.

2) K = Kn
2 , where K

n
2 is the second order (Lorentz) cone in Rn:

Kn
2 =

{
x = [x0, x̄] ∈ R× Rn−1 : x0 ≥ ‖x̄‖

}
.

Here ‖ · ‖ is the standard Euclidean norm. Consider now instead of (8)
the following product between vectors x, y ∈ Rn (see [2]):

x ◦ y =

[
xT y

x0ȳ + y0x̄

]
. (10)

Let x2 = x ◦ x. It can be inspected that the cone Kn
2 is the image of

the space Rn under the quadratic mapping x = ξ(y) = 1
2y

2. Again we
obtain that for x ∈ Kn

2 and v ∈ Kn
2 the first equality from (3) holds iff

x ◦ v = 0n.
We have for x = 1

2y
2 with the product defined by (10):

x(y) =
1

2

[
y20 + ‖ȳ‖2

2y0ȳ

]
, J̃(y) = Arr(y) =

[
y0 ȳT

ȳ y0In−1

]
.

At nonzero boundary points Kn
2 the Jacobian has the form J(x) =√

x0Arr(x). Hence, it is reasonable to take Arr(x) as the matrix G(x).
For this G(x) formula (9) is preserved.
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The numerical algorithms. Using the proposition 1, we can
rewrite the optimality conditions (3) in the following form

G(x)v = 0n, Ax = b, v = c−ATu, x ∈ K, v ∈ K∗. (11)

Substituting v into the first equality and multiplying it by the matrix
A, we obtain AG(x)AT u = AG(x)c. Add to this equality the second
equality from (11) previously multiplied by a certain coefficient τ > 0.
As a result we get the equation with respect to the dual variable u:

Γ(x)u = AG(x)c + τ(b −Ax), Γ(x) = AG(x)AT .

If the matrix Γ(x) is nonsingular, then resolving this equation, we find

u = u(x) = Γ−1(x) [AG(x)c + τ(b −Ax)] .

Moreover, we have for weak dual variable v = v(x) = c−ATu(x). Hence,
the equality G(x)v(x) = 0n can be rewritten as

G(x)
{[
In −ATΓ−1(x)AG(x)

]
c+ τATΓ−1(x)(Ax − b)

}
= 0n. (12)

This is the system of n nonlinear equations with respect to variable x.
Various numerical techniques for solving nonlinear equations can be

applied for finding the solution of (12). In particular, using the simple
iteration method, we come to the following iterative process:

xk+1 = xk − αkG(xk)
{
[In − P(x)G(xk)] c+ τATΓ−1(xk)(Axk − b)

}
,

(13)
where x0 ∈ K and P(x) = ATΓ−1(xk)A. The step length αk is chosen
by some manner, for example, it can be taken constant and sufficiently
small.

Applying the Newton method for solving the system of equations
(12), we obtain another iterative process

xk+1 = xk − Λ−1(xk)G(xk)vk, vk = v(xk), (14)

where Λ(x) is the Jacobian of W (x) = G(x)v(x). We have

Λ(x) = [In −G(x)P(x)]G(v(x)) + τG(x)P (x),

If the point x ∈ XP is non-degenerate, then matrices Γ(x) and Λ(x) are
nonsingular.
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Definition [5]. Let Fmin(x;K) be the minimal face of K, contain-

ing the point x, and let F ∗
min(x;K) be the conjugate face to Fmin(x;K).

The pair [x, v] is called strictly complementary, if x ∈ riFmin(x;K),
v ∈ riF ∗

min(x;K).

Theorem. Suppose that solutions x∗ and v∗ = v(u∗) of primal and
dual problems (1) and (2) satisfy the strict complementary condition.
Then the iterative process (13) converges to x∗ with a linear rate. The
iterative process (14) converges to x∗ at superlinear rate.
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Multiple objective
decision making

On connection between multiobjective
optimization, polyhedral projection and

automatic control

M.N. Demenkov
Institute of Control Sciences, Moscow, Russia

Multiobjective optimization [1,2] deals with simultaneous optimiza-
tion, instead of one objective function, of multiple functions over the
same constrained feasible set. Usually, the goal is to determine the
Pareto, or non-dominated, set of solutions that cannot be improved in
any one function without degrading of at least one another. Polyhedral
projection [3] can be understood as computation of a “shadow” of convex
polytope in lower dimensional space. To be precise, we consider general
polyhedra — sets defined by systems of linear inequalities, and exclusion
of certain variables from these inequalities so as to keep them valid for
the remaining variables. The goal of automatic control [4,5] is to affect
the behaviour of dynamical systems (represented by differential or dif-
ference equations and inclusions), which can describe some mechanical
objects, like aircrafts or self-driving cars, or even financial systems. At
first glance, all three fields seem quite disparate in nature. In fact, there
are multiple connections between them, leading to new approaches in
each field.

In control, operations on convex polytopes have been considered since
1980s to construct e.g. reachable and controllable sets for linear discrete
systems. The precursor for this line of research was a little-known paper
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[6], published in the former USSR 15 years before similar ideas appeared
in [7]. According to [4,8], stabilizing regulators for differential inclusions
could be constructed by projection. Finally, in the context of model
predictive control (MPC, which is essentially an application of numerical
optimization in real time) operations on polytopes are indispensable as
well [5], including projection [9].

It is a common viewpoint that the projection of polyhedron is ex-
tremely hard to compute. It appears to be NP-hard for polyhedra defined
by systems of linear inequalities [10] and the most known method for
its solution, Fourier-Motzkin elimination, has double exponential com-
plexity [11,12]. Recently, the equivalence has been established between
linear multiobjective optimization and polyhedral projection [13]. If we
calculate the complete exact Pareto front in the objective space (where
coordinates represent values of different objective functions) of a spe-
cially constructed linear multiobjective problem, the result can be in-
terpreted as a projection of some given polyhedron (and vice versa).
The actual computations could be performed by e.g. Benson algorithm
[14,15], for which software realization (www.bensolve.org) is available. It
is an outer-approximation method (see e.g. [16]) with cutting planes (see
[17] for its application to reachable sets). One can also try multicriteria
simplex method (several variants have been proposed since the beginning
of 1970s, see e.g. [2,19]). In model predictive control, the equivalence is
shown between projection and multi-parametric linear programming [9],
which could be solved as a linear complementarity problem [19].

In this note we want to “close the circle” and apply some tools,
originally developed in automatic control, to the projection problem and
therefore to the solution of linear multiobjective problem as well. For
this, we study special kind of polytopes, called zonotopes. The method of
zonotope construction, outlined below, has been proposed in the context
of studying reachable sets [20,21] and control allocation problem [22,23].

Consider underdetermined system of linear equations z = Gw (i.e.
number of columns m higher than number of rows n). A zonotope is an
image of the cube under an affine projection [3], that is, a polytope

Z = {z ∈ Rn : z = z0 +
m∑

i=1

giwi, −1 ≤ wi ≤ 1}

where G = [g1 g2 ... gm] ∈ Rn×m, m ≥ n. Column vectors gi ∈ Rn are
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called ”generators”. For simplicity, let z0 = 0. Note that for h ∈ Rn

max
z∈Z

hT z = max
||w||∞61

(hTGw) =

m∑

i=1

hT gisign(h
T gi).

Any normal vector hj of a zonotope facet pointing “outside” is orthog-
onal to some n− 1 columns taken from the matrix G [3]:

hTj gk = 0, k ∈ Sj , card(Sj) = n− 1,

therefore we can can write the following H-representation of Z:

±hTj z ≤ rj , rj =
m∑

i=1

hTj gisign(h
T
j gi), j = 1, ...,K,

K =

(
m

n− 1

)
=

m!

(m− n− 1)!(n− 1)!
.

To compute hj in case n = 2 one can swap two vector components
and change the sign of one of them, for n = 3 the required vector is
a cross product of two columns. In general case, we need to calculate
one-dimensional null space.

Suppose that in addition to general linear inequalities we have in-
terval constraint for each variable and we want to exclude variables in
x1:

Ax ≤ b, Ax = A1x1 +A2x2, A = [A1 A2], x = [xT1 xT2 ]
T , ||x||∞ ≤ 1.

The orthogonal projection onto the subspace of x2

Px2 = {x2 : ∃x1, A1x1 +A2x2 ≤ b, ||x1||∞ ≤ 1, ||x2||∞ ≤ 1}.

Let us now introduce the vector of slack variables y (as in e.g. simplex
method for LP):

Ax+ y = b.

We denote as ai the rows of A ∈ Rq×q with components aij and the
corresponding components of y and b as yi and bi. We can remove all
inequalities aTi x ≤ bi, for which

max
||x||∞≤1

aTi x ≤ bi, max
||x||∞≤1

aTi x =

q∑

j=1

|aij |.
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For other inequalities

aTi x+ yi = bi, yi ∈ [0, bi − min
||x||∞≤1

aTi x], min
||x||∞≤1

aTi x = −
q∑

j=1

|aij |.

As a result, we have transformed our initial system into the form

z = A1x1 + 0.5Dy∗ = −A2x2 + b− c,

w = [xT1 y∗T ]T , ||w||∞ ≤ 1,

where D is a diagonal matrix with components equal to widths of inter-
vals for yi, while c contains their centers. Transformation of this kind is
the reverse of the projection operation and known in discrete optimiza-
tion as “lift” or “extended formulation” [24].

Now, consider zonotope with G = [A1 0.5D], z0 = 0 and its H-
representation

Hz ≤ r
where z = −A2x2 + b− c. The polyhedron Px2 is given by the following
system of linear inequalities:

−HA2x2 ≤ r −H(b− c), ||x2||∞ ≤ 1.

Let us demonstrate our approach on an elementary example:

x1 = x2, x1 + x2 ≤ 1, ||x||∞ ≤ 1.

The projection onto x2 is obviously given by −1 ≤ x2 ≤ 0.5. In order to
check if our algorithm works, introduce y so that

x1 − x2 = 0, x1 + x2 + y = 1,−1 ≤ x1,2 ≤ 1, 0 ≤ y ≤ 3

with y∗ = (y − 3/2)/(3/2), x1 + x2 + 1.5y∗ = −0.5, −1 ≤ y∗ ≤ 1 and

z =

[
1 0
1 1.5

] [
x1
y∗

]
=

[
1
−1

]
x2 +

[
0
−0.5

]
.

Normals to facets are hT1 =
[
−1 1

]
and hT2 =

[
1 0

]
, r1 = 1.5,r2 = 1.

It is easy to check that

(hT1 z ≤ r1)→ (x2 ≥ −1), (hT2 z ≤ r2)→ (x2 ≤ 1),

(−hT1 z ≤ r1)→ (x2 ≤ 0.5), (−hT2 z) ≤ r2)→ (x2 ≥ −1).
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Increase of consistency index in paired
comparisons∗

A.E. Kurennykh, V.P. Osipov, and V.A. Sudakov
Moscow Aviation Institute (National Research University) and Keldysh

Institute of Applied Mathematics (Russian Academy of Sciences),
Moscow, Russia

The matrix of paired comparisons is the main tool used in the method
of paired comparisons of criteria or alternatives, as well as in the An-
alytic hierarchy process (AHP). Both methods find wide application in
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decision support tasks, are well studied, simple and understandable for
the expert using them. However, for all its clarity, the method of pairwise
comparisons has one significant drawback: it exerts a high load on the ex-
pert, which is especially evident in problems of large dimension. It is well
known that an ordinary human’s brain can simultaneously operate with
no more than seven objects, and it is quite obvious that almost all mod-
ern scientific, technical, research or management tasks are characterized
by dozens of criteria that must be somehow compared and evaluated. The
high load exerted on the expert leads, while filling the matrix of paired
comparisons, to the following consequences: mistakes (inaccuracies) are
made when determining the superiority of alternatives or criteria one on
top of another. Such inaccuracies lead to a violation of the transitivity
of judgments, which, in turn, leads to the use of an incorrectly composed
matrix in the ranking process, and therefore there may be errors in the
decisions made.

To assess the suitability of the matrix for its use in decision support,
is used a special numerical index - the consistency index (CI), which
was proposed by Thomas Saati [1]. It is considered that the matrix is
sufficiently well matched if its CI does not exceed 0.1.The authors of
this paper have extensive experience in the development of decision sup-
port systems (DSS) [2-4] and have already implemented development
to ensure the reliability of the original data to support decision making
[5, 6]. The problem solved in the framework of this research, again, is
connected with ensuring the reliability of the initial data and consists
in developing methodological and algorithmic support for adjusting the
matrix of paired comparisons in such a way as to bring it to the proper
degree of consistency.

The basis for the approach to adjusting the matrix are two principles
that are inherent in ideal matrices:

• if the matrix is matched, its rows are collinear vectors;

• expert judgments must be transitive.

The first principle allows to identify elements that are poorly coor-
dinated with the others. The second is to formulate a rule according
to which numerical values are determined on which the elements of the
original matrix must be varied in order to improve its consistency.

When searching for elements and their variation, two approaches are
possible:
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• provide the required value of the CI with the minimum number of
changes introduced into the matrix of paired comparisons;

• provide the required value of the CI with a limitation on the total
of variation (for example, the change may not exceed 30% of the
original value).

These approaches are consistent with the requirements of experts
and decision makers, and also provide the possibility of analyzing the
resulting matrix due to the small number of changes introduced.

Problem of low coherence is well known, and the issue of increasing
the consistency of judgments is extremely relevant. However, it is worth
noting, many modern DSS, widely represented in the software market,
do not have the functionality to improve consistency. Some of them can
only calculate the value of CI, and the correction of the matrix falls
on the expert. The authors of this paper suggest an algorithmic way to
correct the matrix, which significantly reduces the work of the expert,
requiring him to only analyze the proposed changes, leaving the person
the right either to accept changes or reject them.

Some researchers from Russia suggested their methods of increasing
the consistency of the matrix of paired comparisons. Comparison of the
developed method with the existing ones allows us to find out the main
advantage - the resulting matrix of paired comparisons is very close to
the original one, there is only a small difference in the set of elements that
have been changed to improve consistency. In the methods proposed, for
example, in papers [7, 8], all elements of the matrix undergo changes,
which is an obvious drawback, and substantially complicates the analysis
of the resulting matrix.
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Injection of optimal solutions into
population of a genetic algorithm for Pareto

frontier approximation∗

A.V. Lotov and A.I. Ryabikov
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The paper is devoted to a new technique for approximating the
Edgeworth-Pareto Hull (EPH) of the feasible set in criteria space in com-
plicated multi-criteria decision problems. The technique applies integra-
tion of optimization techniques and genetic algorithms. In the framework
of it, the decision points that provide extrema of partial optimization
criteria are periodically injected into the population of the genetic al-
gorithm used in the study. Experiments show that such an approach is
efficient in the case of complicated multi-criteria decision problems.
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Approximating the Edgeworth-Pareto Hull is the first, most com-
plicated step of the multi-criteria decision support method named the
Interactive Decision Maps (IDM) technique [1, 2]. The next two steps of
IDM are visualization of EPH that informs the decision makers about
the Pareto frontier and subsequent identification of the preferred crite-
rion point of the Pareto frontier by the decision makers. IDM proved
to be an effective tool for solving the multi-criteria problems with three
to nine criteria, especially in economic and environmental fields [1]. For
non-convex non-linear problems, several methods were developed that
proved to be able to approximate EPH in the case of relatively small
number of local minima in possible functions of criteria [3, 4].

Mathematically, the problem of multi-criteria optimization looks as
follows [5]. The set of feasible decisions (feasible set ) X belongs to
the decision space Rn. The vectors of decision criteria y belong to the
criteria space Rm. For a decision vector x, the related criterion vector y
is given by the function F : Rn → Rm. Then, the set of feasible criterion
vectors Y is given by Y = F (X). For certainty, we assume that the
decision makers are interested in minimization of the value of any partial
criterion yj , j = 1, ...,m, while other criterion values are constant. Such
preferences of the decision makers are formalized by using the Pareto
binary relation (Pareto domination). A criterion point (vector) y′ is more
preferable than the criterion point y (in other words, y′ dominates y in
Pareto sense) means that y′ ≤ y and y′ 6= y. Mathematical solution of
the multi-criteria decision problem is provided by two sets: the set of
non-dominated criterion vectors (Pareto frontier) given by P (Y ) = {y ∈
Y : {y′ ∈ Y : y′ ≤ y, y′ 6= y} = ∅}, as well as the set P (X) of Pareto
efficient decision vectors, i.e. the set of such decisions x ∈ X for which
it holds F (x) ∈ P (Y ).

The Edgeworth-Pareto Hull (EPH) of the set Y is defined in multi-
criteria minimization problems as H(Y ) = Y + Rm

+ , where Rm
+ is the

non-negative orthant Rm. The set H(Y ) is the maximal set that has the
same Pareto frontier as Y .

In this paper a new technique for approximating EPH is proposed to
be applied in complicated multi-criteria decision problems. Namely, the
problem of constructing the release rules for a cascade of hydropower
plants is considered taking multiple criteria into account. The problem
is described by a non-linear dynamic multistep model (more than 2000
steps) [6]. The release rules are described by more than 300 decision
variables (parameters of the release rules) and more than two dozen of
criteria. The relations of the model are partially given by tables. Con-
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sequences of a decision can be found by using simulation if a variant
of the release rule is provided as the input of the model. The classes
of release rules developed by specialists in water management are de-
scribed by non-differentiable dependence of the decision variables with
an extremely high Lipschitz constant. The criteria are given by piece-
wise constant functions of violation of external economic, environmental,
communal and other requirements to the cascade. Actually, any criterion
is the sum of several thousands of Heaviside functions of the violations.
To overcome complications related to Heaviside functions, auxiliary con-
tinuous functions were used for approximation. However, it turned out
that, even in the case of simple functions of several criteria, the prob-
lem of minimization of such functions is characterized by an extremely
large number of local minima. This is the reason why application of the
methods [3, 4] in this case is not effective.

Another approach to approximating the Pareto frontier is the use of
genetic methods [7]. Our experiments show, however, that one of the
most known genetic algorithms of NSGA [7] is also not sufficient in the
case of the model of hydroelectric power plants cascade. For this reason,
a new technique for EPH approximation was proposed. It is based on
genetic algorithms augmented by periodic injection of solutions of par-
tial criteria optimization problems (Partial Optimal Solutions denoted
by POS) into the population of genetic algorithms. Thus, the proposed
method is named Partial Optimal Solutions Injection into Genetic Algo-
rithm (POSIGA) technique. In addition, the new sopping rule is used.
Instead of the traditional stopping rule (number of iteration), maximal
deviation of the new criterion points (obtained at an iteration) from the
current EPH approximation is used. If the deviation is small enough
(less than a given positive number εgm), the approximation process is
completed. The result is obtained in the form of a list of non-dominated
criterion points (approximation base) Tgm that is the basis of the EPH
approximation obtained in the form H(Tgm). The set of efficient deci-
sions Qgm, for which Tgm = F (Qgm), is provided as well.

Let us consider the description of the POSIGA method, in the frame-
work of which the version [8] of the algorithmNSGA is used as the genetic
algorithm. The desirable number of points of the output set Npop, the
parameter of the stopping rule εgm and the period K of POS injection
must be given in advance.

Step 1. The initial set (initial population) is prepared.

First of all, the set POS is constructed, i.e. m global minimization
problems for the partial criteria are solved. The problems must be solved
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fairly precisely by using the multistart method of global optimization
(see, for example [9]). The set of initial population of a genetic method
denoted by Q0 includes points of POS as well as any convenient number
of random points of the set X .

Step 2. Genetic algorithm NSGA complemented with the new stop-
ping rule and the injection of POS computes the EPH approximation.

Iteration number k (substeps 2.1-2.4).
It is assumed that population of points Qk−1 from X has already

been constructed at the previous iteration.
2.1 If k = nK where n = 1, 2, 3, ..., then the points of POS are

additionally included into Qk−1.
2.2 A subset Q∗

k−1 of the set Qk−1 is selected on the basis of some
rules (see [8]). The set of new points (descendants) Ck−1 is generated
by application of cross-over and mutation operators [8] to Q∗

k−1. Let
Q∗∗
k−1 = Q∗

k−1 ∪ Ck−1.
2.3 If the number of points of the set Q∗∗

k−1 is less than Npop, then
Qk = Q∗∗

k−1. In the opposite case, the linear order between points of the
set Q∗∗

k−1 is established on the basis of Pareto domination between the
related criterion vectors and the deviation of the related criterion vectors
from the rest of criterion vectors (see [8]). Then, the first Npop points of
the set Q∗∗

k−1 constitute the set Qk.
2.4 Maximal deviation εk of the criterion points F (Qk) from

H(F (Qk−1)) is computed. If εk > εgm, then start the next iteration.
Compute Qgm = P (Qk ∪Q0) and Tgm = F (Qgm).
Step 3. At this step, a refinement of the EPH approximation H(Tgm)

is performed in the neighborhood of several criterion points, the most
important from the practical point of view. Usually, the Plastering algo-
rithm [5] is carried out. As the result of its application, the final approx-
imation of EPH and the related set of efficient decisions are obtained.

The influence of the POS injection into the initial population was
studied. It means that the original NSGA algorithm was compared with
the simplified POSIGA method while the intermediate and final injec-
tions are not used. The initial population of the NSGA method con-
sisted of Npop random points of X , and the initial population of the
POSIGA method consisted of points of POS complemented with ran-
dom points of X to get the same number of points in the set Q0. Both
methods constructed EPH approximation while the number of comput-
ing the criterion function value was the same. We used Npop = 10000
and εgm = 0.01. As the result, the POSIGA method stopped after 545-th
iteration. Computing of POS required about 10 million calculations of
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the criterion function, and 545 iterations of step 2 required about 5.5
million calculations of it. This number of its calculations was sufficient
for 1545 iterations of the NSGA algorithm.

Several methods were used for comparison of EPH approximations.
First, the inclusion functions method [10] was used. Let TNS be the
approximation base obtained by the NSGA algorithm and TPOS – by
the POSIGA algorithm. Let νNS(ε) be the share of points of TNS, which
belong to ε vicinity of H(TPOS) and νPOS(ε) be the share of points
of TPOS , which belong to ε-vicinity of H(TNS). It has turned out that
νNS(ε) ≤ νPOS(ε). In particular, it has turned out that the set H(TPOS)
contains 8% of points of TNS , its ε-vicinity at ε = 0.016 contains already
more than 95% of points of TNS and the deviation of the most distanced
point is 0.026. It means that points of TNS are concentrated in the small
neighborhood of the set H(TPOS). On the contrary, the set H(TNS) does
not contain points of TPOS . In addition, at ε = 0.016, the ε-vicinity of the
set H(TNS) contains less than 20% of points of TPOS and the deviation
of the most distanced point is 0.074. It means that points of TPOS are
fairly distant from the set H(TNS). Thus, the EPH approximation given
by TPOS is obviously much better.

Another method of approximation comparison is based on deviations
of a known criterion point that for sure belongs to the set Y and is pretty
close to its Pareto frontier. It has turned out that its deviation from the
approximation constructed by the NSGA algorithm was 1.5 times greater
than the deviation from the approximation constructed by the POSIGA
method. This evidence supports the conclusion obtained with the help
of inclusion functions method.
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Aggregation of preferences in attitude scales

V.N. Nefyodov, S.O. Smerchinskaya, and N.P. Yashina
Moscow Aviation Institute, Moscow, Russia

The problem of multi-criteria choice with nonuniform scales of crite-
ria is considered.

A set of alternatives A = {a1, a2, ..., an} and a set of criteria
K = {K1,K2, ...,Km} are given. Criteria are of equal importance, and
for each criterion Kt (t = 1, ...,m) numerical estimates of alternatives
or information on how many times one alternative is preferable to an-
other one can be given. It is required to construct an aggregated pref-
erence relation ρ which allows to compare alternatives on all criteria
simultaneously.

Let the estimates of the alternatives a1, a2, ..., an by the criterion Kt

(t = 1, ...,m) be given by a vector xt =< xt1, x
t
2, ..., x

t
n > with positive

real components: xti – an estimation of alternative ai by criterion Kt.

Definition 1. A matrix of preferences Rt = ‖rtij‖ by criterion Kt is a
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square matrix of order n (n is the number of alternatives) with elements

rtij =





xti
xti + xtj

, if the values of the estimates on the scale Kt

are maximized,
xtj

xti + xtj
, if the values of the estimates on the scale Kt

are minimized,

t = 1, ...m.
Notice that for the elements of the preference matrix Rt constructed

for the criterion Kt, the following holds:

1)
rtij
rtji

=





xti
xtj
, if the values of the estimates on the scale Kt

are maximized,
xtj
xti
, if the values of the estimates on the scale Kt

are minimized.
Information is stored about how many times the alternative ai is

preferable to the alternative aj .
2) rtij + rtji = 1 (i, j = 1, ..., n), this actually replaces the procedure

of bringing the scales of criteria to uniform.
If information is specified by the Kt criterion that the alternative ai

is preferable to the alternative aj in αij times (the information should
not contain contradictions), then the elements of the preference matrix
Rt are calculated by the formulas:

rtji =
αij

1 + αij
, rtij =

1

1 + αij

(t ∈ {1, ...,m}, i, j = 1, ..., n).
Algorithm of aggregation of preferences in attitude scales

1. Formation of matrices of preferences R1, R2, ..., Rm by the criteria
K1,K2, ...,Km.

2. The construction of the matrix of total preferences P = ‖pij‖ is a
square matrix of order n (number of alternatives) with elements

pij =

m∑

t=1

rtij .
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3. The construction of the preference matrix R = ‖rij‖ of the
aggregated relation ρ based on the matrix of total preferences P :

rij =





1, if pij > pji
1

2
, if pij = pji

0, if pij < pji,

where pij are the elements of the matrix P .

We note that the matrix of total preferences can be constructed
taking into account the different importance of the criteria. In the
presence of weighting coefficients of the criteria importance k1, k2, ..., km,
the elements of the matrix P = ‖pij‖ are calculated by the formula

pij =

m∑

t=1

ktr
t
ij .

The aggregated relation constructed by this algorithm can be
nontransitive, and the corresponding digraph G =< A, ρ > contains
contradictory cycles. The procedure for destroying contradictory circuits
and constructing a transitive aggregate relation was proposed in [2].

Consider the case where alternatives are evaluated according to two
quality criteria.

Proposition 1. For alternatives evaluated according to two quality
criteria, estimates on which are positive and maximized, an alternative
with a large value of the product of the components of the vector estimate
is preferred.

Proposition 2. For alternatives evaluated according to two quality cri-
teria, estimates on which are positive and minimized, an alternative with
a smaller product of the components of the vector estimate is preferred.

Proposition 3. Let estimates of two alternatives, evaluated according
to the quality criteria K1 and K2, be positive and criterion K1 maxi-
mized, and K2 minimized. Then an alternative with a large value of the
ratio of the K1 evaluation to the K2 evaluation is preferable.

Theorem 1 follows from Propositions 1–3.
Theorem 1. An aggregated preference relation constructed for two

quality criteria with positive scales is transitory.
The requirement of such a natural for the decision-maker, the

conditions, as the transitivity of the aggregated preference relation, is
one of the most important in decision theory. The fulfillment of this
condition actually ensures consistency of the results obtained.
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We will perform a comparative analysis of the proposed algorithm
for aggregating preferences in attitude scales and the algorithm for
constructing additive convolution for two criteria. Let the criteria
on which alternatives are evaluated have positive scales and equal
importance. We will consider vector estimates < x1, y1 > and< x2, y2 >,
as points of a plane. The coordinates of points that are equivalent to a
fixed < x2, y2 >, belong to the positive branch of the hyperbola y = c

x ,
where c = x2y2.

Consider the following example. Let us take the interval (0; 10] as
a scale and fix the point < 5; 5 >. Points equivalent to < 5; 5 > be-
long to the hyperbola y = 25

x . If the values on the criterion scales K1

and K2 are maximized, then vector estimates, less preferable estimates
< 5; 5 >, lie under the branch of the hyperbola, including the Pareto
relation (Pareto−). Vector estimates, more preferable than < 5; 5 >
lie above the branch of the hyperbola. In the case of additive convolu-
tion, vector estimates equivalent to < 5; 5 >, belong to the straight line
y = 10− x. Vector estimates, preferably < 5; 5 > lie above the line. In
Fig. 1 compares the results obtained by aggregation and additive convo-
lution. The area allocated between the line and the hyperbole illustrates
the differences of the results of the aggregation method in attitude scales
and additive convolution.

5

5 10

10

0 x

y

Pareto

K1

K2

+

-Pareto

Fig. 1.

Let’s make a comparative analysis of aggregation methods in attitude
scales and additive convolution for m criteria.

Theorem 2. Let the alternatives be evaluated according to m quality
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criteria, the estimates for which are positive and maximized. Among
all the alternatives with vector estimates < y1, y2, ..., ym > for which
y1 + y2 + · · · + ym = c (c ∈ R+) is fulfilled, the most preferable by the
aggregation method is the alternative with the estimate < c

m , ...,
c
m >.

It follows from Theorem 2 that from among all alternatives that are
equivalent by the convolution method to the aggregation method, the
most preferable is an alternative with equal components of the vector
estimate. For example, alternatives with vector estimates < 5, 5, 5, 5, 5 >
and < 10, 10, 2, 2, 1 > are equivalent by the method of additive
convolution, since Have an equal sum of components. It is natural to
assume that for a decision-maker, an alternative with average values for
all criteria is preferable to an alternative with two distinct and three
very bad estimates.

The obtained results indicate that the choice of the solution method
depends not only on the type of initial information, but also on the pref-
erences of the decision-maker. For this purpose, vector estimates equiva-
lent to the decision-maker are in the conversational mode, and then they
are approximated by curves. For the method of convolution, the least re-
mote from the alternatives equivalent by two criteria should be a straight
line, for the aggregation method in attitude scales – the hyperbola.

The aggregated preference relation can be found from the condition
of minimization of the total distance from the preference matrix of this
relation to the preferences matrices by criteria. In this case, the aggre-
gated relation depends on the method of choosing the formula for the
distance between the matrices.

Define the distance between the matrices Rk and Rt by formula

d(Rk, Rt) =

n∑

i=1

n∑

j=1

|rkij − rtij |.

The following theorem holds.

Theorem 3. The total distance D(Q) =
∑m
t=1 d(Q, R

t) is minimal for
an odd number of experts if all the elements qij of the preference matrix
Q are equal the median of the corresponding elements of the preferences
matrices r1ij , ..., r

m
ij .

If the distance between matrices of preferences is given by formula

d(Rk, Rt) =

n∑

i=1

n∑

j=1

(rkij − rtij)2,
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then Theorem 4 holds.
Theorem 4. The total distance D(Q) for the introduced distance is

minimal if all the elements qij of the preference matrix Q are equal
the arithmetic mean of the corresponding elements of the preferences
matrices r1ij , ..., r

m
ij .

Since Q =
1

m
P , the relation corresponding to the preference ma-

trix equal to Q will coincide with the aggregated relation ρ constructed
earlier.

In the case when weighting coefficients the importance of the criteria
k1, k2, ..., km, are given, the elements qij of the matrix Q will be equal the
median or the arithmetic mean of the elements, respectively k1r

1
ij , k2r

2
ij ,

..., kmr
m
ij .
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The innovation project (IP) optimization problems are highly non-
linear with large problem dimension and a large number of equality and
inequality constraints. Due to the complexity of the underlying problem,
a penalty function based approach for constraint enforcement in evolu-
tionary algorithms (EA) was deemed impractical. We propose different
representation schemas that make monotonicity constraint satisfaction
inherent to the optimization process. In addition, the problem dimension
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is reduced to by transforming the equality constraints into an inherent
property of the representation methods. The optimization problem thus
obtained has only boundary constraints so that an EA generates only
feasible solutions at all times. This approach of automatic resolution of
constraints through use of a suitable representation schema is key to effi-
cient EA-based optimization. We also consider the utilization of domain
knowledge to facilitate the optimization. In this paper, we propose an
alternative approach to the discrete cohort approach, which poses the
computing and smoothing of one-year IPs as a constrained optimization
problem. The objective function to be minimized is an error function
that calculates the discrepancy between the predicted transition matrices
and the empirical data over the required time horizon. All the required
structural properties of the one-year IP are captured in the form of con-
straints. The problem however is complex due to the following reasons:
- The objective function is highly nonlinear due to the nonlinear nature
of the error function and the matrix exponential operation involved in
calculating the later-year transition probability matrices. - The problem
dimension is very high as the number of variables in the IP is of the
order of a few hundreds considering that there may be a large number
of innovation ratings. - The optimized one-year IP is expected to satisfy
structural and default properties. Due to the above difficulties, a tradi-
tional nonlinear programming method is not efficient to find the global
optimal solution. This motivated a consideration of a set of population-
based evolutionary algorithms, as they have shown success in many real
world applications [1–4], and their requirement of computing resources
is reasonably acceptable for offline applications. The industry standard
for estimating discrete time project transition probability matrices is
the innovation approach [5]. This approach applies to discrete innova-
tion migration data and employs two key assumptions: (a) Future rating
transitions are independent of past ratings (Markovian assumption). (b)
The transition probabilities are solely a function of the distance between
dates and are independent of the calendar dates (time-homogeneity as-
sumption). In this approach, we first calculate the discrete cohort IP for
one-year. Then, a later-year IP is obtained by raising the one-year IP
to a power. For example, assume the one-year IP as M ; then a t-year
TPM is given by M t. In practice, we would like these projected IPs to
be as close as possible to the empirical IPs, M t, obtained from empiri-
cal data. However, this may not be true for the discrete cohort one-year
empirical IP. Due to the natural tendency of obligors to maintain their
status quo, the diagonal value for any particular rating is expected to
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be greater than off-diagonal values (except the value that corresponds
to the default probability) in the same way of the one-year IP. Also, it is
expected that a particular obligor has a greater probability of migrating
to a nearer innovation rating than a farther one. Therefore, the IP ma-
trix elements should be monotonically decreasing on either side of the
diagonal. However, this property may not be satisfied by the empirical
IPs. Other required properties of the IPs are default constraints: - The
default probability increases over time for each rating category. - In each
year, a higher rating has a lower probability of default than a lower rat-
ing. It is clear that we prefer a one-year IP that satisfies the structural
stability constraints and default constraints, and when pushed through
time minimizes the deviation from the multiyear IPs. Assume that the
last row and the last column of an n x n IP are associated with the state
of default, while other rows and columns correspond to normal innova-
tion ratings. We can represent the calculation of a smoothing one-year IP
M in the form of a constrained error minimization problem as follows:

min
M

T∑
t=1

wtf(M
t, M̄t, wij), (1) subject to 0 6 mt,ij 6 1,

N∑
j=1

mt,ij = 1

for t = 1, (2) mt,nn = 1, and mt,ni = 0 if i < n for t = 1, (3) and
mt,ij 6 mt,ik, if j < k 6 i or i < k < j < n, (4) mt,in 6 mt,jn, if
i < j, (5) for ∀t ∈ {1, 2, . . . , T} and ∀i, j ∈ {1, 2, . . . , n}, where T is the
number of years of interest. In (1), f is an error function that measures
the dependency between M t and M̄t, and wt is the weight for the de-
pendency at the t-th year. The i-th row and j-th column elements, mt,ij

and m̄t,ij , of M
t and M̄t represent the predicted and empirical transi-

tion probabilities from the i-th to the j-th innovation rating over a t-year
period, respectively. wij is the weight for the dependency between mt,ij

and m̄t,ij . By varying the weights, the optimization can be customized to
emphasize defaults, transitions, or specific rating categories, according
to business needs. The equality constraints in (2) ensure that each row
of a transition probability matrix sum up to 1. Eq. (3) implies that the
rating of default is an absorbing state, i.e., once an obligor reaches the
default state, it is assumed to remain there indefinitely (in practice, an
obligor that emerges from default is treated as a new obligor). Thus, the
problem in (1) is actually to optimize over n (n− 1) variables. Note that
the constraints (2) and (3) are automatically satisfied for t > 1, as long
as they hold for t = 1. Eq. (4) formulates the structural constraints such
that the elements of a IP are monotonically decreasing on either side of
the diagonal. This acts as a mechanism to smooth the probability sur-
face. Eq. (5) states that a higher rating has a lower probability of default
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than a lower rating. Different from constraints (2) and (3), constraints
(4) and (5) do not necessarily hold for multi-year IP (i.e., t > 1) even
when they are satisfied by the one-year IP. However, our experiments
on a wide variety of test data show that these constraints are implicitly
satisfied by the optimized IP for later years once they hold for t = 1.
For simplicity, we explicitly impose these constraints for t = 1 in this
paper, while assuming that the error minimization procedure implicitly
enforces them for later-year IPs. Evolutionary algorithms are stochas-
tic, population-based search methods that mimic the process of natural
biological evolution. They generally operate on a population of poten-
tial solutions applying the principle of survival of the fittest to produce
better and better approximations to a solution. As shown by successes
in various fields such as engineering, finance, biology [5], evolutionary
algorithms consistently perform well in searching optimal solutions to
various types of problems. Differential evolution follows the basic pro-
cedure of an evolutionary algorithm. The initial population is randomly
generated according to a uniform distribution between the lower and
upper bounds defined for each component of an individual vector. After
the initialization, algorithms enters a loop (called a generation in the EA
literature) of evolutionary operations: mutation, crossover and selection.
In addition, in an adaptive algorithm, control parameters are adapted at
the end of each generation. Mutation: At each generation g, this opera-
tion creates mutant vectors vi,g , based on the current parent population
{xi,g |i = 1, 2, ..., NP }, where NP is the population size. The mutation
vectors are generated as follows: vi,g = xr3,g+F (xr1,g − xr2,g), (6) where
the indices r1, r2 and r3 are distinct integers uniformly chosen from the
set {1, 2, ... ,NP} \ {i}, xr1,g − xr2,g is a difference vector to mutate the
parent, and F ∈ (0, 1] is the mutation factor that is fixed throughout
the optimization process. Different from (6), we adopt a relatively greedy

mutation strategy: vi,g = xi,g + Fi

(
xpbest,g − xi,g

)
+ F (xr1,g − xr2,g), (7)

where xpbest,g is randomly chosen as one of the top 100p% individuals
in the current population, and Fi ∈ (0, 1] is the mutation factor asso-
ciated with each individual xi,g and is randomly generated by the pa-
rameter self-adaptation . Crossover: After mutation, a binary crossover
operation forms the final trial vector ui,g = (u1,i,g, u2,i,g, . . . , uD,i,g):

u1,i,g =

{
vj,i,g if randj (0, 1) 6 CRi or j = jrand,

xj,i,g otherwise,
(8) where randj (0, 1)

is a uniform random number on the interval (a,b] and newly generated
for each j, jrand = randinti (1, D) is an integer randomly chosen from
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1 to D and newly generated for each i, and the crossover probability,
CRi ∈ (0, 1], roughly corresponds to the average fraction of vector com-
ponents that are inherited from the mutant vector. The crossover prob-
abilities are newly generated by the parameter self-adaptation at each
generation. Selection: The selection operation selects the better one from
the parent vector xi,g and the trial vector ui,g according to their fitness
values f. For example, since we consider a minimization problem, the
selected vector is given by

xi,g+1 =

{
ui,g if f (ui,g) < f (xi,g) ,

xi,g otherwise,
(9) and used as a parent vector

in the next generation. If the trial vector ui,g succeeds, the selection is
considered as a successful update and the corresponding control param-
eters Fi and CRi are called a successful mutation factor and successful
crossover probability, respectively. The two involved control parameters,
F and CR, are usually problem dependent and need to be tuned by trial
and error by a self-adaptation mechanism that is based on a simple prin-
ciple. Better values of control parameters tend to generate individuals
that are more likely to survive and thus these values should be propa-
gated. To be specific, Fi and CRi are generated by two random processes:
CRi = randni (µCR, 0.1) , (10) Fi = randci (µF , 0.1) , (11) The mean
µCR and location parameter µF are updated in a self-adaptive manner.
The proposing algorithm (PA) works best in terms of both convergence
rate and robustness for set of IP optimization problems. PA generally
obtains near-optimal values in 500 generations, compared to the values
achieved after 20000 generations. As a comparison, existing algorithm
usually approaches the optimal value after 2000 generations, also has
difficulty to solve the IP problems due to premature convergence, al-
though its convergence rate is fastest during the early generations. In
view of the high dimension of innovation project optimization problems,
a promising improvement over the current method could be based on the
co-evolutionary strategies. Indeed, although the optimization problem is
non-separable, the correlation among different probability terms of the
IP matrix is not uniform. The probabilities associated with the same
innovation rating are strongly correlated, while the interactions among
probability terms of different ratings are relatively weak. Thus, it might
be beneficial to optimize the probability terms related to each single rat-
ing by a separable sub-population and control the interaction among all
probability terms by a standard co-evolutionary strategy. In this paper,
we have considered the problem of computationally smoothing a one-
year transition probability matrix by minimizing the discrepancy be-
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tween predicted later-year IPs and empirical data over the time horizon
of interest. The minimization problem is very complex not only due to
its non-convex non-separable properties but also due to the large number
of variables and constraints (desired properties) involved. A novel self-
adaptive algorithm is adopted to calculate the optimal solution. Simula-
tion results show that the proposed methodology, perform significantly
better than other methods in terms of both the convergence speed of the
optimization and quality of the final solution obtained.

References

1. Fanti M., Iacobellis G., Ukovich W. A simulation based Decision
Support System for logistics management // Journal of Computa-
tional Science. 2015. V. 10, P. 86–96.

2. Haupt R., Haupt S. Practical genetic algorithms. Hoboken: John
Wiley & Sons, 2004.

3. Hussain M., Al-Sultan K. A Hybrid Genetic Algorithm for Non-
convex Function Minimization // Journal of Global Optimization.
1997. V. 11. P. 313–324.

4. Haslinger J., Jedelsky D., Kozubek T., Tvrdik J. Genetic and Ran-
dom Search Methods in Optimal Shape Design Problems // Jour-
nal of Global Optimization. 2000. V. 16, P. 109–131.

5. Gottschlich J., Hinz O. A decision support system for stock invest-
ment recommendations using collective wisdom // Decision Sup-
port Systems. 2014. V. 59, P. 52–62.
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A discrete multicriteria problem includes the following components:
a finite set of feasible solutions X and vector criterion (vector-valued
function) f = (f1, f2, . . . , fm) defined on set X . Optimal solution to the
problem is usually supposed to be the Pareto set [1], which is rather wide
in real-world problems and rises difficulties in choosing a final solution.
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For that reason numerous state-of-the-art methods are developed [2]:
multiattribute utility theory, outranking approaches, verbal decision
analysis, various iterative procedures with man-machine interface, etc.

In this paper we investigate discrete bi-criteria problems and apply
to them the axiomatic approach of the Pareto set reduction proposed
by V. Noghin [3]. The set of pareto-optimal solutions is defined as set
Pf (X) = {x ∈ X | ∄x∗ ∈ X : f(x∗) ≥ f(x) }, and the Pareto set
P (Y ) = f(Pf (X)).

V. Noghin considered such preference relation of the decision maker
(DM), that reflects not only preferences but also a confidence degree of
wishes (fuzzy case). The full description of apparatus of fuzzy set and
fuzzy binary relation could be found in [4]. Further, we formulate the
basic concepts and results of the axiomatic approach exactly for discrete
bi-criteria problems. According to [3] we have the following fuzzy bi-
criteria choice problem < X, f, µ >:

• a finite set of feasible solutions X ;

• a vector criterion f = (f1, f2) defined on set X ;

• an asymmetric fuzzy preference relation of the DM µ defined on
set Y , Y = f(X).

A fuzzy preference relation µ is defined by its membership function
µ : Y × Y → [0, 1] as follows. If for vectors y′, y′′ ∈ Y the equality
µ(y′, y′′) = µ∗ holds, then the DM prefers the solution y′ to the solution
y′′ with degree of confidence µ∗ showing assurance in the choice.

The fuzzy relation µ satisfies the axioms of “fuzzy reasonable”
choice [3], and it is irreflexive, transitive, invariant with respect to a
linear positive transformation and compatible with each criteria f1, f2.
The compatibility means that the DM is interested in increasing value
of each criterion when value of other criterion is constant with degree
of confidence one. In [3], the author established the Edgeworth–Pareto
principle, according which under axioms of “fuzzy reasonable” choice
any fuzzy set of selected outcomes C(Y ) belongs to the Pareto set P (Y )
(crisp set): λC(y) 6 λP (y) for all y ∈ Y . Here the fuzzy set of selected
outcomes is defined by its membership function λC(·) and interpreted
as some abstract set corresponded to the set of outcomes, that satisfy
all hypothetic fuzzy preferences of the DM. Membership function λP (·)
assigns the Pareto set. So, the optimal “fuzzy” choice should be done
only within the Pareto set if preference relation µ fulfills the axioms of
“fuzzy reasonable” choice.
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In order to narrow “fuzzy” upper bound on the fuzzy set of selected
outcomes (in the Edgeworth–Pareto principle) V. Noghin introduced a
specific information on the DM’s fuzzy preference relation µ. The follow-
ing definition we will give in terms of two criteria. Later on, we suppose
that i, j ∈ {1, 2}, i 6= j.

Definition 1. Say that there exists a “fuzzy quantum of informa-
tion” with degree of confidence µ∗ ∈ [0, 1] if vector y′ ∈ R2 with compo-
nents y′i = wi > 0, y′j = −wj < 0 satisfies the expression µ(y′, 02) = µ∗.
Value µ∗ shows how the DM is sure that the i-th criterion is more im-
portant then the j-th one.

The quantity of relative looseness is set by the so-called coefficient
of relative importance θ = wj/(wi + wj), therefore θ ∈ (0, 1). It is
easy to check that Definition 1 is equivalent to the existence of such
vector y′′ ∈ R2 with components y′′i = 1− θ, y′′j = −θ, that the relation
µ(y′′, 02) = µ∗ holds.

According to [3] the use of “fuzzy quantum of information” consists in
solving two crisp multicriteria problems, that means finding correspon-
ding Pareto sets. This process yields the fuzzy set, which is an upper
bound on fuzzy set of the selected outcomes. By λM (·) we further denote
the membership function of this set.

Let the i-th criterion is more important then the j-th one with pa-
rameters θ and µ∗. Firstly, we solve the problem < X, f > without
any additional information, i.e. find the Pareto set P (Y ). Then we put
λM (y) = 1 for all vectors y ∈ P (Y ), and λM (y) = 0 for all vectors
y ∈ Y \ P (Y ).

Secondly, we consider the problem < X, f̂ >, where vector criterion
f̂ has the components f̂i = fi, f̂j = θfi+(1−θ)fj. Then we set λM (y) =

1−µ∗ for all vectors y ∈ P (Y ) \ P̂ (Y ), where P̂ (Y ) = f(Pf̂ (X)). At the

same time vectors y from set P̂ (Y ) still have degree of confidence, which
is equal to 1. Thus, we get the membership function λM (·) defining fuzzy
set M that the inequality λC(y) 6 λM (y) 6 λP (y) holds for all y ∈ Y .
Fuzzy set M forms a narrower “fuzzy” upper bound on the fuzzy set of
selected outcomes, than the Pareto set P (Y ).

We investigate the degree of the Pareto set reduction with respect
to values of coefficient of relative importance θ and degree of confidence
µ∗. In any multicriteria discrete problem there exists such non-decreasing
sequence of coefficients of relative importance 0 < θ̂1 6 θ̂2 6 . . . 6 θ̂k < 1
that on each interval (0, θ̂1), . . ., [θ̂i, θ̂i+1), . . ., [θ̂k, 1) the set of vectors
y having λM (y) = 1 − µ∗ (in other words, y ∈ P (Y ) \ P̂ (Y )) will be
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the same (invariant). We note that any θ from an interval [θ̂i, θ̂i+1) (and

also (0, θ̂1), [θ̂k, 1)), i = 1, . . . , k − 1, gives the same reduction of the
Pareto set. In the paper we identify the following classes of the bi-criteria
discrete problem upon its Pareto set structure: “cascade” and “stairs”.

We say that the Pareto set has “cascade” structure if its elements

lay on p parallel lines so that P (Y ) =
⋃p
i=1{(y

(i)
1 , y

(i)
2 ) : y

(i)
2 = a(i) −

ky
(i)
1 , y

(i)
1 ∈ Y

(i)
1 }. Here, Y

(i)
1 = {∑i−1

j=0 lj ,
∑i−1
j=0 lj + 1, . . . ,

∑i
j=0 lj − 1},

l0 is the value of the 1-st coordinate of the point having the maximum
value on the 2-nd criterion (it lays on upper line), li is the number of
points on the i-th line, i ∈ {1, 2, . . . , p}. Besides, a(1) > a(2) > . . . > a(p)

and k > 1. Let n̂ =
∑p

i=2 li.

Theorem 1. Let the Pareto set P (Y ) has “cascade” structure with
p lines.

1) Suppose the 1-st criterion f1 is more important than the 2-nd one
f2 with coefficient of relative importance θ and the degree of confidence
µ∗. Then if θ ∈ (0, k/(k + 1)) the reduced Pareto set P̂ (Y ) coincides
with the Pareto set P (Y ), in the case of θ ∈ [k/(k+1), 1) the set P̂ (Y )
includes at most p elements.

2) Suppose the 2-nd criterion f2 is more important than the 1-st one
f1 with coefficient of relative importance θ and the degree of confidence
µ∗. Then if θ ∈ (0, 1/(k + 1)) the reduced Pareto set P̂ (Y ) includes
at most n̂ elements less then the Pareto set P (Y ). In the case of θ ∈
[1/(k + 1), 1) the reduced Pareto set P̂ (Y ) consists of one element.

We say that the Pareto set has “stairs” structure if its elements lay on

p parallel lines so that P (Y ) =
⋃p
i=1{(y

(i)
1 , y

(i)
2 ) : y

(i)
2 = a(i)−ky(i)1 , y

(i)
1 ∈

Ỹ
(i)
1 }. Here, Ỹ

(i)
1 = {l0 + i − 1, l0 + p+ i− 1, . . . , l0 + (n− 1)p+ i− 1},

l0 is the value of the 1-st coordinate of the point having the maximum
value on the 2-nd criterion, n is the number of points on each line,
i ∈ {1, 2, . . . , p}. Besides, a(1) < a(2) < . . . < a(p) and k > 1.

Theorem 2. Let the Pareto set P (Y ) has “stairs” structure with p
lines.

1) Suppose the 1-st criterion f1 is more important than the 2-nd one
f2 with coefficient of relative importance θ and the degree of confidence
µ∗. Then if θ ∈ (0, k/(k + 1)) the reduced Pareto set P̂ (Y ) includes at
least n elements, in the case of θ ∈ [k/(k + 1), 1) the set P̂ (Y ) consists
of one element.

2) Suppose the 2-nd criterion f2 is more important than the 1-st one
f1 with coefficient of relative importance θ and the degree of confidence
µ∗. Then if θ ∈ (0, 1/(k + 1)) the reduced Pareto set P̂ (Y ) includes at
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least p+ n− 1 elements. In the case of θ ∈ [1/(k + 1), 1) the set P̂ (Y )
contains at most p elements.

The membership function λM (·) is calculated in theorems as mention-
ed before, and value of confidence degree does not influence on number of
elements in set P̂ (Y ). We also identify boundary values of the coefficient
of relative importance in intervals: [k/(k + 1), 1) and (0, 1/(k + 1)) for
“cascade” case; (0, k/(k + 1)), (0, 1/(k + 1)), and [1/(k + 1), 1) for
“stairs” case. This values divide corresponding intervals on subintervals
such that the number of vectors y having λM (y) = 1−µ∗ is identical for
all θ in a subinterval.

We construct instances of the well-known bi-criteria Knapsack prob-
lem [5] with “cascade” and “stairs” structures of the Pareto set.
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Tikhonov’s solution of approximate and
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This work relies on the results in [1], and is an extension of the devel-
opment in [2]. The idea of the work is to extend Tikhonov’s approximate
system of linear algebraic equations solution approach to to find a stable
solution of approximate linear programming problem.

Let
L(A, b, c) : Ax = b, x > 0, c⊤x→ max,

L∗(A, b, c) : u⊤A > c⊤, b⊤u→ min

– be a pair of mutually dual problems of the linear programming (LP),
c, x ∈ Rn, b, u ∈ Rm, A ∈Mm×n, Mm×n – is a set of real matrices
of size m × n, X (A, b) , {x|Ax = b, x > 0}, U(A, c) , {u|u⊤A >
c⊤} – admissible solution set of the specified problems, furthermore the
existance of the solution for the L(A, b, c) and L∗(A, b, c) problems is not
specified.

Let there be a matrix A0 ∈ Mm×n and vectors b0 ∈ Rm, c0 ∈ Rn

such that problems L(A0, b0, c0) and L
∗(A0, b0, c0) are proper problems.

Let’s define the matrix A0 and vectors b0, c0 as precise, the matrix A
and vectors b, c as approximate, and the corresponding LP problems
as problems with the precise and approximate data. Let’s assume that
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the following conditions are satisfied ‖A − A0‖ 6 µ, ‖b − b0‖ 6 δb,
‖c− c0‖ 6 δc, where µ, δb, δc > 0, – some constants known a priori and
the symbol ‖ · ‖ denotes Euclidean matrix norm (the symbol will also be
used to denote an Euclidean vector norm through the paper).

Similar to the flow of the works [3, 4], let’s consider the following
problem.

Problem ZA,b,c : Find A1 ∈ Mm×n, b1 ∈ Rm c1,∈ Rn, x1 ∈ Rn,
u1 ∈ Rm such as ‖A − A1‖ 6 µ, ‖b − b1‖ 6 δb, ‖c − c1‖ 6 δc, x1 ∈
X (A1, b1), u1 ∈ U(A1, c1), c

⊤
1 x1 = b⊤1 u1, ‖x1‖2 + ‖u1‖2 → min.

Note that earlier, also similar to the flow of the works [3, 4], the
following problem with the conditions δb = δc = 0 [2] was considered.

Problem ZA : Find A1 ∈ Mm×n, x1 ∈ Rn, u1 ∈ Rm such as
‖A − A1‖ 6 µ, x1 ∈ X (A1, b), u1 ∈ U(A1, c), c

⊤x1 = b⊤u1, ‖x1‖2 +
‖u1‖2 → min.

Formulation of the problem ZA,b,c allows the next interpretation: the
pair of problems L(A, b, c) and L∗(A, b, c) (may be improper) with the
approximate matrix A and vectors b, c is mapped to the corresponding
solvable problems L(A1, b1, c1) and L∗(A1, b1, c1). Vectors x1 and u1 –
are the solutions of the specified problems and the sum of squares of
their Euclidean norms is minimal.

It can be shown that if µ, δb, δc → 0 the following holds A1 → A0,
b1 → b0, c1 → c0, x1 → x0, u1 → u0, where x0 and u0 – are the solutions
of the problems L(A0, b0, c0) and L∗(A0, b0, c0) respectively, moreover
the sum of the squares of the Euclidean norms of the vectors x0 and u0
is minimal. That is the vectors x1 and u1 are the stable approximation
of the normal solution of the pair of mutually dual LP problems with
the precise data.

The following theorems and auxiliary problems are important tool in
finding the solution of the problem ZA,b,c:

Theorem 1 [5]. The system Ax = b, u⊤A = v is solvable for the
matrix A ∈ Mm×n with the vectors x, v ∈ Rn, u, b ∈ Rm, x 6= 0, u 6= 0,
if and only if the following holds v⊤x = u⊤b = α. The unique solution
with the minimal Euclidean norm Â is defined with the following formula

Â =
bx⊤

x⊤x
+
uv⊤

u⊤u
− α ux⊤

x⊤x · u⊤u,

‖Â‖2 =
‖b‖2
‖x‖2 +

‖v‖2
‖u‖2 −

α2

‖x‖2 · ‖u‖2 .

The family of matrices that are solutions of the system Ax = b, u⊤A = v
has the form A = Â + ∆A, where ∆A ∈ Rm×n is an arbitrary matrix
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such as ∆Ax = 0, u⊤∆A = 0 and condition ‖A‖2 = ‖Â‖2 + ‖∆A‖2 is
then satisfied.

Problem C : Given A ∈ Mm×n, b ∈ Rm, c ∈ Rn, x ∈ Rn, u ∈ Rm.
Find H ∈ Mm×n, hb ∈ Rm, hc ∈ Rn such as x ∈ X (A + H, b + hb),
u ∈ U(A+H, c+hc), (c+hc)

⊤x = (b+hb)
⊤u, ‖H‖2+ ‖hb‖2+ ‖hc‖2 →

min.

Theorem 2 [1]. The solution Ĥ, ĥb, ĥc of the problem C exists and
is unique for any A, b, c, x, u,

[
Ĥ −ĥb
−ĥ⊤c 0

]
=

[
b−Ax
υ

] [
x⊤ 1

]

x⊤x+ 1
+

[
u
1

] [
g⊤ ω

]

u⊤u+ 1
−

−α

[
u
1

] [
x⊤ 1

]

(x⊤x+ 1) (u⊤u+ 1)
,

∥∥∥∥
[
Ĥ −ĥb
−ĥ⊤c 0

]∥∥∥∥
2

=
‖b−Ax‖2 + υ2

‖x‖2 + 1
+
‖g‖2 + ω2

‖u‖2 + 1
−

− α2

(
‖x‖2 + 1

)
·
(
‖u‖2 + 1

) ,

g = (gj) ∈ Rn, gj =

{
0, if

(
c− A⊤u

)
j
6 0 and xj = 0,(

c−A⊤u
)
j
otherwise,

(1)

υ, ω, α are the solution of SLAE

[
1 0 −1
0 1 −1

(x⊤x+1)
−1

(u⊤u+1)
−1

−(x⊤x+1)
−1

·(u⊤u+1)
−1

]
·



υ
ω
α


 =



u⊤Ax − u⊤b
u⊤Ax− c⊤x

0


 .

Remark. By virtue of duality theory for LP problems, vector x is
the solution of the L(A + Ĥ, b + ĥb, c + ĥc) problem, vector u is the

solution of the L∗(A+ Ĥ, b+ ĥb, c+ ĥc) problem.

Theorem 3. Let A ∈ Mm×n, b ∈ Rm, c ∈ Rn, x ∈ Rn, u ∈ Rm,
wb, wc ∈ R, x > 0, wb, wc > 0, vector g is constructed by the formula
(1),
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[
H̃ −h̃b
−h̃⊤c 0

]
,

[
b−Ax
υ

] [
x⊤ w2

b

]

x⊤x+ w2
b

+

[
u
w2
c

] [
g⊤ ω

]

u⊤u+ w2
c

−

− α

[
u
w2
c

] [
x⊤ w2

b

]

(x⊤x+ w2
b ) (u

⊤u+ w2
c )
, (2)

where υ, ω, α are the solution of SLAE

[
wc 0 −1
0 wb −1
wb

x⊤x + w2
b

wc

u⊤u+ w2
c

−wb · wc

(x⊤x + w2
b
) · (u⊤u+ w2

c)

]
·



υ
ω
α


=



u⊤Ax− u⊤b
u⊤Ax − c⊤x

0


. (3)

Then vector x is the solution of L(A + H̃, b + h̃b, c + h̃c) problem, u is
the solution of L∗(A+ H̃, b+ h̃b, c+ h̃c) problem.

Problem R : Given A ∈ Mm×n, b ∈ Rm, c ∈ Rn, µ, δb, δc ∈ R,
µ, δb, δc > 0. Find x ∈ Rn, u ∈ Rm, wb, wc ∈ R, x > 0, wb, wc > 0 such
that ‖H̃‖ 6 µ, ‖h̃b‖ 6 δb, ‖h̃c‖ 6 δc, objects H̃, h̃b, h̃c are constructed
by formulas (1)-(3), ‖x‖2 + ‖u‖2 → min.

Let x∗, u∗, w∗
b , w

∗
c and also H̃∗, h̃∗b , h̃

∗
c be a solution of the problem

R. The following theorem holds.

Theorem 4. Problem ZA,b,c has a solution (for sufficiently small

µ, δb, δc is unique), which has the form: A1 = A + H̃∗, b1 = b + h̃∗b ,

c1 = c+ h̃∗c , x1 = x∗, u1 = u∗.

Numerical example ( taken from [6], the vector c0 is changed). Let
the exact data for the problems L, L∗ have the form

A0 =




2 −2 1 1 1/2
1 1 1 0 1/2
3 −1 2 1 1


, b0 =




2
1
3


, c0 =

[
−1 −1 1 1 1

]⊤
,

x0 =
[
0 1/14 0 17/14 13/7

]⊤
, u0 =

[
1/3 1/3 2/3

]⊤
.

Controlled approximate data have an appearance A = A0+
µ

‖∆A‖ ·∆A,
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b = b0 +
δb
‖∆b‖ ·∆b, c = c0 +

δc
‖∆c‖ ·∆c, where

∆A =

[
0.017 0.051 −0.044 −0.304 0.001

−0.074 −0.028 0.483 0 −0.473
0.449 0.347 0.239 0.339 0.073

]
,∆b =

[
0.031
0.343
0.158

]
,

∆c = [ 0.342 −0.391 −0.186 −0.214 −0.363 ]⊤,

ε = (µ = δb = δc) = 0.5, 0.1, 0.05, 0.01, ..., 0.000005.

The computations showed that the problem L(A, b, c) turned out to
be an improper problem of LP of the 1st kind, and the problem L∗(A, b, c)
turned out to be an improper problem of LP of the 2nd kind [7]. The
results of the numerical solution of the ZA,b,c problem obtained in the
Matlab R© environment using the fmincon solver are shown in Table 1
and in Figure 1.

Table 1: The results of solving two ZA,b,c problems

ε 0.5 0.1
x1(ε) 0.000000000058872

0.000000000000000
0.000000000000000
1.103916802786946
1.293518106519200

−0.000000000265282
0.034983813620750
0.000000002065893
1.153832523852359
1.743212162368541

u1(ε) 0.304413631462186
−0.111818587775316
0.235593220635580

0.366646929000393
0.303657129746492
0.595586937489473

w∗
b (ε) 1.357109365670370 1.357107524155774

w∗
c (ε) 1.208336885898787 1.004875440528429
‖x0 − x1(ε)‖ 0.578754003836975 0.134026160942559
‖u0 − u1(ε)‖ 0.620339340922493 0.083921395457292
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Fig. 1. The results of solving a series of ZA,b,c problems.
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Solution of the approximate system of
linear algebraic equations minimal with

respect to the ℓ1 norm∗

V.I. Erokhin1 and V.V. Volkov2
1Mozhaisky Military Space Academy, St. Petersburg, Russia,

2Borisoglebsk branch of Voronezh State University, Borisoglebsk,
Russia

The paper is devoted to the problem of finding solutions of approx-
imate systems of linear algebraic equations (SLAE). The generalization
of the A. N. Tikhonov’s method to non-Euclidean vector norms and
considered. As a criterion for optimality of the solution in the resulting
mathematical programming problems are used minimum of the Holder
norm with exponent p = 1.

Approximate SLAE can arise in a large number of applied problems
of science and technology (see, for example, [1–2]).

Sometimes, singularities in the initial data can lead that methods
using the Euclidean norm as a criterion for the solution (for example,
the least squares method) will give a worse result than solutions in other
norms, in particular, in ℓ1-norm (the Holder norm with exponent p =
1). The probability basis of using the polyhedral ℓ1 norm is given, in
particular, in [3].

We consider the exact joint system of linear algebraic equations
A0x = b0, where A0 ∈ Rm×n, b0 ∈ Rm, b0 6= 0, the relationship between
the dimensions of the matrix A0 and its rank is not specified x0 ∈ Rn

is the solution of this system with minimal Holder norm with exponent
p = 1. Numerical values of A0, b0 and x0 are unknown, instead of them,
approximate matrix A ∈ Rm×n and vector b ∈ Rm, b 6= 0 are given, such
that ‖A0 −A‖1,ψ 6 µ, ψ(b0 − b) 6 δ < ψ(b), where µ > 0 and δ > 0 are
known parameters, ψ (·) is arbitrary vector norm, ‖·‖1,ψ is matrix norm,

such that ‖A‖1,ψ := max
x 6=0

ψ(Ax)
‖x‖1

. The matrix A is not obliged to have a

full rank and the compatibility of the system Ax = b are not assumed in
the general case.

To find matrix A1 ∈ Rm×n and vectors b1 ∈ Rm, x1 ∈ Rn such that
‖A−A1‖1,ψ 6 µ, ψ(b− b1) 6 δ, A1x1 = b1, ‖x1‖1 → min.

We shall denote this problem by Z1,ψ (µ, δ).

∗The reported study was funded by RFBR according to the research project 18-
31-00083
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The problem Z1,ψ (µ, δ) is the modification (generalization) of the
problem considered by A. N. Tikhonov [4] and called by him “regularized
least squares method” (RLS). The problem in the original formulation
(using Euclidean matrix and vector norms) are explored, for example, in
papers [5, 6].

We note that in [7] the problem of finding a normal solution of reg-
ularized problems of SLAU is also solved, but with the use of another
technique: pairs of mutually ambiguous problems of conditional opti-
mization are used.

The article is based on the results presented in [8].
Let us proceed from problem Z1,ψ (µ, δ) to the equivalent problem

R1,ψ(µ, δ) : ‖x‖1 → min
ψ(b−Ax)=µ·‖x‖1+δ

(=: χ1,ψ).

When in the problem Z1,ψ (µ, δ) the Holder norm with exponent p =
1,∞ is chosen as ψ(·), we obtain the following generalized problems of
RLS and their reductions to the mathematical programming problems[8]
(the symbol “ 7→” means “is reduced to”):

Z1,1 (µ, δ) 7→ R1,1(µ, δ) : ‖b−Ax‖1 6 µ · ‖x‖1 + δ, ‖x‖1 → min, (1)

Z1,∞ (µ, δ) 7→ R1,∞(µ, δ) : ‖b−Ax‖∞ 6 µ · ‖x‖1 + δ, ‖x‖1 → min . (2)

The problems (1)–(2), despite the seeming simplicity of the formu-
lations, do not have obvious methods and algorithms for solving in the
general case. Therefore, for now, we consider a special case of solving
these problems. In subsequent calculations it is assumed that all ele-
ments of the vector x are non-negative (or the signs of all elements of
this vector are known to us). In this case, ‖x‖1 =

∑n
i=1 xi and the prob-

lems (1)–(2) can be reduced to linear programming (LP) problems.
Consider the problem Z1,1 (µ, δ).
Let the matrix A ∈ Rm×n and the vector b ∈ Rm, b 6= 0 are known.
It is required to find A1 ∈ Rm×n, x1 ∈ Rn, b1 ∈ Rm such that

‖A−A1‖1 6 µ, ‖b − b1‖1 6 δ, A1x1 = b1, ‖x1‖1 → min, where µ, δ > 0
are known a priori, simultaneously non-zero constants.

Theorem 1. Problem Z1,1 (µ, δ) have a solution if and only if math-
ematical programming problem R1,1(µ, δ) have a solution.

Consider linear programming problem:

−d 6 b−Ax 6 d,
1⊤nx = χ,

1⊤md 6 µχ+ δ,
d > 0, x > 0, χ > 0, χ→ min .

(3)
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Theorem 2. If problem R1,1(µ, δ) have a solution, it can be found as
x∗, where χ∗ = ‖x∗‖1 is a solution of problem (3), 1n ∈ Rn and 1m ∈ Rm

are unit vectors, d ∈ Rm, χ ∈ R, x ∈ Rn > 0.

Reasoning similarly, consider the problem Z1,∞ (µ, δ).

Theorem 3. Problem Z1,∞ (µ, δ) have a solution if and only if math-
ematical programming problem R1,∞(µ, δ) have a solution.

Consider linear programming problem:

−β · 1m 6 b−Ax 6 β · 1m,
1⊤nx = χ,
β 6 µχ+ δ,

β > 0, χ > 0, x > 0, χ→ min .

(4)

Theorem 4. If problem R1,∞(µ, δ) have a solution, it can be found
as x∗, where χ∗ = ‖x∗‖1 is a solution of problem (4), 1n ∈ Rn and
1m ∈ Rm are unit vectors, π, θ ∈ R, x ∈ Rn > 0.

Computational experiments

There are the results of a numerical solution of model systems for
problems (1) and (2). Calculations are performed using Matlab. The
corresponding auxiliary LP problems were solved by the simplex method
(using the linprog solver with the ’simplex’ option). xRLN(1,1) is the
solution of the problem (1) (RLN—Regularized Least Norm, regularized
solution using the norm ℓ1, xRLN(1,∞) is the solution of the problem (2)
(regularized solution using the norms ℓ1 and ℓ∞). The symbol || · ||E is
used to denote the Euclidean (ℓ2) matrix norm.

A series of problems of the form (1) (Fig. 1) and the form (2) (Fig.
2) with a decreasing error was considered. For each of these problems,
solutions were found by three methods. The results of the computational
experiments are presented below dependences of the errors of the solution
εRLN(1,1) = ‖xRLN(1,1) − x0‖ (Fig. 1 only), εRLN(1,∞) = ‖xRLN(1,∞) −
x0‖ (Fig. 2 only), εRLS = ‖xRLS − x0‖ and εLS = ‖xLS − x0‖, on the
error parameter e.

The graphs shown in Figs. 1 and 2 show that there are such approx-
imate SLAE for which the solution xRLN(1,1) and xRLN(1,∞) is closer
(according to the Euclidean norm) to the solution of the “exact” SLAE
than the solutions obtained by LS and RLS methods. In addition, the
graphs show that with a decrease in the amount of error imposed on the
original matrix, the error of all the considered methods decreases.
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Fig. 1. The result of the first computational experiment
(problem Z1,1 (µ, δ)).
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This paper is devoted to a new class of parameters correction prob-
lems for improper optimization problems. The inaccuracy of the model’s
initial data, the stringent conditions imposed on the variables, the con-
tradictory nature of the requirements imposed on the model of the sys-
tem, can lead to the fact that the constraints are inconsistent, reflect-
ing the absence of homeostasis in the system. The corresponding opti-
mization problems have no solution and are called improper. For such
problems, procedures for minimum data correction are proposed [1], as a
result of which approximating problems already have a solution ensuring
achievement of the homeostasis region of the system.

It should be taken into account that the parameters of the system
models are, as a rule, interrelated (for example, the technological para-
meters of the ecological and economic systems influence the level of en-
vironmental pollution). In this connection, a class of parametric correc-
tion problems is introduced in this paper, in which the entries of the
constraint matrix cannot be corrected directly, but change due to the
correction of the other matrix entries. Such mathematical statements
can arise, for example, in the modeling of production problems, when
the technology of the enterprise depends on the level of technology de-
velopment in another field creating this technology, or when there are
restrictions on the level of pollution, while the matrix of pollution coef-
ficients depends on the technology of production.

Let us consider a class of linear programming problems (LP) in which
the matrix of left-hand side constraints is formed by a linear relation:

max
x
{〈c, x〉| D(A)x = b, x > 0}, (1)

D(A) = D0 +D1A, (2)

∗The work was carried out in the framework of Project No. 1.8535.2017 of the
Ministry of Education and Science of the Russian Federation
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where x = (x1, ..., xn) is the vector of variables, c = (c1, ..., cn) is the
vector of the coefficients of the objective function, b = (b1, ..., bm) is the
right-hand side constraint vector, A is a matrix of a size m× n, D0 is a
matrix of a size m× n, D1 is a non-degenerate matrix of a size m ×m
(D−1

1 exists).
Suppose that the system of constraints in the problem (1) is inconsis-

tent. We formulate such statements of data correction problems in which
a direct correction of the entries of the matrix A is possible, and the en-
tries of the matrix D undergo a change according to (2). Such problems
will be called parametric correction.

We will use here the matrix norm l1 as a minimized criterion for the
correction value (the sum of the modules of its entries). We denote the
correction matrix of the entries of the matrix A by H. This matrix must
satisfy the condition

D0x+D1(A−H)x = b

or

Hx = D−1
1 D0x+Ax −D−1

1 b. (3)

The minimum correction matrix H according to the norm l1 for a
fixed x is determined by the formulas

|hij0 | =
|(D−1

1 D0x+Ax−D−1
1 b)i|

max
j
xj

, hij = 0, j 6= j0, i = 1, . . . ,m, (4)

where (· · · )i is the i-th component of the vector in parentheses, and the
index j0 is determined from the condition xj0 = max

j
xj .

Indeed, the i-th component of the vector Hx of the left-hand side
of the formula (3) is a linear function of the components of the i-th
row of the matrix H , and the coefficients are non-negative components
of the vector x. This linear function is equal to some constant, and if
this constant is positive, the minimum of the sum of components of the
i-th row of the matrix H is achieved when they all are equal to zero
except for the component with the largest coefficient and it is equal
to the constant divided by this coefficient. If this constant is negative,
then everything is the same, only for a minimum of the sum of the
modules. Thus, for fixed x, the correction matrix H, which is minimal in
the norm l1 and satisfies (3), has one nonzero column and modules of its
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component are computed by the formulas (4). The minimal correction
problem is reduced to minimizing the sum of the modules of these entries
of the matrix H with respect to x, where the vector x must satisfy the
condition x > 0.

We introduce the variable y = (max
j
xj)

−1 and the vector z = yx.

The components of the vector z must satisfy the conditions 0 ≤ zj ≤ 1,
and there exists an index j0 such that zj0 = 1. We also introduce the
variables ui, which are not less than the expressions on the right-hand
side of the formulas (4), and m-dimensional vectors u = (u1, ..., um),
e = (1, ..., 1). In the new variables we get the problem of mathematical
programming

min
u,z,y
{〈e, u〉|u > ±(D−1

1 D0z +Az −D−1
1 by),

u > 0, y > 0, z > 0, zj 6 1, ∃j : zj = 1}.
(5)

This is a problem of linear, partially integer programming. It can
be reduced to solving n ordinary LP problems by setting zj = 1 for
j =1,. . . ,n, and choosing from these problems the one that gives the
least value of the criterion 〈e, u〉. By the obtained from this problem y
and z we find the vector x = z/y and by the formulas (4) the entries of
the correction matrix (the signs of entries are determined by the signs
of the expression inside the module).

Example 1. A =




10 17
18 19
17 16


, D0 =




1 3
4 6
1 2


, D1 =




1 2 6
3 5 4
7 5 1


, b =




19
15
20


, c =

(
7
8

)
.

The system of constraints D(A)x = b, x > 0 in the problem (1) is
inconsistent.

Solving the correction problem (5) for z1 = 1, we obtain z2 = 0,

u =




0
23.656
8.902


, y=2.541, 〈e, u〉 = 32.557, x = z

y =

(
0.394
0

)
,

〈c, x〉 = 2.755. Solving the correction problem (5) for z2 = 1, we obtain

z1 = 0, u =




0
28.059
2.131


, y=4.479, 〈e, u〉 = 30.19, x = z

y =

(
0

0.223

)
,

〈c, x〉 = 1.786.
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The second case gives a smaller value of the objective function

〈e, u〉 = 30.19 of the problem (5), therefore x =

(
0

0.223

)
is the solution

of the problem (1) with a correction matrix H =




0 0
0 28.059
0 2.131


.

So far we have considered the correction of the system of constraints
for the LP problem without taking into account its initial criterion. For
an inconsistent system of equations this is natural, but for the LP prob-
lem under correction there is essentially a two-criteria problem (maxi-
mization of the initial criterion and minimization of the correction ma-
trix norm). As in the above example, they are usually contradictory:
the smaller the correction matrix, the smaller the value of the original
criterion (given that it is subject to maximization).

In [2], an approach was proposed to this two-criteria problem, which
consists in transfer the initial criterion into a constraint (by the way,
even with a consistent constraint system, the requirement of achieving a
certain threshold value of the criterion may lead to the improper prob-
lem).

We apply this approach to the problem (1), namely, we introduce a
threshold value c0 and the requirement 〈c, x〉 > c0. It gives an additional
condition 〈c, z〉 > c0y in the variables y, z.

We obtain the correction problem

min
u,z,y
{〈e, u〉|u > ±(D−1

1 D0z +Az −D−1
1 by), 〈c,z〉 > c0y,

u > 0, y > 0, z > 0, zj 6 1, ∃j : zj = 1}.
(6)

Example 2. We take the values of the matrices and vectors A, D0,
D1, b, c from Example 1 and find the solution of the problem (6) with
c0 = 3.

Solving the correction problem (6) for z1 = 1, we obtain z2 = 0,

u =




0.745
23.314
9.549


, y=2.333, 〈e, u〉 = 33.608, x = z

y =

(
0.429
0

)
,

〈c, x〉 = 3.
Solving the correction problem (6) for z2 = 1, we obtain z1 = 0,

u =




6.502
25.075
7.78


, y=2.667, 〈e, u〉 = 39.357, x = z

y =

(
0

0.375

)
,

〈c, x〉 = 3.
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The first case gives a smaller value of the objective function

〈e, u〉 = 33.608 of the problem (6), therefore, x =

(
0.429
0

)
is the

solution of problem (1) with the correction matrix H =




0.745 0
23.314 0
9.549 0




and the value of the target function 〈c, x〉 = 3.
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Matrix correction of a dual pair of
improper linear programming problems

with a minimum weighted Euclidean norm∗

M.N. Khvostov1, V.I. Erokhin2, and S.V. Sotnikov2
1Borisoglebsk Branch of Voronezh State University, Borisoglebsk,

Russia, 2Mozhaisky Military Space Academy, St. Petersburg, Russia

Linear optimization models are widely used in various fields of science
and economic. The problems of linear programming occupy an important
place among these models, for example

L(A, b, c) : Ax = b, x > 0, c⊤x→ max (1)

where A ∈ Rm×n, c, x ∈ Rn, b, u ∈ Rm X (A, b) , {x |Ax = b, x > 0}
is the feasible set. The linear programming problem (1) is given in the
canonical form.

However, the problems of linear programming are often insoluble in
practice. Thus, the constraint system of problem (1) can be inconsistent,
i.e. X (A, b) = ∅. There is a need to clarify, change such problems. As
a result, we must obtain a solvable linear programming problem that
is similar to the original problem of linear programming in some sense.
Thus, there is a need for matrix correction of linear programming prob-
lems. Matrix correction of linear programming problems is a change (cor-
rection) of any coefficients of both left and right parts of equations and

∗The reported study was funded by RFBR according to the research project N 18-
31-00083
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inequalities of constraints of linear programming problems, arbitrary sets
of these coefficients and/or coefficients of objective functions in order to
ensure the consistency of the indicated constraints [1]:

P (A, b) :

{
‖[H − h]‖ → min,
X (A+H, b+ h) 6= ∅,

(2)

where ‖·‖ is the norm for the matrix, for example, the Euclidean norm.
Often there is a need to include in the model (2) additional data on

the laboriousness of changing each of its parameters. One of the most
well-known methods is the application of the weighted Euclidean norm.
One of the most common options for applying the weighted norm is
to calculate the Euclidean matrix norm after multiplying the correction
matrix by nondegenerate matrices on the left and right [2]:

ZLR (A, b) :

{
‖L · [H − h] · R‖ → min,
X (A+H, b+ h) 6= ∅,

(3)

where L ∈ Rm×m, R ∈ R(n+1)×(n+1), L, R is nondegenerate.
Another way to add additional data to the linear optimization

model is to apply the weighted Euclidean norm obtained by using the
Hadamard multiplication for a correction matrix by a matrix with posi-
tive coefficients [3]:

ZW (A, b) :

{
‖W ◦ [H − h]‖ → min,
X (A+H, b+ h) 6= ∅,

where W ∈ Rm×(n+1), Wij > 0, i ∈ 1, . . . ,m, j ∈ 1, . . . , n+ 1.
Correction of the constraint system of the linear programming prob-

lem makes the feasible set non-empty. But this does not guarantee that
the new linear programming problem will be solvable. Correction meth-
ods for improper linear programming problems that guarantee the prop-
erty of corrected problems require the use of duality theory and correc-
tion of the dual linear programming problem [4]:

L∗(A, b, c) : u⊤A > c⊤, b⊤u→ min, (4)

where U(A, c) ,
{
u
∣∣u⊤A > c⊤

}
is the feasible set of problem (3). Hence-

forth, the problem (1) will be called the primal linear program problem.
The above methods make the feasible sets of the direct problem of lin-

ear programming and the dual linear programming problem nonempty.
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That allows to correct any improper problem of linear programming

D (A, b, c) :





‖[H − h]‖ → min,
(A+H)x = (b+ h) , x > 0, c⊤x→ max,

u⊤ (A+H)x > c⊤, (b+ h)
⊤
u→ min .

(5)

Thus, we try to combine the advantages of problems (3) and (5).
We obtain matrix correction of the double pair of incorrect linear pro-
gramming problems with a minimal correction matrix by the weighted
Euclidean norm

W (A, b, c) :





‖L · [H − h] ·R‖ → min,
(A+H)x = (b+ h) , x > 0, c⊤x→ max,

u⊤ (A+H)x > c⊤, (b+ h)
⊤
u→ min .

(6)

The following theorems are modifications of the corresponding the-
orems for matrix correction of the double pair of incorrect linear pro-
gramming problems (5).These theorems contain the condition for the
existence of a solution and its form for problem (6) for a given nonzero
solution.

Theorem 1. Let b ∈ Rm and c ∈ Rn be given. A is the set of matrices
for which the vector x̄ ∈ Rn, x̄ > 0 is included in the set of solutions
of the linear programming problem L(A, b, c), the vector ū ∈ Rm, ū 6= 0
is included in the set of solutions of the linear programming problem
L∗(A, b, c). A exists if and only if

c⊤x̄ = b⊤ū = α.

A has the form
A = Â+△A,

Â =
bx̄⊤

(
RR⊤

)−1

x̄⊤ (RR⊤)
−1
x̄
+

(
L⊤L

)−1
ūd⊤

ū⊤ (L⊤L)
−1
ū
− α

(
L⊤L

)−1
ūx̄⊤

(
RR⊤

)−1

ū⊤ (L⊤L)
−1
ūx̄⊤ (RR⊤)

−1
x̄
,

where Â is matrix with a minimal weighted Euclidean norm,

d = [d1, . . . , dn]
⊤
, di =

{
0, if ci 6 0 and xi = 0,
ci, otherwise,

△A is any matrix such that

ū⊤△A = 0, △Ax̄ = 0.
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Also

∥∥∥LÂR
∥∥∥
2

=
‖Lb‖2

‖R−1x̄‖2
+

∥∥d⊤R
∥∥2

‖L−1ū‖2
− α2

‖R−1x̄‖2 ‖L−1ū‖2
,

where ‖·‖ is the Euclidean norm, L ∈ Rm×m, R ∈ Rn×n.
Theorem 2. Let (1) and (4) be improper linear programming prob-

lems. [H − h] is the set of matrices for which the vector x̄ ∈ Rn, x̄ > 0
is included in the set of solutions of the linear programming problem
L(A + H, b + h, c), the vector ū ∈ Rm, ū 6= 0 is included in the set of
solutions of the linear programming problem L∗(A + H, b + h, c). The
matrix [H − h] has the form

[H − h] =
[
Ĥ − ĥ

]
+ [△H −△h]

where
[
Ĥ − ĥ

]
is matrix with a minimal weighted Euclidean norm,

[
Ĥ − ĥ

]
=

(b−Ax̄)
[
x̄⊤ 1

] (
RR⊤

)−1

[x̄⊤ 1] (RR⊤)
−1

[x̄⊤ 1]
⊤

+

+

(
L⊤L

)−1
ū
[
d⊤ b⊤ū− c⊤x̄

]

ū⊤ (L⊤L)
−1
ū

−

− α
(
L⊤L

)−1
ū
[
x̄⊤ 1

] (
RR⊤

)−1

[x̄⊤ 1] (RR⊤)
−1

[x̄⊤ 1]
⊤
ū⊤ (L⊤L)

−1
ū
, (7)

α = b⊤ū− ū⊤Ax̄,

d = [d1, . . . , dn]
⊤
, di =

{
0, if

(
c−A⊤ū

)
i
6 0 and xi = 0,(

c−A⊤ū
)
i
, otherwise,

[△H −△h] is any matrix such that

ū⊤ [△H −△h] = 0, [△H −△h]
[
x̄⊤ 1

]⊤
= 0.

Also

∥∥∥L
[
Ĥ − ĥ

]
R
∥∥∥
2

=
‖L (b−Ax̄)‖2
∥∥∥R−1 [x̄⊤ 1]

⊤
∥∥∥
2 +

∥∥[d⊤ b⊤ū− c⊤x̄
]
R
∥∥2

‖L−1ū‖ −

− α2

‖R−1x̄‖ ‖L−1ū‖,

(8)
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where H, Ĥ,△H ∈ Rm×n, h, ĥ,△h ∈ Rm, L ∈ Rm×m, R ∈
R(n+1)×(n+1).

Example. We find the correction matrix that is minimal in the
weighted Euclidean norm, which ensures the existence of given nonzero
solutions. The problem has parameters

A =




−3 2 1 3 −2
2 −3 4 1 0
5 3 1 2 −3
1 0 −1 1 0


 , b =




1
2
2
−3


 , c =




−1
1
0
3
2



,

L =




1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4


 , R =




1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 6



,

x̄⊤ =
[
2 3 2 1 5

]
, ū⊤ =

[
2 −1 −3 0

]
.

Using (7), we obtain

Ĥ =




−1.4851 0.2712 1.6465 1.4512 −1.3753
−0.8922 −0.2988 −0.2843 −0.2035 0.1013
−2.0459 −0.7196 −0.4742 −0.2981 0.0494
−1.0277 −0.3854 −0.1142 −0.0321 −0.1028


 ,

ĥ⊤ =
[
7.6513 −0.9466 −1.2502 0.0143

]
,

and using (8) , we obtain
∥∥∥L
[
Ĥ − ĥ

]
R
∥∥∥
2

= 2982.8568.

Calculations confirm the fulfillment of the conditions(
A+ Ĥ

)
x̄ = b+ ĥ, ū⊤

(
A+ Ĥ

)
> c⊤.

Comment. The choice of the forms of linear programming problems
does not affect the generality of reasoning. Since the theorems proved
for some forms of representation can be used for other forms.
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Minimax matrix correction of inconsistent
systems of linear inequalities and improper

linear programming problems∗

O.V. Murav’eva
Moscow Pedagogical State University, Moscow, Russian Federation

Introduction

Consider a linear programming problem (LPP) in standart form with
inconsistent constraints

(c, x)→ max, Ax 6 b, x > 0,

where A ∈ Rm×n, x, c ∈ Rn, b ∈ Rm, X = {Ax 6 b, x > 0} = ∅.
We formulate the problem of minimal matrix correction after which

the LPP has a feasible solution as follows:

inf
x,H
{‖H‖∞ : (A+H)x 6 b, x > 0}, (1)

where ‖H‖∞ = maxi,j |hji|.
In [1-7], it was proved for the matrix norm ‖H‖∞ that many matrix

correction problem can be reduced to LPP.

∗This research is supported by Ministry of Education and Science, project
1.8524.2017/6.7
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In what follows, we consider the matrix correction of incompatible
systems of linear inequalities with nonnegativity condition and infeasible
LPP in standart form.

Matrix correction of inconsistent systems of linear inequalities

In [3], it was proved that solving the problem of matrix correction of
an inconsistent system of linear equations with the nonnegativity condi-
tion is reduced to a linear programming problem.

Using slack variables, we can convert a system of linear inequalities
Ax 6 b, x > 0 into a system of linear equalities with n+m variables and
m constraints. Then the correction problem [1] is reducible to a LPP.

If the LPP

min
u,e0,e



u :

n∑

j=1

ej = 1, Ae − e0b+ y 6 1mu, −Ae+ e0b− y 6 1mu,

e, e0, y > 0} (2)

has the optimal solution u∗ ∈ R, e∗ ∈ Rn+1, y∗ ∈ Rm, then

inf
x,H
{‖H‖∞ : (A+H)x 6 b, x > 0} = u∗.

If e∗0 6= 0, when

x∗ =
1

e∗0
e∗, H∗ = (b −Ax∗ − 1

e∗0
y∗)(x∗)+,

where (x∗)+ is dual to the vector x∗ relative to vector norm ‖ · ‖1.
The associated [2] dual linear program is given by

max
v,s,t

{
v :

m∑

i=1

si +

m∑

i=1

ti 6 1, s− t 6 0, −(b, s) + (b, t) 6 0,

−AT s+AT t > v1n, s, t > 0
}
. (3)

The LPP [3] can be reduced to the LPP with m+ 1 variables and n+ 2
constraints.

As a result, we obtain the following representation for problem [1].
Let the system of linear inequalities Ax 6 b, x > 0 be inconsistent.
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1. If the primal and dual LPP

max
z0,z





n∑

j=1

zj : Az − z0b 6 1m, z, z0 > 0



 , (4)

min
y

{
m∑

i=1

yi : (b, y) 6 0, AT y > 1n, y > 0

}
(5)

have optimal solutions z∗0 , z
∗ = (z∗1 , . . . , z

∗
n) and y

∗ = (y∗1 , . . . , y
∗
m),

respectively, then

v∗ = inf
x,H
{‖H‖∞ : (A+H)x 6 b, x > 0} = 1

n∑
j=1

z∗j

=
1

m∑
i=1

y∗i

.

2. If z∗0 > 0, then the correction problem also has an optimal solution

x∗ =
1

z∗0
z∗, H∗ =△b(x∗)+,△bi =

{
0, if (b −Ax∗)i > 0,

v∗, otherwise.

If for all optimal solutions of [4] z∗0 = 0, the correction problem [1]
has no optimal solution.

3. If the LPP [4] and [5] are improper (the primal problem [4] is un-
bounded, and the dual problem [5] is infeasible), then the objective
value of the correction problem [1] is 0, and the correction problem
has no optimal solution.

Matrix correction of infeasible LPP in standart form

For an improper LPP with incompatible constraints

(c, x)→ max, Ax 6 b, x > 0,

we consider the problem of minimal correction of the constraint matrix
under the restriction from below to the value of the objective function
(c, x) > c0.

There are two cases: the objective function coefficients are adjusted
or fixed.
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Let us denote Ã =

(
A
−c

)
, b̃ =

(
b
−c0

)
, H̃ =

(
H
−h

)
. We obtain the

following formalization of the problems of minimal matrix correction of
the infeasible LPP in standart form:

inf
x,H̃
{‖H̃‖∞ : (A+H)x 6 b, (c+ h, x) > c0, x > 0}. (6)

inf
x,H
{‖H‖∞ : (A+H)x 6 b, (c, x) > c0, x > 0}. (7)

It can be proved that both problems are reduced to LPP.

1. If the primal and dual LPP

max
z0,z





n∑

j=1

zj : Ãz − z0b̃ 6 1m+1, z, z0 > 0



 ,

min
y

{
m+1∑

i=1

yi : (b̃, y) 6 0, ÃT y > 1n, y > 0

}

have optimal solutions z∗0 , z
∗ = (z∗1 , . . . , z

∗
n) and y∗ =

(y∗1 , . . . , y
∗
m+1), respectively, then

inf
x,H̃
{‖H̃‖∞ : (A+H)x 6 b, (c+ h, x) > c0, x > 0} =

=
1

n∑
j=1

z∗j

=
1

m+1∑
i=1

y∗i

.

If z∗0 > 0, then the correction problem [6] also has an optimal
solution

x∗ =
1

z∗0
z∗, H̃∗ =△b(x∗)+,△bi =





0, if (b̃− Ãx∗)i > 0,
1

n∑
j=1

z∗j

, otherwise.

2. If the primal and dual LPP

max
z0,z





n∑

j=1

zj : Ãz − z0b̃ 6
(
1m

0

)
, z, z0 > 0



 ,
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min
y

{
m∑

i=1

yi : (b̃, y) 6 0, ÃT y > 1n, y > 0

}

have optimal solutions z∗0 , z
∗ = (z∗1 , . . . , z

∗
n) and y∗ =

(y∗1 , . . . , y
∗
m+1), respectively, then

inf
x,H
{‖H‖∞ : (A+H)x 6 b, (c, x) > c0, x > 0} = 1

n∑
j=1

z∗j

=
1

m∑
i=1

y∗i

.

If z∗0 > 0, then the correction problem [7] also has an optimal
solution

x∗ =
1

z∗0
z∗, H∗ =△b(x∗)+,△bi =





0, if (b− x∗)i > 0,
1

n∑
j=1

z∗j

, otherwise.
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Solution of the approximate system of
linear algebraic equations minimal with

respect to the ℓ∞ norm∗

V.V. Volkov1, V.I. Erokhin2, A.Yu. Onufrei2, V.V. Kakaev2, and
A.P. Kadochnikov2

1Borisoglebsk branch of Voronezh State University, Borisoglebsk,
Russia, 2Mozhaisky Military Space Academy, St. Petersburg, Russia

The paper is focused on the problem of finding solutions of approx-
imate systems of linear algebraic equations (SLAE). The generalization
of the A. N. Tikhonov’s method to non-Euclidean vector norms and
considered. As a criterion for optimality of the solution in the resulting
mathematical programming problems are used minimum of the Holder
norm with exponent p =∞.

Approximate SLAE can arise in a large number of applied problems
of science and technology (see, for example, [1–3]).

We consider the exact solvable system of linear algebraic equations
A0x = b0, where A0 ∈ Rm×n, b0 ∈ Rm, b0 6= 0, the relationship between
the dimensions of the matrix A0 and its rank is not specified, x0 ∈ Rn

is the solution of this system with minimal Holder norm with exponent
p =∞. Numerical values of A0, b0 and x0 are unknown, instead of them,
approximate matrix A ∈ Rm×n and vector b ∈ Rm, b 6= 0, are given, such
that ‖A0−A‖∞,ψ 6 µ, ψ(b0− b) 6 δ < ψ(b), where µ > 0 and δ > 0 are
known parameters, ψ (·) s arbitrary vector norm, ‖·‖∞,ψ is matrix norm,

such that ‖A‖∞,ψ := max
x 6=0

ψ(Ax)
‖x‖∞

. The matrix A is not obliged to have a

full rank and the compatibility of the system Ax = b are not assumed in
the general case.

∗The reported study was funded by RFBR according to the research project 18-
31-00083
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To find matrix A1 ∈ Rm×n and vectors b1 ∈ Rm, x1 ∈ Rn such that
‖A−A1‖∞,ψ 6 µ, ψ(b− b1) 6 δ, A1x1 = b1, ‖x1‖∞ → min.

We shall denote this problem by Z∞,ψ (µ, δ).
The problem Z1,ψ (µ, δ) is the modification (generalization) of the

problem considered by A. N. Tikhonov [4] and called by him “regularized
least squares method” (RLS). The problem in the original formulation
(using Euclidean matrix and vector norms) are explored, for example, in
papers [5, 6].

We note that in [7] the problem of finding a normal solution of reg-
ularized problems of SLAU is also solved, but with the use of another
technique: pairs of mutually dual problems of conditional optimization
are used.

This article is based on the results presented in [8].
Let us proceed from problem Z∞,ψ (µ, δ) to the equivalent problem

R∞,ψ(µ, δ) : ‖x‖∞ → min
ψ(b−Ax)=µ·‖x‖∞+δ

(=: χ∞,ψ).

When in the problem Z1,ψ (µ, δ) the Holder norm with exponent p =
1,∞ is chosen as ψ(·), we obtain the following generalized problems of
RLS and their reductions to the mathematical programming problems
[8] (the symbol “ 7→” means “is reduced to”):

Z∞,1 (µ, δ) 7→ R∞,1(µ, δ) : ‖b−Ax‖1 6 µ · ‖x‖∞ + δ, ‖x‖∞ → min, (1)

Z∞,∞ (µ, δ) 7→ R∞,∞(µ, δ) : ‖b−Ax‖∞6 µ·‖x‖∞+δ, ‖x‖∞→ min . (2)

The problems (1)–(2) can be reduced to the set of 2n linear program-
ming (LP) problems

Consider the problem Z∞,1 (µ, δ):
Let the matrix A ∈ Rm×n and the vector b ∈ Rm, b 6= 0 are known. It

is required to find A1 ∈ Rm×n, x1 ∈ Rn, b1 ∈ Rm such that ‖A−A1‖1 6
µ, ‖b− b1‖1 6 δ, A1x1 = b1, ‖x1‖∞ → min, where µ, δ > 0 are known a
priori, simultaneously non-zero constants.

Theorem 1. Problem Z∞,1 (µ, δ) have a solution if and only if math-
ematical programming problem R∞,1(µ, δ) have a solution.

Consider set of 2n linear programming problems, generated by the
enumeration of two parameters: index j = 1, 2, ..., n (external level) and
scalar z = −1, 1 (internal level):

−p 6 b−Ax 6 p,
−θ · 1n 6 x 6 θ · 1n,

xj = z · θ,
1⊤mp 6 µθ + δ,

p > 0, θ > 0, θ → min .

(3)
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Theorem 2. If problem R∞,1(µ, δ) have a solution, it can be found
as x∗ ∈ Argmin

{∥∥x1
∥∥
∞
, ...,

∥∥xk
∥∥
∞
, ...,

∥∥xK
∥∥
∞

}
, where K 6 2n is the

number of solvable LP problems of the form (3), xk is the solution of
solvable LP problem of the form (3) with index k, 1n ∈ Rn and 1m ∈ Rm

are unit vectors, p ∈ Rm, θ ∈ R.
Reasoning similarly, consider the problem Z∞,∞ (µ, δ).
Theorem 3. Problem Z∞,∞ (µ, δ) have a solution if and only if math-

ematical programming problem R∞,∞(µ, δ) have a solution.
Consider set of 2n linear programming problems, generated by the

enumeration of two parameters: index j = 1, 2, ..., n (external level) and
scalar z = −1, 1 (internal level):

−π · 1m 6 b−Ax 6 π · 1m,
−θ · 1n 6 x 6 θ · 1n,

xj = z · θ,
π 6 µθ + δ,

π > 0, θ > 0, θ → min .

(4)

Theorem 4. If problem R∞,∞(µ, δ) have a solution, it can be found
as x∗ ∈ Argmin

{∥∥x1
∥∥
∞
, ...,

∥∥xk
∥∥
∞
, ...,

∥∥xK
∥∥
∞

}
, where K 6 2n is the

number of solvable LP problems of the form (4), xk is the solution of
solvable LP problem of the form (4) with index k, 1n ∈ Rn and 1m ∈ Rm

are unit vectors, π, θ ∈ R.
Computational experiments
There are the results of a numerical solution of model systems for

problems (1) and (2). Calculations are performed using Matlab R©. The
corresponding auxiliary LP problems were solved by the simplex method.

A series of problems of the form (1) (Fig. 1) and the form (2) (Fig. 2)
with a decreasing error was considered. For each of these problems, so-
lutions were found by three methods. The results of the computational
experiments are presented below by dependences of the errors (estimated
on Euclidean norm) of the solution εRLN(∞,1)i = ‖xRLN(∞,1)i − x0‖
(Fig. 1 only), εRLN(∞,∞)i = ‖xRLN(∞,∞)i − x0‖ (Fig. 2 only), εRLSi

=
‖xRLSi

− x0‖ and εLSi
= ‖xLSi

− x0‖, on the error parameter ei. Here
xRLN(∞,1) is the solution of the problem (1) (RLN – Regularized Least
Norm, regularized solution using the norms ℓ∞ and ℓ1), xRLN(∞,∞) is
the solution of the problem (2) (regularized solution using the norm ℓ∞),
xLS is the solution by least squares method, and xRLS is the solution by
regularized least squares method.

The graphs shown in Figs. 1 and 2 show that there are such approx-
imate SLAE (A + ∆Ai)x = b + ∆bi (where ∆Ai = ei∆A, ∆bi = ei∆b,
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ei = 10−1−0.5·i) for which the solution xRLN(∞,1) and xRLN(∞,∞) is
closer (according to the Euclidean norm) to the solution of the “exact”
SLAE than the solutions obtained by LS and RLS methods for any level
of error.

In addition, the graphs show that all the considered methods are
stable: with a decrease in the amount of error imposed on the original
matrix, the error decreases.

10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

e

10-15

10-10

10-5

100
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ǫ
RLN(∞,1)

ǫ
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ǫ
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Fig. 1. The result of the first computational experiment
(problem Z∞,1 (µ, δ)).
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Fig. 2. he result of the second computational experiment
(problem Z∞,∞ (µ, δ)).
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The model of privatization of a unitary
enterprise∗

V.I. Arkin and A.D. Slastnikov
Central Economics and Mathematics Institute, Moscow, Russia

Privatization in Russia, which began in the 1990s, generated a num-
ber of problems concerning its effectiveness, forms and methods of con-
ducting (see, for example, [1]). There is no common opinion, what kind
of an ownership is more effective: state (public) or private. Many re-
searches support the proposition that privately owned firms are more
efficient and more profitable than state-owned ones. On the other hand,
privatization can also lead to certain problems, in particular, resulting in
an increase in prices of goods and services, corruption etc. In this paper
we don’t discuss all pros and cons of privatization, but focus on its opti-
mization (from the state’s perspective), when a decision on privatization
has already been made.

The methodology of this research is based on real options theory
(see, e.g. [2]). The situation of partial privatization was studied in [3],
where authors using real options approach derived the optimal strategy
for private investor to enter a public sector and the optimal degree of
privatization.

1. The model. Let us consider a unitary enterprise, i.e. a state-owned
enterprise with indivisible assets, which may not be distributed among
the agents in any way.

Due to budgetary limitations, the state wants to sell this enterprise
to the private investor on the certain conditions. The state assigns a

∗This research is supported by Russian Foundation for Basic Researches (project
No. 18-010-00666)
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certain price for the privatization transaction (sale price) and burdens
the potential buyer with the obligation to upgrade the enterprise and
make it more efficient (that requires additional costs from the buyer).
The aim of the privatization process is to bring and optimize additional
revenues to the state budget.

Let π1
t , t > 0 be the cash-flow from state-owned enterprise at time

t, and π2
t be the cash-flow from this enterprise after privatization. We

consider π1
t and π2

t as a stochastic processes, defined at some probability
space with filtration (Ω,F , {Ft, t > 0},P).

Assume that private investor buys the enterprise at the time τ . Then
his expected net present value (NPV) from this transaction is :

N(τ) = E

(∫ ∞

τ

(1− γ)π2
t e

−ρtdt− (P +M)e−ρτ
)
, (1)

where P is the privatization price,M stands for the enterprise upgrading
cost, γ means the tax burden rate (i.e. a part of total taxes in cash-flow),
and ρ is the discount rate.

The benefits from the privatization (at the time τ) for the state are
evaluated with the expected discounted budgetary effect B(τ, P ) that
consists of:

1) the payments into the budget from state-owned enterprise that are
the assigned proportion θ, 0 < θ 6 1 of the cash-flow, i.e. θπ1

t (before
the time τ);

2) the taxes from the private enterprise γπ2
t (after τ); and

3) the privatization price P (at the time τ).
More precisely,

B(τ, P ) = E

(∫ τ

0

θπ1
t e

−ρtdt+

∫ ∞

τ

γπ2
t e

−ρtdt+ Pe−ρτ
)
. (2)

2. The problem. It is assumed that private investor has an opportu-
nity to choose the privatization time τ and he follows the principle of
maximal NPV :

N(τ)→ max
τ
, (3)

where maximum is taken over all stopping times (Markov moments) τ .
The state wants to optimize his benefits from selling the enterprise,

and puts the privatization price P that maximizes the budgetary effect
(2) under the optimal behavior of private investor:

B(τ∗, P )→ max
P
, (4)
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where maximum is taken over all acceptable prices P , and τ∗ is a solution
to the investor problem (3) (τ∗, of course, depends on P ).

The problem (3)–(4) can be considered as Stackelberg equilibrium in
the ”privatization game” between the state and private investor.

3. Mathematical assumptions. The cash-flows from enterprise before
and after the privatization (π1

t and π2
t ) are modeled as geometric Brow-

nian motions with parameters (α1, σ1) and (α2, σ2) resp. The starting
point for the cash-flow π2

t at the time of privatization τ is connected with
the final point of cash-flow before privatization by the relation: π2

τ = kπ1
τ ,

where k represents the given ”upgrading coefficient”.

4. Optimal behavior of the private investor. For a given privatization
price P the optimal time for privatization (i.e. a solution to the problem
(3)) is the following:

τ∗ = inf

{
t > 0 : π2

t > π∗ =
β

β − 1
·ρ− α2

1− γ (P +M)

}
,

where β is the positive root of the equation 1
2σ

2
2β(β− 1)+α2β− ρ = 0.

5. Optimal privatization price. Let us denote

d =
1

1− γ

(
1 +

γ

β − 1
− β

β − 1
· ρ− α2

ρ− α1
· θ
k

)
.

If d 6 0, then there is no optimal privatization price, and the bud-
getary effect B(τ∗, P ) for any price P > 0 will be less than the budgetary
effect from the enterprise without privatization.

In the case when d > 0 the optimal privatization price (solving the
problem (4) over all P > 0) exists and is represented by the following
formula:

P ∗ = max

{
0,

(
β

β − 1
· 1
d
− 1

)
M

}
.
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Dynamic model of the control process of
the balance of the joint–distribution

pension system
P.V. Kalashnikov

Far East Federal University, Vladivostok, Russia

Ensuring a decent standard of living for the older generation is a
priority objective of the social and economic policies of most modern
countries. At present, pension reform is a subject of wide discussion. Its
tremendous social significance is obvious and is the foundation for the
effective progressive development of society and the active involvement of
citizens in the economic life of the country throughout the entire period
of work.

The object of the study is the pension system of the Russian Fed-
eration, considered in the context of modeling the balance of incoming
insurance contributions and payments of old-age labor pension on gen-
eral grounds, which is the most massive type of pension benefits.

The subject of the study is an assessment of the main indicators of
the budget of the Pension Fund of the Russian Federation in terms of the
amount of contributions and liabilities used to pay the insurance part of
the old-age labor pension on general grounds.

The goals of the study are: to build a model for the formation of
contributions to the Pension Fund of the Russian Federation (PFR), as
well as to estimate the size of the PFR deficit with the existing structure
of the population and the legislative framework.

The state of the pension system is currently heavily influenced by the
unfavorable demographic situation, which is reflected in the increase in
the number of older people and in the growth of their relative share in
the total population. According to the Federal State Statistics Service [1]
at present, 35 555 thousand people receive a retirement pension, which is
about 24 % of the total popula tion, and the total number of pensioners
receiving various types of pensions exceeds 42 million people. This fact
causes a steady increase in the level of demographic burden on the able-
bodied population by the elderly [2]

The task of actuarial evaluation of the joint-distribution pension sys-
tem involves the analysis of demographic, socio-economic, and institu-
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tional parameters (pension legislation) [3] .Each of these groups of pa-
rameters, in turn, is divided into a wide range of subtasks, the state of
the pension system as a whole, and also to develop mechanisms for its
effective functioning in the short and long term.

The model of the Russian pension system constructed in the course of
the study includes the following basic elements: the demographic compo-
nent, the unit for calculating the amount of contributions and obligations
of the Pension Fund for the payment of the insurance part of the old-age
labor pension on general grounds, the unit for analyzing the effect on
the results of calculations of control actions on the parameters of the
actuarial basis, as well as a block of study of the stability of the model
to change the values of the basic calculated quantities and the presence
of an error in the initial data.

The forecast of the level of balance of the budget of the PFR is
presented in Figure 1. When analyzing the possible control actions aimed

Fig. 1. Forecast of the level of balance of insurance contributions and
payments to the Pension Fund of the old-age Pension Fund on general

grounds in the long-term period

at reducing the budget deficit of the PFR in the long term, the following
are considered: an increase in the birth rate per 100,000 people per year,
an increase in the migration increase to 500,000 people per year and the
number of legally working temporary migrants in the territory up to 2.5
million a person annually, raising the retirement age for the male and
female population to 65, as well as the complete abolition of the funded
part of the old-age pension for the population under the age of 1967.
birth and contribution only on the insurance component of the pension
benefit in question. Such a change in the parameters of the actuarial
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basis is based on an analysis of the dynamics of the variables under
consideration in the period preceding the base year of calculations, the
study of long-term forecasts of the socio-economic development of the
Russian Federation prepared by the Federal Service for State Statistics,
as well as studying the world experience in reforming the pension system
at the state level.

The calculation of the level of balance of the budget of the PFR for
each of the scenarios for changing the parameters of the actuarial basis
is presented in Figure 2.

Fig. 2. The level of balance of the budget of the PFR for various
options for socio-economic policy
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Example calculation of exotic options in
incomplete {1, S}–market

E.A. Shelemekh
CEMI RAS, Moscow, Russia

1. The report presents new example calculations of exotic options in
incomplete market generated by Markov chain.

Option is a financial contract between the Seller and the Buyer. It
establishes the Buyer’s right to receive payment in the future (amount of
payment depends on risk asset’s price in agreed moment in the future)
or his/her right to buy/exchange risk assets on conditions specified in
the contract. It is the Seller’s obligation to make the payment or to
sell/exchange risk asset according to the contract. To purchase above
stated right the Buyer pays the Seller some fee also called value of the
option or the option’s premium.

There are a few approaches to option’s fair value conception. There
in the report it is assumed that the market is a set of fisk-free and
risk assets. For each asset dynamics of it’s price is specified by a ran-
dom sequence. The set of martingale measures equivalent to distribution
of risk asset’s prise is supposed to contain more then one element, i.e.
the market is incomplete. Under this approach supremum in equivalent
martingale measures of expected value for the Seller’s obligation at the
moment of execution is stated to be the option’s fair value [1]. Note that
in most cases it is quite a problem to find the supremum.

In the report we provide solution examples for binary, barrier options
and European option on maximum prise of risk asset in incomplete mar-
ket generated by Markov chain. Note that by now examples for exotic
options are known only for the cases of complete market (see [2]–[3]).

2. Statement of the problem. Suppose that on filtered stochastic ba-
sis (Ω,F , (Fn)n≥0,P) a random sequence (Sn,Fn)n≥0 is set. It specifies

dynamics of the risk asset prise. Let Fn , σ{S1, ..., Sn}, n ≥ 1.
Condition 1. Random sequence {Sn}n≥0 satisfies recurrent relation

Sn = Sn−1λ
εn , Sn|n=0 = λε0 , where ε0 is an integer, {εn}n≥1 is a

sequence of independent identically distributed random variables taking
values in {−1, 0, 1} with positive probabilities, λ > 1 is a given constant.

It is well known that random sequence {Sn}n≥0 under condition 1
specifies an incomplete {1, S}–market [1]. In spite of it’s simplicity the
market allows stability of risk asset’s price as well as increase and de-
crease. So our model seems to be relevant.

Definitions and designations (according to [1]). Let:



OR in economics 169

1) Sn0 , (S0, ..., Sn);
2) R be the set of equivalent martingale measures;
3) τ be a stopping moment for random sequence {Sn}n≥0, taking

values in {0, ..., N}, where N is a positive integer;
4) 1{τ=n} is an indicator of random event {τ = n}, fn is a bounded

Fn–measurable random variable, thus
{
1{τ=n}fn

}
0≤n≤N

is an exotic

option’s dynamic payoff;
5) (βn,Fn)n≥0 and (γn,Fn)n≥0 are predictable sequences specifying

number of risk-free and risk assets in dynamics, respectively. The set
π , (β, γ) is called portfolio, while Xπ

n , βn + γnSn is a capital of
portfolio π. Portfolio π is said to be self-financing if for any n probability
P(△βn = −△γnSn−1) = 1. A non-decreasing sequence (Cn,Fn)n≥0,
Cn|n=0 = 0, is called consumption, a pair (π,C) is a portfolio with
consumption. Capital of portfolio with consumption (π,C) is defined by

equality X
(π,C)
n , Xπ

n − Cn, 0 ≤ n ≤ N .
Definition. They say, that self-financing portfolio with consumption

(π∗, C∗) is a superhedging portfolio of exotic option
{
1{τ=n}fn

}
0≤n≤N

,

if P
(
X

(π∗,C∗)
τ ≥ fτ

)
= 1.

Definition. Portfolio with consumption (π∗, C∗) is a minimal one
for given exotic option, if for any other superhedging portfolio with con-

sumption (π,C) we have P

(
X

(π∗,C∗)
τ ≤ X(π,C)

τ

)
= 1.

Under the approach used in the report to calculate exotic option
means to find minimal superhedging portfolio with consumption (π∗, C∗)

and fair value of the option, i.e. X
(π∗,C∗)
0 .

3. General solution of the problem.

Theorem 1. Suppose condition 1 is satisfied, there is exotic option
with dynamic payoff

{
1{τ=n}fn

}
0≤n≤N

and (π∗, C∗) is a portfolio with

consumption such, that for any n ∈ {1, ..., N}:
1) portfolio’s capital

{
X

(π∗,C∗)
n

}
0≤n≤N

satisfies recurrent relation

X
(π∗,C∗)
n (Sn0 ) =

1{τ=n}fn + 1{τ>n} sup
Q∈R

E
QX

(π∗,C∗)
n+1 (Sn0 , Snλ

εn+1) =

= 1{τ=n}fn + 1{τ>n}max
{
X

(π∗,C∗)
n+1 (Sn0 , Sn) ;

λ
1+λX

(π∗,C∗)
n+1

(
Sn0 , Snλ

−1
)
+ 1

1+λX
(π∗,C∗)
n+1 (Sn0 , Snλ)

}
,

X
(π∗,C∗)
n (Sn0 ) |n=N = 1{τ=N}fN ;

(5)
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2) γ∗0 = 0, γ∗n
(
Sn−1
0

)
=

=
λ

(λ2 − 1)Sn−1

[
X(π∗,C∗)
n

(
Sn−1
0 , Sn−1λ

)
−X(π∗,C∗)

n

(
Sn−1
0 , Sn−1λ

−1
)]
;

(6)

3) △β∗
n = −△γ∗nSn−1, β

∗
0 = X

(π∗,C∗)
0 (S0);

4) △C∗
n = γ∗n△Sn −△X(π∗,C∗)

n

(
Sn−1
0 , λεnSn−1

)
, C∗

0 = 0.
Then portfolio (π∗, C∗) is a minimal superhedging portfolio of above

stated exotic option in incomplete {1, S}–market.

4. Example calculation of exotic options. From Theorem 1 it follows,
that in incomplete {1, S}–market generated by condition 1 solution of
exotic option’s problem is to be achieved by solution of equation (5).
In the report the author presents solutions of (5) for for binary, barrier
options and European option on maximum prise of risk asset.

4.1. Binary option Up And Out is a contract for the Seller to get from
the Buyer one dollar at the moment, when risk asset’s price exceeds some
given value λm, if this takes place before the moment N inclusively (m
is an integer). So the dynamic payoff of binary option Up And Out takes
form {1{τ=n}}0≤n≤N , where τ = min{0 ≤ n ≤ N : Sn ≥ λm} [3].

Let us denote:

1) Bi(n, k, p) ,
k∑
i=0

n!
k!(n−k)!p

i(1 − p)n−i, where p ∈ [0, 1] and

n ∈ {0, ..., N}, k ∈ {0, ..., n} is the Binomial distribution;
2) [·] is an integer part of a real number;
3) A(t) , [0, 5(N−n+logλ Sn+ t)], a(t) , [0, 5(N−n− logλ Sn+ t)].

Theorem 2. Suppose condition 1 is satisfied and dynamic payoff of
exotic option is {1{τ=n}}0≤n≤N , where τ = min{0 ≤ n ≤ N : Sn ≥ λm}.
Then for any n ∈ {0, ..., N} capital of minimal superhedging portfolio
may be submitted in the form:

X
(π∗,C∗)
n = 1{Sn≥λm} + 1{Sn<λm}

[
Bi
(
N − n,A(−m), λ

1+λ

)
+

+Snλ
−m
{
1−Bi

(
N − n, a(m), λ

1+λ

)}]
,

X
(π∗,C∗)
n |n=N = 1{SN≥λm}.

4.2. Barrier option is a combination of binary and vanilla European
option, namely: if the event fixed in the contract has occurred, then at
the moment N the Buyer receives payment equal to paymant according
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to corresponding vanilla option. So for the barrier option Up and In,
τ = (N+1)∧min{n ≥ 0 : Sn ≥ λm}, fn = (Sn−λk)+, where 0 < k < m
are constants [2].

Theorem 3. Suppose condition 1 is satisfied and exotic option is
specified by τ = (N + 1) ∧ min{n ≥ 0 : Sn ≥ λm}, fn = (Sn − λk)+,
0 < k < m are constants. Then for any n ∈ {0, ..., N} capital of minimal
superhedging portfolio may be submitted in the form:

X
(π∗,C∗)
n =

= 1{Sn≥λm}

{
SnBi

(
N − n,A(−k), 1

1+λ

)
−

−λkBi
(
N − n,A(−k), λ

1+λ

)}
+

+1{Sn<λm}

{
SnBi

(
N − n,A(−m), 1

1+λ

)
=

−λkBi
(
N − n,A(−m), λ

1+λ

)
+

+λm
[
Bi
(
N − n, a(2m− k), 1

1+λ

)
−Bi

(
N − n, a(m), 1

1+λ

)]
−

−Snλk−m
[
Bi
(
N − n, a(2m− k), λ

1+λ

)
−Bi

(
N − n, a(m), λ

1+λ

)]
,

X
(π∗,C∗)
n |n=N = 1{SN≥λm}(SN − λk)+.

An interesting fact follows from Theorems 2–3. For binary and barrier
options for any n ∈ {0, ..., τ} number of risk assets γ∗n in minimal
superhedging portfolio calculated according to (6) is non-negative, i.e.
minimal superhedging portfolio does not imply borrowing.

4.3. European option on maximum prise of risk asset is specified by

τ = N and fn =

(
max

0≤k≤N
Sk − λmSN

)+

, where m ≥ 0 is a constant [2].

Theorem 4. Suppose condition 1 is satisfied and exotic option is

specified by τ = N , fn = αn
(

max
0≤k≤n

Sk − aSn
)+

, where constants

a ≥ 0, 0 < α ≤ 1. Then for any n ∈ {0, ..., N} capital of
minimal superhedging portfolio may be submitted in the form:

X
(π∗,C∗)
n = −λmSn+

+ max
0≤i≤n

Si ×
N−n∑
k=0

(N−n−m−k−1)/2∑
j=0

N−n−2j
N−n+1

(N−n)!
j!(N−n−j)!

(
λ

1+λ

)N−n−j−1

.
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5. Conclusion. An incomplete market generated by Markov chain
was in consideration. In this market general form of solution for exotic
option problem has been set. This solution includes recurrent equation
of simplified form. The explicit solutions of the recurrent equation are
presented for binary, barrier options and European option on maximum
prise of risk asset. Most of above stated results and appropriate proofs
were also presented in [4].
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The development of the electric power
system, taking into account the balance

reliability∗

N. Aizenberg and S. Perzhabinskii
Melentiev Energy Systems Institute of SB RAS , Irkutsk, Russia

The level of reliability of electricity system depends on the amount
of excess capacity that the generating companies agree to service, and
on the network capacity. This determines the additional costs that affect
the price of electricity. The consumer agree to pay these costs if he is
interested in reliable electricity supply.

The problem of adequacy optimization of electric power systems con-
sists in finding of optimal structure of generators and transmission lines
for meeting electricity demand with random variations of load and fail-
ures of equipment.

In market conditions the problem should be solved taking into ac-
count different interests of economic agents such as generation and net-
work companies and consumers [1]. This fact determines of changing of
optimi- zation criteria. Instead of minimization of system costs we should
maximize payoff function of each agent [2, 3]. Decision making of eco-
nomic agents is based on results of adequacy estimation of electric power
system. Effective method for such problem is developed earlier [4]. We
modified the method for adequacy analysis of electric power system in
market conditions. The method consists of four main blocks.

∗This research is supported by grant RFBR 16-06-00071.
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1. Determination of the equilibrium point (possible price and vol-
ume) of the electricity market based on the aggregate demand. This is a
Cournot-type model with network restrictions.

2. Modeling of random states of electric power system. Each state is
characterized of the set of random values such as load and available gen-
erator capacity in nodes, power line capacity (the initial approximation
is defined in step 1).

3. The model of power shortage estimation of electric power system.
Power shortage is estimated for each random state of electric power
system. The model of power shortage estimation with quadratic power
losses in power lines [4] is used in this stage. Taking account of quadratic
losses guarantees uniqueness of deficit distribution over system nodes.

4. Computation of reliability indexes. Reliability indices are proba-
bility of no shortage system work, mathematical expectation of power
shortage and electricity sacrifice of consumers, coefficient of availability
of power. Optimal set of equipment in electric power system is defined as
a result of comparison of variants of electric power systems development.
That’s way we are adding the next stage of computation.

5. Calculation of the generating company’s profits, taking into ac-
count possible penalties for the electricity shortage. The calculation of
prices as on base the equilibrium price obtained at stage 1 as on base the
elasticity of demand for services quality depending on balance reliability
indicators.

6. Comparison of reliability indices with companies’ profit according
to different configurations of electric power system. On this stage it is
choosing of optimal variant of system development which balances reli-
ability level necessary for consumer and profit margin of generation and
network companies. Maintaining the integrity of the specifications.

The model of power shortage estimation

Let’s consider the scheme of electric power system. The electric power
systems scheme consists of n nodes and set of links between nodes. Ac-
cording to method for estimating of electric power systems adequacy it
is necessary to simulate random states of electric power systems a many
times. The simulations are occurred on a base of Monte Carlo method.

Let N is the given number of electric power systems states. Each state
is characterized by set of means of random values such as generating
capacity x̄ki , load value ȳki in the node i, line capacity zkij between nodes
i and j, i = 1, . . . , n, j = 1, ..., n, i 6= j, k = 1, ..., N .
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We use following problem for power shortage estimation of random
states of electric power systems. The powerxi and the load yi in node i,
power flow zij from node i to node j, i = 1, ..., n, j = 1, ..., n are vari-
ables of the problem. The considered problem for some k, k = 1, ..., N ,
is

n∑

i=1

yi → max, (1)

subject to the constraints

xi − yi +
n∑

j=1

(1− ajizji)zji −
n∑

j=1

zij = 0, i = 1, . . . , n, i 6= j, (2)

0 6 yi 6 ȳki , i = 1, . . . , n, (3)

0 6 xi 6 x̄ki , i = 1, . . . , n, (4)

0 6 zij 6 z̄kij , i = 1, . . . , n, j = 1, ..., n, i 6= j, (5)

where positive coefficients of power losses aij are given.
As a rule, the adequacy analysis of electric power system is realized

for year. Every hour of work of electric power system is modeled. The
failures of generators and power lines are used as random parameters.
The repair time of equipment and fluctuations of load in the year are
taking account in modeling. The rules of simulations of random values
such as available capacity of generator and power line or load value are
discussed in [3].

Let set of x̂ki , ŷ
k
i , ẑ

k
ij is optimal solution of the problem (1) – (5),

k = 1, ..., N , i = 1, . . . , n, j = 1, ..., n, i 6= j. The optimal value of
power shortage in node i, i = 1, . . . , n, is defined by the formula

dki = ȳki − ŷki , k = 1, ..., N.

The state of electric power systems is deficit if the value

dk =

n∑

i=1

dki

is not equal to zero. This index is corresponded to index LOLP.
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Mathematical expectation of power shortage in nodes of energy sys-
tem is computed by next rule

MDi =
H∑

j=1

dji
N
, i = 1, . . . , n.

That’s way mathematical expectation of power shortage in electric
power systems is calculated by

MD =
n∑

i=1

MDi.

Modeling the demand for electricity

Demand specification is accounting for different types of consumers.
In this case, the price function is determined for each type of consumer,
or, for each network node. This requires determination of the reliability
indices ri for the individual nodes i = 1, . . . , n or individual groups of
nodes. Then the price that the consumer is willing to pay at node i can
be represented in the form:

gi(ri, ỹi) = (ri)
mpi(ỹi). (6)

where pi(ỹi) is the maximum price that the consumer is willing to pay in
the node i, i = 1, . . . , n, without of power failures; m is the parameter
that determine show much we take into account there liability factor,
m ∈ [0, 1] (the higherm, the more important for the consumer the qual-
itative power supply). The function g(r, ỹi) in the form (6) is concave,
increasing with respect to r.

Modeling the behavior of generating companies

When looking for the Cournot-Nash equilibrium, it is necessary to
solve the problem of maximizing profit for each generating company
on residual demand. We take into account the conditions of positive
and limited volumes of production. If the aggregate demand function is
linear and the cost functions for all generating companies are quadratic,
then the equilibrium exists and unique [5]. It determines the price of
interaction without taking into account the reliability parameter. Based
on this price and the reliability parameters obtained from the solution
of the problem, we form the price for estimating the company’s profit
for the selected configuration of electricity system.
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πs = gi(ri, ỹi)

n∑

i=1

xsi − Cs
(

n∑

i=1

xsi

)
→ max

xs

, s = 1, ..., S, (7)

n∑

i=1

yi =

S∑

s=1

n∑

i=1

xsi; (8)

n∑

i=1

xsi 6 x̄s, xsi > 0, i = 1, ..., n, s = 1, ..., S. (9)

where Cs =
∑n

i=1 xsi is costs of the generating company s, s = 1, ..., S
depending on the reliability index ri in each node i, i = 1, ..., n, power
generation and capital costs of electricity generation. The cost function is
increasing and convex. We form cost function on the basis of simulation
modeling, comparing costs and balances reliability.

Problem (7)-(9) is solved by method of find by feeling to Cournot [5].
The reliability indexes are computed for each variant of development

of electric power system. Profit of generating and network companies
depends on meanings of reliability indexes. After analyzing all develop-
ment variants companies will choose the reliability level which is optimal
for them. They can provide this reliability level by inputting new generat-
ing and network equipment in the energy system. If all companies choose
the same development variant then this is Nash equilibrium which may
be not the best solution for the system. If the companies choose the dif-
ferent development variants then we accept a decision about an effective
variant. Each company should have a positive profit and the reliability
index should not be below some given level. The experimental research
of the developed method is suggested on test scheme of electric power
system which is constructed on the base of real technical data.
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Monopolistic competition with investments
in R&D∗

I.A. Bykadorov
Sobolev Institute of Mathematics SB RAS,

Novosibirsk State University,
Novosibirsk State University of Economics and Management,

Novosibirsk, Russia

We consider a monopolistic competition model with additive separa-
ble consumer’s utility and the endogenous choice of technology. We study
the impact of technological innovation on the equilibrium and socially
optimal variables. We obtain the comparative statics of the equilibrium
and socially optimal solutions with respect to the technological inno-
vation parameter and utility level parameter. More precisely, we study
a monopolistic competition model with endogenous choice of technol-
ogy in the closed economy case. We consider “technological innovation”
non-negative parameter α that influences on costs. Moreover, we con-
sider “consumer utility level” non-negative parameter β that influences
on utility. The aim is to make comparative statistics of equilibrium and
social optimal solutions with respect to parameters α and β.

∗The work was supported by the program of fundamental scientific researches
of the SB RAS No I.5.1., project No 0314-2016-0018. Supported in part by RFBR
grants 16-01-00108, 16-06-00101 and 18-010-00728. The author would like to thank
Sergey Kokovin, Richard Ericson, Peter Neary, Kristian Behrens and Federico Etro
for valuable comments, Jacques-Francois Thisse for guiding and advising, Evgeny
Zhelobodko (25.09.1973-27.03.2013), Irina Antoshchenkova and Ekaterina Shelkova
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Due to [1], the main assumptions of Monopolistic Competition are:
consumers are identical, each endowed with one unit of labor; labor is the
only production factor; consumption, output, prices etc. are measured in
labor; firms are identical, but produce “varieties” (“almost the same”) of
good; each firm produces one variety as a price-maker, but its demand is
influenced by other varieties; each variety is produced by one firm that
produces a single variety; each demand function results from additive
utility function; number of firms is big enough to ignore firm’s influence
on the whole industry/economy; free entry drives all profits to zero; labor
supply/demand is balanced.

Our key findings are the following.
When parameter α increases,
– individual consumption x and individual investments f in R&D

both increase;
– the behavior of the equilibrium and socially optimal variables does

not depend on the properties of the costs as a function of investments f
in R&D;

– the behavior of the equilibrium variables depends on the elasticity
of demand only;

– the behavior of the socially optimal variables depends on the elas-
ticity of sub-utility only;

– the equilibrium variables depend on the elasticity of demand and
the socially optimal variables depend on the elasticity of utility in the
identical way.

When parameter β increases,
– the behavior of the equilibrium individual investments f in R&D,

individual consumption x, and mass of firms N depend on the behavior
of the demand elasticity;

– the behavior of the social optimal individual investments f in R&D,
individual consumption x, and mass of firms N depend on the behavior
of the utility elasticity;

– the behavior of the equilibrium total investments Nf in R&D de-
pends on the behavior of the elasticities of both demand and marginal
costs;

– the behavior of the social optimal total investmentsNf in R&D de-
pends on the behavior of the elasticities of both sub-utility and marginal
costs.

We study the impact of technological innovation on the equilibrium
and socially optimal variables, namely, consumption, costs, the mass of
firms and prices (in the equilibrium case). We obtain the comparative
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Table 1. Equilibrium: Comparative statics w.r.t. α.

r′u < 0 r′u = 0 r′u > 0

Ex∗/α > 0 > 0 > 0
Ef∗/α > 0 > 0 > 0
EN∗/α < 0 < 0 ?
EN∗f∗/α < 0 = 0 > 0
Ep∗/α < 0 < 0 < 0

Table 2. Social Optimality: Comparative statics w.r.t. α.

ε′u > 0 ε′u = 0 ε′u < 0

Exopt/α > 0 > 0 > 0
Efopt/α > 0 > 0 > 0
ENopt/α < 0 < 0 ?
ENoptfopt/α < 0 = 0 > 0

statics of the equilibrium and socially optimal solutions with respect to
parameters α and β.

More precisely, we study the elasticities

Ex/α =
dx

dα
· α
x
, Ef/α =

df

dα
· α
f
, EN/α =

dN

dα
· α
N

,

ENf/α =
d(Nf)

dα
· α
Nf

, Ep/α =
dp

dα
· α
p

with respect to the parameter α. In equilibrium, the signs of the elas-
ticities can be found in Table 1, where the symbol “?” means that the
sign of corresponding elasticity is not uniquely determined. In Social
Optimality, the signs of the elasticities can be found in Table 2. As to
comparative statics with respect to β, we study the elasticities

Ex/β =
dx

dβ
· β
x
, Ef/β =

df

dβ
· β
f
, EN/β =

dN

dβ
· β
N

,

ENf/β =
d(Nf)

dβ
· β
Nf

, Ep/β =
dp

dβ
· β
p
.
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Table 3. Equilibrium: Comparative statics w.r.t. β.

∂ru
∂β

< 0
∂ru
∂β

> 0

ε′c > 0 ε′c = 0 ε′c < 0 ε′c > 0 ε′c = 0 ε′c < 0

Ex∗/β > 0 > 0 > 0 < 0 < 0 < 0
Ef∗/β > 0 > 0 > 0 < 0 < 0 < 0
EN∗/β < 0 < 0 < 0 > 0 > 0 > 0
EN∗f∗/β < 0 = 0 > 0 > 0 = 0 < 0
Ep∗/β < 0 < 0 < 0 > 0 > 0 > 0

Table 4. Social Optimality: Comparative statics w.r.t. β.

∂εu
∂β

> 0
∂εu
∂β

< 0

ε′c > 0 ε′c = 0 ε′c < 0 ε′c > 0 ε′c = 0 ε′c < 0

Exopt/β > 0 > 0 > 0 < 0 < 0 < 0
Efopt/β > 0 > 0 > 0 < 0 < 0 < 0
ENopt/β < 0 < 0 < 0 > 0 > 0 > 0
ENoptfopt/β < 0 = 0 > 0 > 0 = 0 < 0
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In equilibrium, the signs of the elasticities can be found in Table 3. In
Social Optimality, the signs of the elasticities can be found in Table 4.

The analysis shows that the equilibrium variables depend on the elas-
ticity of demand in a similar way as the socially optimal variables depend
on the elasticity of utility.

The paper concerns with [2], [3], [4] and [5]. Our research technique
uses [6].

The results can be generalized to another monopolistic competition
models: retailing [7], market distortion [8], international trade [9], and to
the marketing models: optimization of communication expenditure [10]
and the effectiveness of advertising [11], pricing [12].
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Energy markets: optimization of
transportation system

A.A. Vasin, O.M. Grigoryeva, and N.I. Tsyganov
Lomonosov Moscow State University, Moscow, Russia

Markets of energy resources (natural gas, oil, etc.) play an important
role in economies of many countries. Every such market includes its own
transmission network system. The present paper provides a method for
computation of the optimal transmission system with respect to the total
social welfare. A formal model generalizes two well-known optimization
problems. The first one is the transportation problem. The second re-
lated problem is the social welfare optimization for a market with several
goods under perfect competition [1]. The difficulty of the problem is that
an expansion of any line requires valuable fixed costs. The problem is
in general NP-hard since the transportation problem with non-convex
transmission costs is NP-hard [2]. For a market with a tree-type net-
work, we propose a method of the supply-demand balances transfer to
the root node. The method originates from the known Welfare Theorem
and relies on a solution of the auxiliary problem of convex optimization
with zero fixed costs of the lines expansion. Complexity of the method
is quadratic with respect to the number of nodes. We also modify the
method in order to obtain an approximate solution of the original prob-
lem and estimate the welfare loss for such solution.
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Consider a market of a homogeneous commodity consisting of several
local markets and a transportation network system. Let N denote the
set of nodes and L ⊆ N ×N be the set of edges. Each node i ∈ N corre-
sponds to a local perfectly competitive market. Demand function Di(pi)
and supply function Si(pi) depend on price pi at node i; they charac-
terize consumers and producers in the market, respectively, and meet
standard conditions. The demand function is non-increasing and equal
to 0 for sufficiently large prices pi. It relates to the consumption utility

function of consumers at the node i: Ui(v̂i) =
v̂i∫
0

D−1
i (v)dv, where v̂i is a

consumption volume of node i. So the inverse demand function D−1
i (v)

shows the marginal utility of consumption. The supply function Si(p)
determines the optimal (profit-maximizing) production volume at the
node i, i.e, Si(p) = Argmax

v
(pv− ci(v)), where monotonically increasing

convex function ci(v) shows the minimal production cost of volume v at
node i.

For any (i, j) ∈ L, the transmission line is characterized by the initial
transmission capacity Q0

ij , the unit transmission cost eijt , the cost of the

transmission capacity increment, including fixed cost Eijf and variable

cost Eijv (Qij −Q0
ij). Let qij be the flow from the market i to market j,

qji = −qij . The total transmission costs for edge (i, j) are:

Eij(qij) =

{
Eijf + Eijv (|qij | −Q0

ij) + eijt · |qij |, if |qij| > Q0
ij ,

eijt · |qij |, if |qij| ≤ Q0
ij ,

(1)

where the variable term Eijv is a monotonically increasing convex
function of increment (Qij − Q0

ij); E
ij
v (0) = 0. For given flows −→q =

(qij , (i, j) ∈ L) and production volumes −→v = (vi, i ∈ N), the total
social welfare is

W (−→q ,−→v ) =
∑

i∈N

[Ui(vi +
∑

l∈N(i)

qli)− ci(vi)]−
∑

(i,j)∈L, i<j

Eij(qij). (2)

The problem under consideration is

max
−→q ≥0,−→v ≥0

W (−→q ,−→v ). (3)

Consider an auxiliary problem of the social welfare optimization under
a fixed set L ⊆ L of expanded lines:

max
−→q ≥0,−→v ≥0

W (−→q ,−→v , L), (4)
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where W (−→q ,−→v , L) =
∑
i∈N

[Ui(vi +
∑

l∈N(i)

qli)− ci(vi)] −
∑

(i,j)∈L, i<j

|qij |eijt −
∑

(i,j)∈L, i<j

(Eijf + Eijv (|qij | − Q0
ij)), |qij | ≤ Q0

ij

for all (i, j) ∈ L \ L. Let V (L) denote the maximal welfare in this
problem. Then problem (3) reduces to finding L∗ = Argmax

L⊆L
V (L).

The triple consisting of the price vector p = (pi, i ∈ N), the output
vector v = (vi, i ∈ N), and the flow vector q = (qij , (i, j) ∈ L)
is called a competitive equilibrium of the market if it satisfies the
following conditions: vi = Si(pi), i ∈ N ; ∆Si(pi) =

∑
j∈N(i) qij

for any i ∈ N ; for any (i, j) ∈ L |pi − pj | < eijt ⇒ qij = 0,

|pi − pj| = eijt ⇒ |qij | ≤ Q0
ij , ∀(i, j) /∈ L |pi − pj| > eijt ⇒ |qij | = Q0

ij ,

∀(i, j) ∈ L qij > Q0
ij ⇒ pj − pi = eijt + eijv (qij). Our paper [3]

establishes that problem (4) is convex, and its solution (−→q ,−→v )(L) meets
the first-order conditions (FOCs) which determine the competitive
equilibrium of the corresponding network market.

Consider an efficient method for solving problem (4) in case of a
market with a tree-type network. The idea is to transfer the S-D balances
from all nodes to the root of the tree. Let N1 denote the set of final

nodes, Nk = {i /∈
k−1⋃
j=1

Nj| |Z(i)\
k−1⋃
j=1

Nj| = 1} be the set of k-level nodes,

k = 1, .., r, Nr = {0}, where 0 is the root node of the tree.

Stage 1 Transfer of S-D balance to the root. Let ∆Sj(pj) denote
the S-D balance at node j taking into account the transfer from all
following nodes.
Substage 1.1 For every final node of the tree, let ∆Si(pi) = ∆Si(pi),
i ∈ N1.
Substage 1.l, l = 2, .., h For every node j ∈ Nl, we set

∆Sj(pj) = ∆Sj(pj) +
∑

i∈σ−1(j)

∆Sij(pj), (5)
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where the transfer from i to j for (i, j) ∈ L is

∆Sij (pj) =































0, p̃i − eijt < pj < p̃i + eijt ,

∆Si(pj − eijt ), p̃i + eijt ≤ pj < (∆Si)
−1(Q0

ij) + eijt ,

Q0
ij , (∆Si)

−1(Q0
ij) + eijt ≤ pj ≤ (∆Si)

−1(Q0
ij)+

+ eijt + eijv (0),

{qij |qij = ∆Si(pj − eijt − eijv (qij))}, pj > (∆Si)
−1(Q0

ij)+

+ eijt + eijv (0),
(6)

p̃i is a solution of ∆Si(pi) = 0. If (i, j) /∈ L, then

∆Sij (pj) =





0, p̃i − eijt < pj < p̃i + eijt ,

∆Si(pj − eijt ), p̃i + eijt ≤ pj < (∆Si)
−1(Q0

ij) + eijt ,

Q0
ij , pj ≥ (∆Si)

−1(Q0
ij) + eijt .

(7)
For pj ≤ p̃i − eijt the value ∆Sij(pj) < 0 is determined in a similar way.
As a result of stage 1, we obtain ∆S0(p0).
Stage 2 Determination of the equilibrium prices and the opti-
mal strategy
Substage 2.1 We determine p̃0 from the equation ∆S0(p̃0) = 0, and set
v∗0=S0(p̃0).
Substage 2.l, l = 2, .., h Consider a node i ∈ N(h−l+1)

⋂
σ−1(j), where

j ∈ Nh−l+2. From (5)-(7), we find

q∗ij = ∆Sij(p̃j), p̃i = (∆Si)
−1(∆Sij(p̃j)). (8)

Then we set v∗i = Si(p̃i). Finally we obtain q∗ij , p̃i and v
∗
i for every node

i ∈ N and j = σ(i).

Theorem 4 The given algorithm determines a solution of problem (4).
Its complexity with respect to the number of the nodes is O(|N |2).
An algorithm for approximate solution of the general problem is a mod-
ification of the given algorithm for problem (4).
Substage 1.2m Consider i ∈ N1 and function ∆Sij(pj) defined by (5,6).
Inverse function cij(q) = (∆Sij)

−1(q) determines the marginal cost of
the transfer from i to j. Let aij = Q0

ij , aji = −Q0
ji, bij and bij denote

solutions of equations

(bij − aij) · cij(bij)−
∫ bij
aij

cij(q)dq = Eijf ,
aji∫
bji

cij(q)dq − (aji − bji) · cij(bji) = Eijf .
(9)
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We introduce

cmij (q) =





cij(q), q ∈ (−Q0
ji, Q

0
ij), q > bij or q < bji,

cij(bij), q ∈ (aij , bij),
cij(bji), q ∈ (bji, aji),

(10)

define ∆Smij (p) = (cmij )
−1(p) and call (aij , bij) and (bji, aji) connected

intervals of the transfer ∆Smij . In these intervals we increase and equal-
ize the marginal costs in order to cover the fixed cost of the transfer. We
define ∆S

m

j (pj) for j ∈ N2 according to (5) with one change: we sub-
stitute ∆Smij for ∆Sij . The set of connected intervals for this function
is:

Int(j) = {(aij , bij), (bji, aji), i ∈ σ−1(j)},where aij = aij +∆ij(bij),

bij = bij +∆ij(bij), aji = aji +∆ij(bji), bji = bji +∆ij(bji),

∆ij(v) =
∑

r∈σ−1(j)\i

∆Smrj(pij(bij)) + ∆Sj(pij(bij)), pij(v) = ∆S−1
ij (v).

These formulas relate to a typical case where ∆Sj and ∆Smrj have no

jumps at pij(bij) and pij(bji), r ∈ σ−1(j) \ i.
Substage 1.lm, l = 3, .., h. Now we consider j ∈ Nl and i ∈
σ−1(j). The function ∆S

m

i (pi) and the set Int(i) are determined at
the previous substage. Let Int(i) = ((ci1, d

i
1), (c

i
2, d

i
2), ..., (c

i
n(i), d

i
n(i))),

n(i) ≤ 2 · (l − 2). We define function ∆Smij (pj) according to (7), the

only change is that we employ ∆S
m

i instead of ∆Si. Next, we set
aij = Q0

ij , determine bij as a minimal solution of (9), exclude from
Int(i) all intervals that intersect with (aij , bij) and add their unifica-
tion with (aij , bij) to the set Int(i). In a symmetric way we deter-
mine aji and bji and change the set Int(i). Thus we obtain the set

Int(i, j) = ((cij1 , d
ij
1 ), ..., (c

ij
n(i,j), d

ij
n(i,j))). The prices pijkL ≤ pijkH corre-

sponding to the ends of interval k proceed from relation Smij (p
ij
kL)∋ c

ij
k ,

Smij (p
ij
kH) ∋ dijL . For every r ∈ σ−1(j), we define the set of connected

price stretches P rj = {[prj1L, p
rj
1H ], ..., [prjn(r,j)L, p

rj
n(r,j)H ]} and examine

the unifications
⋃

r∈σ−1(j)

P rj. We consider unifications of all intersect-

ing stretches from this set and order them by increase. Thus, we obtain
the set of connected price stretches P j = {[pj1L, p

j
1H ], ..., [pjn(j)L, p

j
n(j)H ]}

for the function ∆S
m

j (pj). For every k = 1, .., n(j), we determine
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the corresponding connected interval (cjk, d
j
k) of production volumes

for this function. There exists of least one i ∈ σ−1(j) such that
pijk′L = pjkL for some k′ ≤ n(i, j). In the regular case, where func-
tions ∆Srj(p), r 6= i, and ∆Sj(p) have no jumps at this price, we

set cjk = cijk′ +
∑

r∈σ−1(j)\i

∆Srj(p
j
kL) + ∆Sj(p

j
kL). Similarly, there exists

i′ ∈ σ−1(j) such that pi
′j
k′H = pjkH for some k′ ≤ n(i′, j), and in the reg-

ular case we set djk = di
′j
k′ +

∑
r∈σ−1(j)\i

∆Srj(p
j
kH) +∆Sj(p

j
kH). As a final

result of stage 1, we obtain the function ∆S
m

0 (p0) and the set Int(0).
Stage 2m Equilibrium prices p̃

m
i and strategy (−→v m,−→q m) are deter-

mined according to stage 2 of the basic algorithm for problem (4) where
at every substage we employ functions ∆S

m

i and cmij instead of ∆Si and
cij . Modification of the marginal costs cmij is equivalent to the following
change of the transmission costs:

eijm(qij) =





Eij ′(qij), if qij /∈ (aij , bij) ∪ (bji, aji),

eijM − (∆S
m

i )−1(qij), if qij ∈ (aij , bij),

ejiM − (∆S
m

i )−1(qij), if qij ∈ (bji, aji),
(11)

where aij = Q0
ij , aji = −Q0

ji, bij and bji are determined as minimal

solutions of (9), eijM = (∆Sij)
−1(bij), e

ji
M = (∆Sij)

−1(bji), E
ij
f = 0.

Denote Wm(−→q ,−→v ) as the total social welfare function with modified
transmission costs:

Wm(−→q ,−→v ) =
∑

i∈N

[Ui(vi +
∑

l∈N(i)

qli)− ci(vi)]−
∑

(i,j)∈L, i<j

Eijm(qij).

Theorem 5 The strategy (−→v m,−→q m) determined by the modified al-
gorithm is a solution of the welfare optimization problem with per-
turbed transmission cost functions Eijm(qij). If 0 /∈

⋃
k=1,...,n(0)

(c0k, d
0
k) then

(−→v m,−→q m) is a solution of general problem (3).

Consider a particular case, where consumers and producers are separated
by the root node 0 in the following sense: some branches of the tree are
producing, and the flows in these branches go from final nodes to the
root, and the rest branches are primarily consuming, and the flows there
go from the root to the final nodes. In this case, we can simplify our
method as follows. For every supply branch, we determine the net supply
transfer to the root node and do not care about the negative part of
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the supply-demand balance. For every consuming branch, we determine
the net demand transfer to the root node in a symmetric way. Thus we
obtain the aggregated supply S0(p0), the aggregated demandD0(p0), the
connected intervals for the both functions, the equilibrium volume ṽ and
the equilibrium price for the root node. For the case, where ṽ belongs to
some connected interval, we propose the following approximate solutions.
Denote {(ck

0S
, dk

0S
), k = 1, .., n(S0)} as the set of connected intervals for

the agregated supply, {(ck
0D
, dk

0D
), k = 1, .., n(D0)} — as a similar set

for the agregated demand. Let vL
def
= max{v ∈ [0, ṽ)|v /∈ ∪k(ck0S , d

k
0S
) ∨

∪k(ck0D, d
k
0D

)}, vu def
= min{v ≥ ṽ|v /∈ ∪k(ck0S , d

k
0S
) ∨ ∪k(ck0D, d

k
0D

)}.
We determine the prices pSL = S

−1

0 (vL) and pDL = D
−1

0 (vL). Then
we set the production volumes vLi and the flows qLi0 in every producing
node i ∈ σ−1(0). We employ relations (8), but use pSL instead of p̃0.
We continue to determine qLiσ(i) and v

L
i according to (8) in all following

nodes in these branches.
Then, proceeding from the price pDL , we successively determine qLiσ(i)

and vLi for all following nodes i in the consuming branches.

Theorem 6 The welfare losses for the given approximate solutions meet
the following estimates:

W ∗ −W (−→v L,−→q L) ≤
ṽ∫

vL

(D
−1

0 (v)− S−1

0 (v))dv,

W ∗ −W (−→v U ,−→q U ) ≤
vU∫

ṽ

(S
−1

0 (v)−D−1

0 (v))dv.
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Model-oriented programming: CAD
methods in the programs design
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Russian Academy of Sciences, Moscow, Russia

In this work, the new programming paradigm is offered, with higher
level of encapsulation, than in the object-oriented approach. Its key fea-
tures - an exclusion of imperative programming, and focusing on the
distributed and high-performance calculations. The approach proposed
is applicable for rather wide class of tasks including creation of simula-
tion models of complex multi-component systems.

Model synthesis and the model-oriented programming as methods of
the description, synthesis and program realization of simulation models
of complex multicomponent systems, were developed in the department
of Simulation systems of Computing Centre of Academy of Sciences of
the USSR and further Russian Academy of Sciences, since the end of
the 80th. The concept of model-component - the universal modelling
agent - is the base of model synthesis. The model-component is similar
to the object of the object analysis but supplied with not only charac-
teristics and methods, capable to do something useful if they are caused,
but a certain analogy of system services of an operating system, always
functioning and always ready to give standard answers to the standard
requests.

Let us formalize, basing on the closeness hypothesis and its
consequences, the family of simulation models of complex systems, by the
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family of species of structures [2] in N. Bourbaki’s sense. Base sets of the
family representatives are the sets of characteristics of the model, meth-
ods (what the model is able to do) and events (on what the model has to
be able to react). The family of species of structures model-component
possesses two important properties:

1. The organization of calculations is same for all representatives of
the family. Besides, the considerable part of these calculations can be
executed in parallel. It means possibility of creation of the universal pro-
gram focused on high-performance or distributed computing capable to
execute any simulation model, if that is the mathematical object supplied
with the species of structure of the model-component family.

2. The family of species of structures model component is closed, un-
der the operation of uniting components into the model-complex. The
complex received by association of models-components belongs to the
family of species of structures model-component, and, therefore, can be
included in new complexes, and the organization of simulation calcula-
tions of any model-complex can be carried out by the same universal
program.

The properties of the model component family of species of structures
allow offering the new model-oriented programming method for program
realization of simulation models of complex systems.

At this approach the program complex seems as a complex of models-
components, whose behaviour is no need to arrange (for example, by call-
ing any methods) - all components always behave as they can. Progra-
mming consists in the description of the component’s arrangement and
behaviour (in fact - in the description of the corresponding species of
structure) and in the description of creation of complexes from the com-
ponents.

Historically, the changings of programming paradigms was accompa-
nied by the aggregation of the base instruments of the programmer’s
activity. It all started with the machine instruction, then, with the advent
of high-level languages – such a tool became an operator, which imple-
ments some action, possibly with a few machine instructions.

The victory of structured programming ideas replaced individual op-
erators and variables by standard constructions such as loop, branching,
subroutines-functions and data structures. With the advent of object
analysis, the object became the main unit of the design. It unites some
kind of data structure with a set of methods necessary for the data pro-
cessing. In addition, through the inheritance mechanism, you can build a
hierarchy of object classes, developing, implementing and embodying ba-
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sic ideas of the root classes of this hierarchy. This programming paradigm
is currently the dominant and its basic concepts, such as class, object,
data typing, inheritance, encapsulation, polymorphism is implemented
with some nuances in modern imperative programming languages, such
as C++, Java, C#, Delphi and others.

Inheritance relationship for the set of classes of object-oriented prog-
ramming language is a partial order. Classes that have no ancestors, but
have descendants are called to them root or base. Classes that do not
have descendants are called leaf.

Designing of a large software system within the object paradigm is
laying the basic concepts and ideas of this system into the base classes of
objects and then building a hierarchy of classes, developing, specifying
and embody these ideas in a variety of leaf classes, with the help of
which the target software system will be built. Even if the object-oriented
design has built the greatest hierarchy of classes using inheritance, still
all the organization of the computational process lies on the developer
of the system: for the system operation – the developer is to organize
calling of appropriate methods in the desired sequence.

To describe complex systems in the object paradigm, the unified mod-
elling language UML was proposed in the late 90s [1]. The creators of
UML have opted for a sharp increase in the number of initial concepts
and ideas. They say about the language: “UML is subject to the rule
of 80/20, i.e., 80% of most problems can be solved using 20% of the
UML” [1]. Apparently, any system can be described with the help of
the UML, and even from several points of view. The question is what
to do next with such descriptions – there is no unity in opinions. Some
specialists believe that the main value of UML is just in the application
as a mean of recording and sharing formalized descriptions of the stages
of the sketch and design of complex program systems. However, there
are a number of tools, which allows compiling the UML-descriptions into
the billet classes of universal programming languages, and in this case
we can speak about the mode of using UML as a programming lan-
guage, though a hard problem of compilation quality arises. Here we will
describe a different approach to the programming – a model-oriented
one, which is based on the model synthesis [2, 3], on the concept of the
model-component. A model-component of the model synthesis is more
complex and aggregate structure, than the object of the object analysis.
Its main difference from the object – the possession of its own behavior,
in the sense in which, for example, a computer with the operating sys-
tem loaded, has behavior – the ability to respond on a set of standard
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requests in predetermined manner, known in advance.

In this paper we will describe a different approach to the implementa-
tion of complex systems models - a model-oriented one, which is based
on the model synthesis, on the concept of the model-component, very
close to that in mathematical modelling and especially in simulation. A
model-component of the model synthesis is more complex and aggregate
structure, than the object of the object analysis. Its main difference
from the object - the possession of its own behaviour, in the sense in
which, for example, a computer with the operating system loaded, has
behaviour - the ability to respond on a set of standard external and
internal requests in predetermined manner, known in advance. It turns
out that the way of the model’s behaviour arrangement (organization of
simulation computations) can also be standard - the same for any model,
no matter how large and complex it may be.

The proposed idea of model synthesis is minimalistic in a set of basic
concepts: it has the only basic concept – a model-component and an
auxiliary concept – a model-complex, which after all can also be treated
as a model-component, hence itself may be included in the next level
model-complexes as their component, etc. Any model may be run ac-
cording the same standard rules, i.e., can be performed by once written
and debugged program of models’ execution. In addition, the program of
models’ execution is such that most of its calculations allow paralleliza-
tion. The process of the programming breaks down firstly, into series
of declarative descriptions of models-components and models-complexes
combining models-components; and secondly, on the programming of cer-
tain functional dependencies, which are functions in the mathematical –
not programist sense (i.e., unambiguous and have no states and side ef-
fects), and therefore can be programmed in a functional paradigm. This
leads to the fact that the software implementation of even the most com-
plicated fractal arranged system excludes the imperative programming
– the most difficult at the stage of debugging.

The fee for this is a higher level of encapsulation. In contrast to the
object analysis it is impossible (and unnecessary) to call the methods of
the model-component “manually” with some “foreign” parameters. They
are always called automatically, and only with the subset of characteris-
tics of the model-component as parameters, in accordance with the de-
scribed behavior of the model.

For the descriptions of models-components and models-complexes,
the LCCD declarative language (language of the description of complexes
and components) is elaborated. LCCD descriptions are compiled into



194 OR in military and computer-aided design

database tables. Therefore, the question of compilation quality is not
too actual - correctness of the compilation is important. The quality of
computations lies in the universal program of models’ execution, which
may be optimized once and forever.

The proposed concept has been realized in series of simulation mod-
els implemented under the influence of the model-oriented programming
paradigm. For example, some episodes of Reagan’s SDI (Strategic De-
fence Initiative) functioning and the model of interaction of several coun-
tries were simulated. In addition, the system for model-oriented program-
ming was incorporated into the simulation system MISS [4].

The concepts of model synthesis and model-oriented programming
are applicable primarily for the description, design and software imple-
mentation of simulation models of complex multi-component systems.
However, it is hoped that a similar approach can be used for the develop-
ment of complex software systems, with the organization that fits the
closeness hypothesis, including the software systems focused on high-
performance computing.
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A low bound for American call based on threshold decision rule was
introduced by Broady and Detemple in [1]. In [2] it was improved by
Chung, Hung and Wang using threshold function L exp(a(T − t)).

1. We construct two bounds generalizing just mentioned in the fol-
lowing way. The asset price S(t) = S(0) exp(α̃t + σz(t)), 0 6 t 6 T, is
geometric Brown motion process where T – expiring time, z(t) – stan-
dard Wiener process, σ – volatility, α̃ = α − σ2/2 and α – mean asset
return. Take T1 ∈ (0, T ), L1 6 L2, a1 > 0, a2 > 0 and define functions

f1(L1, L2, T1, t) =

{
L2, 0 6 t < T1,
L1, T1 6 t 6 T,

f2(L, a1, a2, T1, t) =

{
L exp(a1(T − T1) + a2(T1 − t)), 0 6 t < T1,
L exp(a1(T − t)), T1 6 t 6 T.

Let τi (i = 1, 2) be stopping moments when the process S(t) first time
hits the graph of the function fi. (If it hits the graph of f1 at time T1
then S(t) ∈ [L1, L2].) Define functions

V1(S,L1, L2, T1) = E[exp(−rτ1)(S(τ1)−K)+|S(0) = S],

∗The reported study was funded by RFBR according to the research project
16-01-00353 a.
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V2(S,L, a1, a2, T1) = E[exp(−rτ2)(S(τ2)−K)+|S(0) = S],

where K is a strike and r is a constant bank rate. Denote

β1,2 =
−α̃± ξ
σ2

, ξ =
√
α̃2 + 2rσ2, S∗ =

β1K

β1 − 1
.

Low bounds for call option price at time 0 are

V ∗
1 (S) = max

(L1,L2,T1)∈D1

V1(S,L1, L2, T1),

D1 = {(L1, L2, T1)|max(S,K) 6 L1 6 L2 6 S∗, 0 6 T1 6 T },
V ∗
2 (S) = max

(L,a1,a2,T1)∈D2

V2(S,L, a1, a2, T1),

D2 = {(L, a1, L2, T1)|max(S,K) 6 L 6 S∗, a1, a2 > 0, 0 6 T1 6 T }.
2. In this section we remind the low bounds for call option from [1,2].
Take a > 0, S = S(0) < LeaT ,K < L. Define a Brown motion process
x1(t, a) = (α̃+ a)t+ σz(t), z(0) = 0, and consider the threshold rule

τa = min{t | S(t) = Lea(T−t)} = min{t | x1(t, a) = xa
def
= ln(LeaT /S)}

when the process S(t) (process x1(t, a)) for a first time reaches the
threshold function Lea(T−t) (threshold xa). Cumulative and density
functions for the random variable τ0 are

G1(x0, t, α̃) = P(τ0 6 t) = Φ
(−x0 + α̃t

σ
√
t

)
+ exp

(2α̃x
σ2

)
Φ
(−x0 − α̃t

σ
√
t

)
,

g1(x0, t, α̃) = G′
1t(x0, t, α̃) =

x0
σt3/2

φ
(−x0 + α̃t

σ
√
t

)
, t > 0,

where Φ and φ – cumulative and density functions of standard normal
distribution N (0, 1). Write also functions

P1(x0, y, T, α̃) = P(x1(T, 0) 6 y, τ0 > T ),

p1(x0, y, T, α̃) = P ′
1y(x0, y, T, α̃)

for the random variable x1(T, 0) when the process x1(t, 0) doesn’t reach
the level x0 before time T :

P1(x0, y, T, α̃) = Φ
(y − α̃T
σ
√
T

)
− exp

(2α̃x0
σ2

)
Φ
(y − 2x0 − α̃T

σ
√
T

)
,
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p1(x0, y, T, α̃) =
1

σ
√
T

[
φ
(y − α̃T
σ
√
T

)
− exp

(2α̃x0
σ2

)
φ
(y − 2x0 − α̃T

σ
√
T

)]
.

Similar distributions for stopping moment τa are G1(xa, t, α̃+ a),

g1(xa, t, α̃+ a), P1(xa, y + aT, T, α̃+ a) = P(x(T, 0) 6 y, τa > T ) =

= P(x(T, a) 6 y + aT, τa > T ), p1(xa, y + aT, T, α̃+ a) =

=
1

σ
√
T

[
φ
(y − α̃T
σ
√
T

)
− exp

(2(α̃+ a)xa
σ2

)
φ
(y − 2xa − α̃T

σ
√
T

)]
.

Define notations:

β1,2(a) =
−(α̃+ a)± ξa

σ2
, ξa =

√
α̃+ a)2 + 2(r + a)σ2,

β̂1,2(a) =
−(α̃+ a)± ξ̂a

σ2
, ξ̂a =

√
α̃+ a)2 + 2rσ2,

d1(M, b) =
ln(M) + (b+ σ2)T

σ
√
T

, d2(M, b) =
ln(M) + bT

σ
√
T

.

The following function W bounds the price of call option from below:

W (S,L, T, a) = V (S,L, T, a) + U(S,L, T, a),

V (S,L, T, a) = E[e−rτa(Lea(T−τa) −K)1τa6T ] =

=

T∫

0

e−rt(Lea(T−t) −K)g1(xa, t, α̃+ a)dt =

= LeaT e−β1(a)xaG1(xa, T, ξa)−Ke−β̂1(a)xaG1(xa, T, ξ̂a),

U(S,L, T, a) = e−rTE[(ex1(T,0) −K)1τa>T ] =

= e−rT
x0∫

ln(K/S)

(Sey −K)p1(xa, y + aT, T, α̃+ a)dy.

= U1(S,L, T )− U2(S,L, T, a),

U1(S,L, T ) = e−rT
x0∫

ln(K/S)

(Sey −K)
1

σ
√
T
φ
(y − α̃T
σ
√
T

)
dy =
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= e−δTS
[
Φ(d1(S/K, α̃))− Φ(d1(S/L, α̃))

]
−

−e−rTK
[
Φ(d2(S/K, α̃))− Φ(d2(S/L, α̃))

]
,

U2(S,L, T, a) = Se−δT exp
(2(α̃+ a+ σ2)xa

σ2

)
·

·
[
Φ
(
d1

(L2e2aT

SK
, α̃
))
− Φ

(
d1

(Le2aT
S

, α̃
))]
−

−Ke−rT exp
(2(α̃+ a)xa

σ2

)[
Φ
(
d2

(L2e2aT

SK
, α̃
))
− Φ

(
d2

(Le2aT
S

, α̃
))]

The low bounds of call option (see [1,2]) are

B(S) = max
L>max(K,S)

W (S,L, T, 0), H(S) = max
L>max(K,S), a>0

W (S,L, T, a).

3. In this section we represent formulae for functions V1, V2. Denote
xi = ln(Li/S), i = 1, 2, L(T1) = L exp(a2T1 + a1(T − T1)). Define
functions

W1(S,L1, L2, T1) = e−rT1

x1∫

−∞

W (Sey, L1, T − T1, 0)p1(x2, y, T1, α̃)dy,

Ũ1(S,L1, L2, T1) = U1(S,L2, T1)− U1(S,L1, T1).

W2(S,L, a1, a2, T1) =

= e−rT1

xa1−a1T1∫

−∞

W (Sey, L, T − T1, a1)p1(L(T1), y + a2T1, T1, α̃+ a2)dy,

So, V1(S,L1, L2, T1) = V (S,L2, T1, 0)+

+Ũ1(S,L1, L2, T1)−
( S
L2

)−2α̃/σ2

Ũ1

(L2
2

S
,L1, L2, T1

)
+W1(S,L1, L2, T1),

V2(S,L1, L2, T1) = V (S,L exp(a1(T − T1), T1, a2) +W2(S,L, a1, a2, T1).

4. Examples. In tables K = 100, r = 0.03, δ = 0.07, σ = 0.4. The
2th and 4th columns contain Broady-Detemple and Chung-Hung-Wang
low bounds for call options, the 6th column contains true option value.
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Table 1. T = 0.5.

S BD V ∗
1 CHW V ∗

2 TV
90 5.6942 5.7106 5.7186 5.7211 5.7221
100 10.1901 10.2191 10.2329 10.2371 10.2387
110 16.1101 16.1531 16.1731 16.1796 16.1812

Table 2. T = 3.

S BD V ∗
1 CHW V ∗

2 TV
90 15.6088 15.6773 15.7023 15.7184 15.722
100 20.6562 20.7395 20.7693 20.7892 20.7933
110 26.3365 26.4327 26.4678 26.4898 26.4944
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Modeling of exchange order flows

V.S. Nimak and D.Y. Golembiovsky
Lomonosov Moscow State University, Moscow, Russia

Modeling the dynamics of stock market can provide information for
creating some investment strategies. Consider the basic concepts of ex-
change trade.

• Bid — price that a buyer of financial instrument is willing to pay.

• Ask — price at which a seller is willing to give financial instrument.

• Spread — difference between the best ask and the best bid.

• Limit order — an order to trade a certain amount of asset at
specified price or better.

• Market order — an order that is executed immediately after en-
tering the exchange at the best price in order book.
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• Modification order — an order to reduce or cancel specified limit
order.

• Order book — a table of limit orders for buying and selling secu-
rities on a stock market. Table 1 shows an example. First column
contains volumes of limit buy orders, second holds prices corre-
sponding to the volumes, and third has volumes of limit sell orders.

Market agents can send three types of buy and sell orders. Limit
orders fall into electronic trading system, where orders with the same
price are summed up by volume, forming a single position for demand
or supply. The minimum selling price in order book is called the best
ask price, the maximum buying price is called the best bid price. When
a market order arrives at the exchange, it matches the best price of
order book, and the transaction takes place. For example, if a market
buy order has arrived at the exchange, i.e. one of agents wants to buy
a certain amount of some asset, then the specified volume of the asset
is removed from the best ask. If the best ask volume is not sufficient
to satisfy market order, than the best ask price changes and remaining
volume meets new best ask. Agent also may withdraw his limit order,
sending modification order. Each of the orders changes the state of the
order book, which affects the behavior of market agents.

Bid Side Price Ask Side

$73.86 1800

$73.85 54

$73.84 245

$73.83 100

$73.82 330

$73.81

280 $73.80

563 $73.79

400 $73.78

10 $73.77

35 $73.76

Table 1. Example of order book.

In the article [1] Kont introduces stochastic model for limit order
book’s behavior, describes estimation procedure of order’s parameters,
based on statistical data.

Order book events are modeled as independent Poisson processes:
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• Limit orders arrive at a distance of i price ticks from the opposite
best quote at independent exponential times with rate λ(i).

• Modification orders arrive at a distance of i price ticks from the
opposite best quote at independent exponential times with rate
θ(i).

• Market orders arrive at independent exponential times with rate
µ.

For limit orders, modification orders and market orders the following
formulas are proposed to take corresponding rate estimates:

λ̂(i) =
Nl(i)

T∗
, (1)

θ̂(i) =
Nc(i)

T∗
, (2)

µ̂ =
Nm
T∗

, (3)

where Nl(i) is the total number of limit orders arrived at a distance of i
from the opposite best quote, Nc(i) is the total number of modification
orders arrived at a distance of i from the opposite best quote, Nm is the
total number of market orders arrived, T∗ is the trading period.

As shown in [2], such estimates correspond to maximum likelihood
estimates. Let us find the maximum likelihood estimate for Poisson pro-
cess of market buy orders arrival.

The density function for exponential distribution is f(t, µ) = µe−µt.
Let ti, i = 1, . . . , N(T ) be the moments of market buy orders arrival.
Then the likelihood function:

L(µ) =
N(T )∏

i=2

µe−µ(ti−ti−1) = (µ)N(T )e−µH(T ), (4)

where N(T ) is the number of market buy orders arrived by the time T ,
H(T ) is the arrival time of last market buy order by the time T .

The log-likelihood function:

lnL(µ) = N(T )ln(µ)− µH(T ). (5)
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Eventually we can find the maximum likelihood estimate:

∂lnL(µ)
∂µ

=
N(T )

µ
−H(T ) = 0, (6)

µ̂ =
N(T )

H(T )
. (7)

Now let us consider some other distributions, that may also describe
order flows behavior.

Any data set with finite moments can be fitted by a member of the
Johnson families such as SB, SU , SL [3]. For continuous random variable
X we can apply three normalizing transformations, having the general
form:

Z = γ + δh(X, ξ, λ), (8)

−∞ < γ < +∞, δ > 0, −∞ < ξ < +∞, λ > 0, (9)

where h(X, ξ, λ) is a transformation function, Z is a standard normal
random variable, γ, δ are shape parameters, λ, ξ are scale and location
parameters.

Transformation functions for corresponding families are:

hSL
= ln(

X − ξ
λ

), X > ξ, (10)

hSB
= ln(

X − ξ
ξ + λ−X ), ξ < X < ξ + λ, (11)

hSU
= Arsh(

X − ξ
λ

), −∞ < X < +∞. (12)

We focus on type SB, that shows the best results for our data among
Johnson families. Let Y = X−ξ

λ . Than it’s probability density function
(PDF):

fSB
(y) =

δ√
2π

1

y(1− y)e
− 1

2 (γ+δln(
y

1−y
))2 , ξ < X < ξ + λ. (13)

Consider gamma distribution too. The probability density function:

f(t) =
1

Γ(k)θk
tk−1e−

t
θ , k, θ > 0, (14)

where Γ(k) =
∫∞

0
xk−1e−xdx is an Euler gamma function, k is a shape

parameter, θ is a scale parameter.
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We will also look at exponential distribution with PDF:

f(t) = λe−λt, λ > 0. (15)

To compare different models we will use Bayesian information crite-
rion (BIC). This criterion is defined as:

BIC = ln(n)k − 2ln(L), (16)

where L = f(x|θ̂) is the maximized value of the likelihood function of the

model, θ̂ is the parameter values that maximize the likelihood function, x
is the observed data, n is the sample size, k is the number of parameters
in the model. Such criteria is used only for comparison purposes and do
not have any interpretation for it’s absolute value. It also penalizes the
number of parameters in the model. The lower BIC of the model, the
better it fits data.

Let us compare Kont’s model and maximum likelihood fitting for
different distributions: exponential, gamma, and Jonson’s SB. We will
use NASDAQ data for such companies, as Facebook, Intel, Microsoft,
Cisco, Vodafone, Liberty Ventures and Liberty Global PLC.

Fig. 1 describes the results for FB (Facebook), limit buy order at the
distance of 1 price tick from the best ask. Histogram shows the empirical
distribution for arrival data with bin size 0.1 sec. for time period 3 hours
(10800 sec.), 11:00 — 14:00, 2014-11-03. As data is always nonnegative,
first bar corresponds to zero values. The data has some peculiarity: it
contains lots of zero arrival times and times close to zero. Notice, that
exponential distribution is a particular case of gamma distribution for
the shape parameter k = 1. It can not provide condition of going to
infinity at t = 0 unlike gamma distribution, which make it possible with
the shape parameter 0 < k < 1.

Kont’s model Exponential Gamma Johnson

Limit-Bid-1 99751 -18442 -461372 6020

Limit-Ask-1 112698 -25973 -528153 -2145

Modify-Bid-1 85375 -10265 -292100 5571

Modify-Ask-1 86390 -10835 -305393 11893

Market-Bid 21621 21605 -184024 25062

Market-Ask 21837 21530 -163060 27021

Table 2. BIC values for FB (Facebook).
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Fig. 1. Distributions for limit order arrival to the bid side at the
distance of 1 price tick from the best ask.

For the same data Table 2 displays the example of BIC values for
different orders. The results show that gamma distribution provides the
best fitting and it suits data mush better than Kont’s model.
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On probability of default
in local volatility models

S.G. Shorokhov and A.E. Buuruldai
Nikol’skii Mathematical Institute of RUDN University, Moscow, Russia

Structural credit risk models [1] are based on constant volatility
Black-Scholes pricing model [2], where the dynamics for the value of the
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firm Vt in risk-neutral framework is described by stochastic differential
equation (SDE)

dVt = r Vt dt+ σ Vt dWt, V (0) = V0 > 0 (1)

with risk-free interest rate r > 0 and constant volatility σ > 0, Wt –
standard Wiener process. In Black-Scholes model (1) the value of the
firm Vt is distributed lognormally and

Vt = V0 e

(
r−σ2

2

)
t+σWt . (2)

According to Merton default model [3] with debt face value K and ma-
turity date T the default event D is determined as D = {VT < K} and
probability of default PD is equal to

PD = P [VT < K] = Φ

(
− 1

σ
√
T

[
ln
V0
K

+

(
r − σ2

2

)
T

])
, (3)

where P is a risk-neutral probability measure.
But an assumption of constant volatility in Black-Scholes model fails

to hold in practice because of the so-called ”volatility smiles” and fat
tails of financial data distributions. One of the most natural approaches
to these issues is the transition to general model of risk-neutral dynamics

dVt = r Vt dt+ σ (Vt, t) Vt dWt, V (0) = V0 > 0 (4)

with volatility σ being a function of firm value Vt and time t. Although
the advantages of local volatility models with SDE (4) are well recog-
nized, there exist a limited number of volatility functions σ (Vt, t) which
admit closed form solutions of (4) for firm value Vt.

We are interested in models when the firm value Vt can be repre-
sented as a function of the standard Wiener process Wt and time t
Vt = Ψ(Wt, t), examined in [4]. This case is realized in shifted lognormal
model [5]

dVt = r Vt dt+ σ
(
Vt − α er t

)
dWt, V (0) = V0 > 0, (5)

where the firm value Vt is distributed lognormally and

Vt = α er t + (V0 − α) e
(
r−σ2

2

)
t+σ·Wt . (6)

In normal model, introduced by J. Cox and S. Ross [6],

dVt = r Vt dt+ σ dWt, V (0) = V0 > 0, (7)
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the firm value Vt is distributed normally and

Vt = V0 e
r t + σ

√
e2r t − 1

2 r t
Wt. (8)

In hyperbolic-sine model

dVt = r Vt dt+
√
σ2 + 2 r V 2

t dWt, V (0) = V0 > 0, (9)

the firm value Vt can be represented as a function of Wt only

Vt =
σ√
2 r

sinh

(
arsinh

(√
2 r

σ
V0

)
+
√
2 rWt

)
. (10)

When the firm value VT is a function of WT and T , the probability
of default PD can be easily calculated as

PD = P [VT < K] = P [Ψ (WT , T ) < K] =

= P
[
WT < Ψ−1 (K, T )

]
= Φ

(
1√
T

Ψ−1 (K, T )

)
(11)

Then for shifted lognormal model (6) PD is equal to

PD = Φ

(
− 1

σ
√
T

(
ln

V0 − α
K − α er T +

(
r − σ2

2

)
T

))
, (12)

for normal (Cox-Ross) model (8) PD is equal to

PD = Φ

(
K − V0 er T

σ

√
2 r

e2r T − 1

)
, (13)

and for hyperbolic-sine model (10) PD is equal to

PD = Φ

(
1√
2 r T

[
arsinh

(√
2 r

σ
K

)
− arsinh

(√
2 r

σ
V0

)])
. (14)

Let us plot probability of default curves for the following common
parameters

V0 = 100, K ∈ [50, 170] , T = 1, r = 7%, σ = 30%, α = 45.
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Fig. 1. Comparison of probabilities of default.

From fig. 1 it follows that PD for local volatility models differs from
PD in Black-Scholes model, which gives us an opportunity to select most
appropriate model of firm value dynamics for credit risk modelling.
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Application of mean field games
approximation to economic processes

modeling

N.V. Trusov
Lomonosov Moscow State University, Moscow, Russia

This work relies on the results in [1], and is its extension.
We present a trading executional model of professional trader and

retail traders on financial market. On financial market we have the main
investors that hold the asset shares with a view to a further growth of the
asset share price, also known as long-term investors, and traders that are
trying to maximize the revenue resulting from buying and selling blocks
of asset shares. These traders are divided into two types of traders: a big
trader, also known as professional trader, that can predict the further
dynamic of asset share by analyzing the considered financial market, and
a multitude of retail traders. Retail traders are non-professional traders
that are acting similarly, trying to avoid abrupt changes.

In this abstract we consider the following problem. Professional
trader has an initial budget P0 > 0 at time t0 = 0. By time T > 0 he
wants to maximize his budget by entering the financial market and op-
erating the blocks of asset shares. The behaviour of professional trader
is described by Hamilton–Jacobi–Bellman equation evolving backward
in time, and the behaviour of the retail traders is described by Fokker–
Planck equation evolving forward in time. Coupling these equations we
receive the mean field game problem.

We assume that the behaviour of the retail traders on the given time
interval [0, T ] can be described by the utility function, presented in [1].
According to it, we present a value function:

u(t, x) = max
α∈A1

E




T∫

t

(
lnm(τ, x(τ)) − 1

2
α2(τ) − λx2(τ)

)
dτ

∣∣∣∣∣∣
x(t)=x

α(t)= dx
dt




(1)
where m(t, x) is a probability density function of the retail traders,
x(t) ∈ R is the amount of asset shares held by retail traders at time
t ∈ [0, T ], x ∈ R, t ∈ [0, T ], α ∈ A1 is a trading rate of the retail traders

(real stochastic process γ(t) ∈ A1, if and only if E

(
T∫
0

γ2(t)dt

)
< ∞),

α(t, x) =
∂u

∂x
, λ > 0. The coupled system of PDEs is:
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



∂u

∂t
(t, x) +

σ2

2

∂2u

∂x2
(t, x) +

1

2

(
∂u

∂x
(t, x)

)2

− λx2 = − lnm(t, x),

∂m

∂t
(t, x) +

∂

∂x

(
∂u

∂x
(t, x)m(t, x)

)
− σ2

2

∂2m

∂x2
(t, x) = 0,

u(T, x) = −θ(x− a)2,
m(0, x) = m0(x),

(2)
where x ∈ R, t ∈ [0, T ], m(t, x) is a probability density function of the
retail traders by the amount of asset shares, u(t, x) is defined in (1),
θ > 0, a ∈ R are given parameters.

By the assumptions that the density function of the retail traders
has a Gaussian probability distribution of mean µ0 and dispersion δ20 ,
the PDEs system (2) can be reduced to ODEs system





u(t, x) = C0(t) + C1(t)x+ C2(t)x
2,

m(t, x) = exp
[
D0(t) +D1(t)x +D2(t)x

2
]
,

α(t, x) = C1(t) + 2C2(t)x,

(3)

where x ∈ R, t ∈ [0, T ], and the functions C0(t), C1(t), C2(t), D0(t),
D1(t) and D2(t) are the solutions of the six Riccati equations:





Ḋ0 =
σ2

2
D2

1 − C1D1 + σ2D2 − 2C2,

Ḋ1 = 2σ2D1D2 − 2C2D1 − 2C1D2,

Ḋ2 = 2σ2D2
2 − 4C2D2,

Ċ0 = −D0 −
C2

1

2
− σ2C2,

Ċ1 = −D1 − 2C1C2,

Ċ2 = −D2 − 2C2
2 + λ,

(4)

with initial conditions D0(0) = − µ2
0

2δ20
− 1

2
ln
(
2πδ20

)
, D1(0) =

µ0

δ20
,

D2(0) = − 1

2δ20
, C0(T ) = −a2θ, C1(T ) = 2aθ and C2(T ) = −θ; µ0 is

the amount of asset shares of retail traders at t = 0, µ0 ∈ R, a is the
amount of asset shares the retail traders want to achieve by time T ,
a ∈ R δ20 > 0, σ2 > 0, λ > 0, θ > 0 are given parameters. The function
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D2(t) is negative at time t ∈ [0, T ], so it guarantees that the density
function of the retail traders has a Gaussian probability distribution.

We assume that the asset share price satisfies the following dynamic
equation:

S(t) = S0(t) + η1M(t) + η2β(t), (5)

where t ∈ (0, T ], M(t) =
∫
R

α(t, x)m(t, x)dx, η1 > 0, η2 > 0, S0(t)

represent the asset share price in absence of trading. We consider a step
function for S0(t) that has a jump on h units at time τ ∈ (0, T ).

It is obvious to assume that at time t = 0 professional trader has no
asset shares, and by time T he wants to have a zero asset shares as well.
We get the following optimal control problem for the optimal strategy
of professional trader:




ẏ(t) = β(t),

Ṗ (t) = −
(
S0(t) + η1

(
C1(t)− C2(t) ·

D1(t)

D2(t)

)
+ η2β(t)

)
β(t),

(6)
where t ∈ [0, T ], y(t) represents the amount of asset shares of professional
trader at time t ∈ [0, T ], β(t) is a trading rate of professional trader at
time t ∈ [0, T ] (y(0) = y(T ) = 0), P (t) in a function that represents the
amount of budget left by professional trader at time t ∈ [0, T ] (we assume
that P (t) > 0, t ∈ [0, T ], P (0) = P0 > 0). The system (6) includes the
functions C1(t), C2(t), D1(t), D2(t) defined in (4) (see (3)). The goal is
to maximize the budget of a retail trader at time T > 0, so we can write
the functional to the system (6) as

J = P (T )→ max . (7)

Applying Pontryagin’s maximum principle [2], we conclude that the
optimal control β∗ of professional trader is defined by:

β∗ =
1

2η2

(
C − S0(t)− η1C1(t) + η1C2(t)

D1(t)

D2(t)

)
, (8)

where C is a constant unique defined after substitution the optimal con-
trol (8) into system (6).

Thus, the dynamic equation of asset share price (5) becomes:

S(t) =
1

2

(
S0(t) + C + η1C1(t)− η1C2(t)

D1(t)

D2(t)

)
. (9)
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Note that the obtained equation (9) does not depend on η2, so the ac-
tivity of professional trader does not impact on the asset share price.

Let K(t), t ∈ [0, T ] be a function that represents the budget of retail
traders, K(0) = K0 > 0, and defined by K̇ = −S(t)

∫
R

α(t, x)m(t, x)dx.

To analyze whether retail traders’ revenue is positive or not, it is suffi-
cient to analyze the sign of F , introduced in the following equation:

F = K(T ) + x(T ) · S(T )− (K(0) + x(0) · S(0)) . (10)

Let P̃ represent the amount of invested money of professional trader.

Introducing the ratio
P (T )− P (0)

P̃
, and dividing it by the ratio that

shows the profit according to invested money, i.e.
max

t∈[0,T ]
S(t)− min

t∈[0,T ]
S(t)

min
t∈[0,T ]

S(t) ,

we can define the profit coefficient of professional trader:

PCBT =

(P (T )− P (0)) · min
t∈[0,T ]

S(t)

P̃

(
max
t∈[0,T ]

S(t)− min
t∈[0,T ]

S(t)

) . (11)

As an example, we consider the following parameters: t0 = 0; T = 6;
η1 = 4; η2 = 0.5; λ = 1.6; σ = 3; P0 = 1000; K0 = 100; µ0 = 2; δ0 = 0.8;
a = 3; θ = 2.2; S0 = 20; h = 10; τ = 1. The profit coefficient of profes-
sional trader: 0.47. The parameter F , defined in (10) is 16.97. Therefore,
the retail traders make a profit due to the right forecast of the asset
share price. The profit of professional trader is 170.29. In the following
graphs we can observe the dependence of a budget of professional trader
and his amount of asset shares:
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If we fix the introduced parameters, and will vary only the parameters
µ0 ∈ [−2, 2] and a ∈ [−2, 2], we can observe how the profit coefficient of
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a big trader and the profit of retail traders depend on the initial amount
of asset shares µ0 of the retail traders and the amount of asset shares
the retail traders want to achieve by time T :

0.4
2

0.6

0.8

1 2

1

P
C

B
T

1.2

1

Profit coefficient BT

µ0

0

1.4

a

0

1.6

-1 -1
-2 -2

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Fig. 3. Profit coefficient
dependence of professional trader

on (µ0, a)

-5
4

0

4

5F

2

F

10

µ0

2

a

15

0 0
-2 -2

0

2

4

6

8

10

12

Fig. 4. Profit dependence of retail
traders on (µ0, a)

There is also a markable situation, when professional trader enters
the short positions twice. Lets consider the following parameters: t0 = 0;
T = 5; η1 = 5; η2 = 0.2; λ = 0.5; σ = 2; P0 = 100; K0 = 10; µ0 = −1;
δ0 = 0.8; a = 1; θ = 1; S0 = 10; h = 3; τ = 0.5. In the following graphs
we can observe the amount of asset shares of professional trader and the
asset share price:
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On sufficient conditions for survival
probability in the life annuity insurance
model with risk-free investment income

T.A. Belkina1 and N.B. Konyukhova2
1Central Economics and Mathematics Institute of RAS,

2Dorodnicyn Computing Center FRC CSC of RAS,
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We study the life annuity insurance model with random revenues (see,
e.g., [1]) when the whole surplus of the insurer is invested continuously
in a risk-free asset. For the survival probability (SP) as a function of
the initial surplus (IS) in this model, some associated singular problem
for linear integro-differential equation (IDE) is formulated and studied
in [2]∗. In particular, for the case of exponential distribution of revenue
sizes, the existence and uniqueness of the solution to this problem are
stated. Here we prove the sufficiency theorem asserting that the solution
of associated singular problem for IDE determines the SP in the original
insurance model. For the classical collective risk model with investments,
a similar approach was used in [4]; the corresponding existence results
see, e.g., in [5].

The life annuity insurance model may be considered as dual to the
classical non-life collective risk model and is called also the dual risk
model (see, e.g., [6]). The surplus or equity of a company (in the absence

∗In [2] the case of risky investments is also considered; for this case see [3] as well.
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of investments) in the dual risk model is of the form

Rt = u− ct+
N(t)∑

k=1

Zk, t > 0. (1)

Here Rt is the surplus of a company at time t ≥ 0; u is the IS, c > 0
is the rate of expenses (total pension payments per unit time) assumed
to be deterministic and fixed; N(t) is a homogeneous Poisson process
with intensity λ > 0 that, for any t > 0, determines the number of
random revenues up to the time t; Zk (k = 1, 2, ...) are independent
identically random variables with a distribution function F (z) (F (0) = 0,
EZ1 = m <∞,m > 0) that determine the revenue sizes and are assumed
to be independent of N(t); these revenues arise at the moments of the
death of policyholders.

Let now the whole surplus be invested in a risk-free asset which
evolves as dBt = rBt dt, t > 0, where r > 0 is the interest rate.

Then the resulting surplus process Xt is governed by the equation

dXt = rXt dt+ dRt, t > 0. (2)

with the initial condition X0 = u, where Rt is defined by (1).
Denote ϕ(u) = P (Xt ≥ 0, t > 0) the SP (i.e., the probability that

bankruptcy will never happen). It is easy to see that for the SP of process
(2) the following relations are fulfilled:

ϕ(0) = 0,

and
ϕ(u) = 1, u > c/r,

i.e., a ruin will never occur if IS u > c/r.
Definition 1. Let L be the class of functions ϕ(u) defined on [0,∞),

continuously differentiable on (0, c/r) and satisfying conditions

ϕ(0) = 0, lim
u→c/r−0

ϕ(u) = 1, ϕ(u) = 1, u > c/r. (3)

The infinitesimal generator A of the process Xt has the form

(Af)(u) = f ′(u)[ru − c]− λf(u) + λ

∫ ∞

0

f(u+ z) dF (z), (4)

for any function f from a class L [2].
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Lemma 1 [2]. Let all the parameters in (4) be fixed numbers, where
c > 0, λ > 0, r > 0. Let the function ϕ ∈ L be satisfying IDE

(Aϕ)(u) = 0 (5)

for all u > 0 (perhaps, with exception of the point u = c/r). Then: 1)
this solution is unique in L; 2) the solution ϕ(u) satisfies restrictions
0 6 ϕ(u) 6 1, u ∈ R+.

Theorem 1. Let all the conditions of Lemma 1 be fulfilled. Then,
for arbitrary u ∈ R+, the value ϕ(u) of the function, defined in Lemma
1, is SP for the process (2) with initial state X0 = u.

Proof. For any ǫ > 0 choose a positive constant δ < c/2r, such that
ϕ(u) ≤ ǫ for u ∈ [0, δ], ϕ(u) ≥ 1 − ǫ for u ∈ [c/r − δ, c/r]. Then change
ϕ(u) to ϕδ(u) on [0,∞) and extend it on (−∞, 0), such that ϕδ(u) = 0
for u ∈ (−∞, −δ), ϕδ(u) = 1 for u ∈ [c/r + δ,∞), ϕδ(u) = ϕ(u) for u ∈
[δ, c/r − δ], ϕδ(u) is continuously differentiable on R and 0 ≤ ϕδ(u) ≤ ǫ
for u ∈ [−δ, δ], 1− ǫ ≤ ϕδ(u) ≤ 1 for u ∈ [c/r− δ, c/r+ δ]. By Lemma 1
and in accordance with the construction of the function ϕδ(u), it satisfies
restrictions

0 6 ϕδ(u) 6 1, u ∈ R+. (6)

For the process Xt with initial state u ∈ (δ, c/r − δ), define exit time
τδ = inf{t ≥ 0 : Xt /∈ (δ, c/r − δ)}. Then, for u ∈ (δ, c/r − δ), by Ito’s
Lemma (see, e.g., [7]) we have

ϕδ(Xt∧τδ ) = ϕ(u) +

∫ t∧τδ

0

(Aϕ)(Xs)ds+Mt, (7)

where

Mt =

N(t∧τδ)∑

i=1

[ϕδ(Xθi)− ϕ(Xθi−)]

+λ

∫ t∧τδ

0

[ϕ(Xs)−E(ϕ(Xs + Z))]ds,

θi, i = 1, 2, ..., are the times of revenue arrivals and the expectation
symbol corresponds to distribution of revenue size Z.

Since ϕ satisfies the equation (5), u > 0, we have in (7) (Aϕ)(Xs) = 0.
Further,Mt is martingale, hence, taking expectation in both sides of (7),
we obtain

E(ϕδ(Xt∧τδ)) = ϕ(u), u ∈ (δ, c/r − δ).
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Since ϕδ(x) is bounded, by dominated convergence, we obtain, letting
t→∞:

E(ϕδ(Xτδ )) = ϕ(u), u ∈ (δ, c/r − δ). (8)

We write Xt(u) for the process (2) with IS u and τ(u) for the ruin time
of this process, i.e., τ(u) = inf{t ≥ 0 : Xt(u) < 0}. Note that, for ε > 0,
on the set {τ(u) =∞}

Xt(u+ ε) ≥ ε, t ≥ 0, and Xt(u+ ε)→∞, t→∞. (9)

Indeed, for the two processes defined in (2) with initial states u and u+ε,
it is easy to see that Xt(u+ ε)−Xt(u) = εert, whence follows (9).

Now fix ε > 0, such that u + ε ∈ (δ, c/r − δ). In view of (8) and the
non-negativity of ϕδ, we have

ϕ(u+ε) = E[ϕδ(Xτδ(u+ε)(u+ε))] ≥ E[ϕδ(Xτδ(u+ε)(u+ε))I{τ(u) =∞}].

Taking into account that on the set {τ(u) =∞} the relations (9) are
satisfied, we conclude that, for sufficiently small δ, the exit time τδ(u+ε)
coincides on this set with the crossing moment of the level c/r−δ. Hence,
Xτδ(u+ε)(u+ε) ≥ c/r−δ and ϕδ(Xτδ(u+ε)(u+ε)) ≥ 1− ǫ. Consequently,
ϕ(u + ε) ≥ (1 − ǫ)P(τ(u) = ∞). Then, letting ǫ → 0, ε → 0, we obtain
that

ϕ(u) ≥ P(τ(u) =∞), u ∈ (0, c/r). (10)

On the other hand, for u ∈ (δ, c/r − δ), we have

ϕ(u) = E[ϕδ(Xτδ(u)(u))I{Xτδ(u)(u) > δ}]+

+E[ϕδ(Xτδ(u)(u))I{Xτδ(u)(u) ≤ δ}] ≤
≤ E[ϕδ(Xτδ(u)(u))I{Xτδ(u)(u) ≥ c/r − δ}]+

+ǫP(Xτδ(u)(u) ≤ δ).
Letting ǫ → 0 (then δ → 0), we obtain, in view of non-negativity of
jumps of the process Xt and the validity of (6), that

ϕ(u) ≤ P(Xτ0(u)(u) ≥ c/r) ≤ P(τ(u) =∞), u ∈ (0, c/r). (11)

Finally, (10) and (11) imply the equality ϕ(u) = P(τ(u) = ∞) for
u ∈ (0, c/r). For the other values of u, this equality is obvious. Thus,
for u ≥ 0, ϕ(u) is SP for the process (2) with initial state X0 = u.
Theorem 1 is proved.
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As an example of the application of Theorem 1 we consider the case
of an exponential revenue sizes. In [2] the following result is established.

Theorem 2. Let F (z) = 1 − exp (−z/m), all the parameters r, m,
c, λ be fixed positive constants. Then the following assertions hold:

(I) in the class L there exists a solution to IDE (5) (it satisfies (5),
perhaps, with exception of the point u = c/r);

(II) this solution is unique in L and, on the interval [0, c/r), it has
the form

ϕ(u) = 1−
c/r∫

u

ψ(s) ds. (12)

where ψ(u) is defined by the formula

ψ(u) =



c/r∫

0

(c/r − u)λ/r−1 exp (u/m) du




−1

(c/r − u)λ/r−1 exp (u/m).

(13)
In accordance with Theorem 1 the value ϕ(u) of the function, defined
in Theorem 2, is the SP of the process (2) with initial state X0 = u.

We use the approach based on so called sufficiency theorem for SP
and the existence theorem for the corresponding singular problem for
IDE. This unified approach eliminates need to proof regularity of the
survival probability (in details for other models see [4]).

Note that for λ 6 r the solution of IDE (5), defined in Theorem 2,
is non-smooth function. This function may be considered as viscosity
solutions of IDE (5). The uniqueness theorem for a viscosity solution (it
is formulated in [8] for more general model) in application to the problem
considered here is an alternative tool to prove the fact that the function
defined above determines the corresponding survival probability.
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Estimating the probability of company
default based on system dynamics model

D.S. Kurennoy and D.Yu. Golembiovskiy
Lomonosov Moscow State University, Moscow, Russia

Nowadays a considerable number of mathematical methods have been
developed to estimate the probability of borrower default. They are based
on the analysis of quantitative and qualitative enterprise indicators val-
ues, [5]. However, most of these methods do not take into account the
company structure, its dynamics when external factors are changed and
presuppose a large sample of similar enterprises.

This work demonstrates a possibility of using system dynamic model
[4, 7] to assess the probability of company default, which allows avoid-
ing described shortcomings. In the system dynamic paradigm, an ex-
plored enterprise is represented in the form of continuously interacting
elements and external factors. The links between the elements are de-
scribed by functional dependencies and differential equations that deter-
mine compa- ny dynamics and its stability relative to various macroe-
conomic scenarios. The behavior of random macroeconomic variables in
this research is described by ARIMA-GARCH and ARIMAX-GARCH
models [1, 3], which are used in econometrics to predict non-stationary



OR in insurance and risk-management 219

time series. The probability of company default is determined as a re-
sult of experiments over the obtained system dynamics model using the
Monte Carlo simula- tion. The probability of default is a share of macroe-
conomic scenarios leading to the ruin of enterprise. The obtained numeri-
cal results are compared with estimations of the rating agencies Moody’s
and Fitch.

The system dynamic model of Bashneft [6], which has been produc-
ing since 1932 and is developing about 170 deposits, was built on the ba-
sis of the financial statements and information from other open sources
for time period 2007-2015 years. The key element of this system is the
”Ruble cash” stock. Its equality to zero means enterprise default. Prices
of oil and oil products traded by the company, dollar-to-ruble rate, rate
of attracted and redeemed loans, the basic rate of mineral extraction
tax, unit costs of extraction, processing and general economic expenses
were considered as external parameters that affect state of the model.

These external parameters are described using ARIMA-GARCH and
ARIMAX-GARCH models. The basic concept of such models is to relate
the current time series values with their previous values, taking into ac-
count random innovations and correlation between variables. Gene- ral
view of ARIMAX(p, d, q) - GARCH(s, r) models is given by the equa-
tions:

(1− L)dYt = c+ (
p∑
i=1

aiL
i)(1 − L)dYt + (

q∑
i=1

biL
i)et + wXt,

et = σtzt,

σ2
t = c0 +

s∑
i=1

γiσ
2
t−i +

r∑
i=1

βie
2
t−i,

where Yt — considered time series; Xt — exogenous factor; L : LYt =
Yt−1 — lagging operator; ai, bi, γi, βi, w — real numbers that are
coeffici- ents of the model; p, q, d, s, r — natural numbers that deter-
mine the model order; {zt} — random processes of independent iden-
tically distribu- ted random variables; c, c0 — constants. In this case,
the ARIMA(p, d, q) - GARCH(s, r) model is obtained from the described
one if we set w=0.

In order to assess the probability of default for oil producing and
refining enterprise, company dynamics model was simulated from the
second quarter of 2014 taking into account various scenarios of external
macroeconomic parameters realized by the described ARIMA-GARCH
and ARIMAX-GARCH models. The total number of experiments on the
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Bernoulli scheme with two outcomes was 10,000. In each of them, fact of
default or not default of the enterprise during different periods was fixed:
one, two, three, four, five and ten years. As a result, the probability of
default for each time interval was calculated by formula:

p = k
n ,

where k is number of experiments in which company has defaulted,
n means total number of model runs. Then confidence intervals were
constructed with confidence levels of 95% and 99% using the standard
Clopper-Pearson method [2] for the binomial distribution. The results
are presented in Table. 1. In this case, the probability of default indi-
cates the percentage of cases that correspond to the enterprise default
(it is defined as p 100).

In 2015, Bashneft was assigned a Ba1 rating by Moody’s and BB+ by
Fitch. Table 1 shows the average percentage of ruined companies with
such rating for various periods (1-5 and 10 years), established on the
basis of the data period 1983-1966 for Moody’s and 1981-2015 for Fitch.
Note that the average for the period 1983-2016 percentage of companies
that went default during the year is below the same level for 2015. At the
same time, the rating agencies’ data differ by 1-1,5 points, which makes
it possible to consider such a difference when comparing the results of
modeling with the estimations of rating agencies as acceptable.

A comparative analysis of the obtained results and data from
Moody’s and Fitch demonstrates closeness of the simulated probability
of company default and corresponding rating agencies estimates, which
allows to conclude that the described approach is acceptable for estimat-
ing the probability of borrower default. In most cases, the model proba-
bility of default lies between the rating agencies estimates, and the con-
fidence intervals found cover the level of the average percentage of ru-
ined compa- nies with an error of 0.1-3 points. The most accurate are
the results obtained in assessing the probability of default within one
year, two, three and four years. Discrepancies that occur when consider-
ing forecas- ting periods of 5 and 10 years can be explained by the inad-
equate accuracy of ARIMA-GARCH for such large time intervals. They
are incapable of taking into account the changes that have occurred in
the market during this time. In addition, the information used in the
construction of the Bashneft system-dynamic model is not exhaustively
complete, since it is based only on the analysis of open sources. Note
that banks have the ability to receive any data from their borrowers and
thereby refine its system dynamic model.
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T L95
low L95

up L99
low L99

up p(%) Moody’s
(1983-
2016)

Fitch
(1981-
2015)

1 year 0.79 1.18 0.74 1.25 0.97 0.47 0.77
2 years 1.99 2.58 1.90 2.68 2.27 1.54 2.51
3 years 3.39 4.14 3.28 4.27 3.75 2.85 4.04
4 years 4.67 5.54 4.54 5.68 5.09 4.15 5.58
5 years 8.52 9.66 8.36 9.85 9.08 5.47 6.83
10 years 10.95 12.21 10.76 12.42 11.56 10.36 9.92
L95
low , L95

up – the lower and upper limits of the confidence
interval with a confidence level of 95%.
L99
low , L99

up – the lower and upper limits of the confidence
interval with a confidence level of 99%.
Moody’s (1983-2016) - the average percentage of ruined
companies for a different period (1-5 years and 10 years)
and rated at Ba1.
Fitch (1981-2015) - the average percentage of ruined
companies for a different period (1-5 years and 10 years)
and rated at BB+.
Moody’s (2015) - the percentage of companies ruined in 2015
with a rating of Ba1 is 0.905.

Table. 1. Estimation the probability of oil company default.
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Parameter estimation of ARIMA-GARCH
model with variance-gamma distribution in
financial series: expectation-maximization

algorithm
D.S. Ogneva and D.Yu. Golembiovskiy

Lomonosov Moscow State University, Moscow, Russia

The financial time series of fixed income securities, stock indices and
shares are characterized by the autocorrelation of their squared returns
[1, 2]. In econometrics this feature is described by the heteroscedastic
model ARCH [3, 4]. The ability to vary the returns distribution [5, 6],
the model of conditional mean [7], and the ARCH form [8] allows to
describe the real market price dynamics quite accurately.

This work consider ARIMA-GARCH model with variance-gamma
distribution:

∆dyt = mt +
√
htǫt, ǫt ∼ V G(θ, µ, σ, τ)

mt = E[∆dyt|Ft−1] = φ0 + φ1∆
dyt−1 + φ2∆

dyt−2 + · · ·+ φp̌∆
dyt−p̌+

+ θ1
√
ht−1ǫt−1 + θ2

√
ht−2ǫt−2 + · · ·+ θQ

√
ht−q̌ǫt−q̌,

ht = D[∆dyt|Ft−1] = α0 + α1ht−1 + α2ht−2 + · · ·+ αpht−p+

+ β1ht−1ǫ
2
t−1 + β2ht−2ǫ

2
t−2 + · · ·+ βqht−qǫ

2
t−q,

and normalization restrictions:

E[ǫt] = θ + µτ = 0, D[ǫt] = τ(µ2 + σ2) = 1,

where yt = st/st−1 — considered returns of financial time series st;
∆xt = xt − xt−1 — difference operator, d — its order such that ∆dyt
is the first second-order stationary time series; mt and ht — conditional
mean and variance respectively; ǫt — independent standard variance-
gamma random values, (θ, µ, σ, τ) — variance-gamma distribution pa-
rameters; φ0, ..., φp̌ and θ1, ..., θq̂ — ARIMA parameters, α0, ..., αp and
β1, ...βq — GARCH parameters, (p̂, d, q̂) and (p, q) — ARIMA and
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GARCH orders respectively. That is, (p̂+ q̂+1) parameters for ARIMA,
(p+q+1) parameters for GARCH and 2 parameters for variance-gamma
distribution (because of two restrictions); denote, Θ — all of them.

Due to skewness and kurtosis variance-gamma distribution [9, 10]
closely approximates financial series. However, its density has not got a
simple form formula. So, classical approach to tuning the model coeffi-
cients solving the likelihood maximization problem for variance-gamma
densities product is inconvenient to use. This implies numerical issues
for parameters estimation.

Variance-gamma distribution can be defined as a normal variance-
mean mixture where the mixing density is a gamma distribution [11]. By
discretizing the second one [12], the first one is represented as a mixture
of normal, so an expectation-maximization algorithm can be applied [13].
Expectation step computes expected value of complete log-likelihood
function with respect to mixing variable wk (gamma discretization) with
densities πk and missing values zt (mixing components number) with
their densities:

gtk = p(ztk = 1|yt,Θold) =
πk(τ

old) · φ
(
yt|Θold, wk

)

K∑
k=1

πk(τold) · φ
(
yt|Θold, wk

) ,

zt ∈ {0, 1}K :

K∑

k=1

ztk = 1; πk(τ) =
wτ−1
k e−wk

K∑
i=1

wτ−1
i e−wi

,

log φ(yt|Θ, wk) = −
(yt − (mt + θ

√
ht + µ

√
htwk))

2

2σ2htwk
− log(σ

√
htwk),

where index old means last iteration parameters values. Maximization
step maximizes the quantity Q(Θ,Θold) obtained in expectation step
with respect to Θ:

Θnew = argmax
Θ

Q(Θ,Θold) =

= argmax
Θ

[
T∑

t=1

K∑

k=1

gtk

(
log πk(τ) + logφ(yt|Θ, wk)

)]

To verify the correctness of the obtained algorithm, experiments
were performed with daily data on the SP500 index from 01.01.2016
to 01.10.2017. The efficiency of the constructed model was considered in



224 OR in insurance and risk-management

comparison with normal (norm), Student-t (std), normal inverse gaus-
sian (nig), generalized hyperbolic (ghyp) and Johnson’s SU (jsu) distri-
butions implemented in ”rugarch” package in language R. The results
are presented in Table 1. All the information criteria (consistent Akaike,
or cAIC; Bayesian or BIC; Hannan-Quinn, or HQIC) showed that the
quality of the variance-gamma (vg) model is comparable to the quality
of normal inverse gaussian and much better than normal and Student-t
distributions, but still slightly worse than generalized hyperbolic. Two
mentioned models are generalized hyperbolic sub-families, its limiting
forms, therefore, having more attractive distribution functions, they lose
in accuracy of parameters selection.

Table 1. Information criteria for the compared models
vg norm std nig ghyp jsu

cAIC 3218.1 3261.2 3231.4 3219.0 3212.7 3226.0
BIC 3230.1 3270.2 3241.4 3230.0 3224.7 3237.0
HQIC 3258.5 3292.4 3266.1 3257.2 3254.4 3264.2
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Mathematical models describing opinion formation process has re-
ceived considerable attention in recent years. A critical point in this
field is to find whether individuals’ opinions converge. Another important
question is to find the settings which allow opinions to converge to the
one common view. This outcome is usually called consensus [1]. Scholars
have rigorously examined these issues for classic French-DeGroot and
Friedkin-Johnsen models. These models has been built upon the convex
opinion readjustment mechanism [2]. According to this rule, an individ-
uals change their opinions to the convex combinations of their own and
others’ opinions.

There is a gap in the scientific knowledge with respect to the Kras-
noshchekov model, which is less-known beyond the Russian scientific
community [3–5]. This model has the very similar opinion formation
rule. In this paper, we make an attempt to shed some light on this prob-
lem. Besides, we discuss some issues related to the time confusion puz-
zle in the Krasnoshchekov dynamics. To reconcile this problem, we in-
troduce two evident explanations taking their roots in asynchronous dy-
namics and in game theory.
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Consider an isolated system: a group of N agents. We suppose that
the contingent does not change across the time which is assumed to be
discrete. In the seminal paper [3], opinion dynamics of the agent i obeys
the following equation:

yi(t+ 1) = xiyi(t) + (1− xi)
N∑

j=1

cijyj(t+ 1), (1)

where yi ∈ [0, 1] represents agent’s i opinion - cognitive orientation to-
wards one fixed issue: for example, whether to visit museum on this
weekend (yi(t) = 1) or not to do it (yi(t) = 0) [2]. In this example value
yi(t) = 0.5 corresponds to the maximum of uncertainty. Obviously, one
may consider more complex opinion space by introducing opinions over
the set of independent or even interdependent issues. Nonetheless, this
work is confined to the scalar opinions standing for one fixed topic un-
der discussion. Parameter xi represents the agent’s i resistance to the
external interpersonal influence. Its conventional notation is self-weight
or self-appraisal. Finally, cij ∈ [0, 1] describes the influence agent j has

on agent i. This set of coefficients is bounded by:
N∑

j=1

cij = 1 and cii = 0.

Using the notations ~y(t) = (y1(t), ..., yN (t))T , X = diag(x1, ..., xN ) and
C = (cij)i,j∈{1,...,N}, one can rewrite equation (1):

~y(t+ 1) = X~y(t) + (I −X)C~y(t+ 1), (2)

where I is the identity matrix. Matrix C is also called relative interaction
matrix [2].

As it was mentioned above, opinion process (2) is very similar to ones
from French-DeGroot and Friedkin-Johnsen models. Indeed, using the
notations introduced above French-DeGroot model can be represented
as

~y(t+ 1) = X~y(t) + (I −X)C~y(t). (3)

Similarly, one can obtain Friedkin-Johnsen dynamics:

~y(t+ 1) = X~y + (I −X)C~y(t), (4)

where the vector ~y stands for agents’ prejudices. In some cases one can
suppose that they are agents’ initial opinions: ~y = ~y(0). One striking
difference between (4) and (2) is that in Friedkin-Johnsen model the
principal diagonal of the matrix C may not be zero.
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Actually, protocol (2) is controversial in some sense: for given agents
i and j, agent’s i opinion at the time moment t+ 1 relies on the agent’s
j opinion at the time moment t (in case cij > 0 and xi < 1). Hence, the
agent i readjust its opinion after the agent j has made the same. However,
similar reflection can be implemented with respect to the agent j. Hence,
we have time contradiction.

In this paper, we introduce two explanations of the Krasnoshchekov
dynamics. We suppose this treatments to be able to reconcile the above
puzzle.

Treatment 1. In contrast to protocols (3),(4) which imply syn-
chronous interaction settings, Krasnoshchekov model takes into account
the fact that agents interact and change its opinions not simultaneously
but rather asynchronously [6]. The prominent example is public debates,
where people communicate in a chaos way. To consider such systems,
one can introduce time confusion.

The second explanation has its roots in the game theory.
Treatment 2. Let us introduce a cost function. This function stands

for the desire of an individual to minimize the current cognitive dis-
sonance with surrounding people. We assume this cognitive dissonance
effect to have complex structure: it should depend on the interpersonal
weights which are established among individuals. Namely, this cost func-
tion can be represented by

F ∗
i = [yi(t+ 1)− xiyi(t)− (1− xi)

N∑

j=1

cijyj(t+ 1)]2. (5)

The purpose of the agent i is to minimize (5) by choosing such strategy
yi(t + 1) at the time moment t + 1, which derives the balance between
agent’s own opinion and its neighborhood views:

[y − xiyi(t)− (1− xi)
N∑

j=1

cijyj(t+ 1)]2 −→ min
y∈[0,1]

(6)

The striking signature of the (5) is that agents try to ”look forward”.
In other words, to solve the problem (6), one should evaluate others’ op-
timal strategies. This task requires full awareness: agents have to pos-
sess all information concerning the matrices X,C and ~y(t). Obviously,
in this case the protocol (1) derives the optimal solution of the problem
(6). However, this conditions can be satisfied only for relatively small
systems, where all know all the information about each others.
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The matrix C describes the structure of social interactions and it
can be, in turn, represented by the directed unweighted graph G[C]. It
is assumed that the nodes of the G[C] correspond to the agents and the
arch (j, i) exists if and only if cij > 0. This definition is conventional in
social network analysis. In [5], the following statement was obtained.

Statement 1. Equation (2) has an unique solution if and only if
G[C] doesn’t contain any closed strong component (see [5]), whose nodes
entirely correspond to the agents-conformists (open-minded agents with
xi = 0). In case the solution is unique, it can be calculated by

~y(t+ 1) =W~y(t), (7)

where W = (E − (E − X)C)−1X is a row-stochastic matrix, which is
also called influence matrix.

Actually, the matrix W is very similar to the matrix binding initial
and terminal opinions in Friedkin - Johnsen model in case the latter
exists. The difference is that in the Krasnoshchekov model the matrix
W stands only for one iteration, instead of the Friedkin-Johnsen model.
One can explain it by specifying time-scale: Krasnoshchekov dynamics
implies one iteration, which processes during the durable time span.

Additionally, building upon this fact, one can infer the following
statement.

Statement 2. Using the protocol (4), agents have to reach the op-
timal solution of the problem (6) not through one iteration but during
the huge number of time steps. The crucial point here is that protocol
(4) does not require full awareness: an agent has to know only its own
parameters to obey this dynamics.

To set up about the convergence problem let us consider a directed
unweighted graph G[W ].We constitute this graph similarly to G[C]. The
well-known fact is that the existence of the limit lim

t→∞
~y(t) = ~y(∞) and

the settings under which it is consensus (all components of ~y(∞) are
the same) can be found from the structural properties of the influence
network G[W ]. The matricesW and X,C are bounded by the nontrivial
relation W = (E − (E −X)C)−1X. Nonetheless, in [5], the simple rule
was explored, spanning these entities.

Lemma 1. Let suppose that X and C satisfy the conditions of the
statement 1. Then, for i 6= j the inequality wij > 0 is true if and only
if there exists a walk in graph G[C] from node j to node i such that (i)
agent j is not a conformist; (ii) all nodes pertaining the walk excepting
j are not correspond to the ”stubborn” agents with self-appraisal x = 1.
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Besides, wii > 0 if and only if xi > 0.

This statement corroborate our assumption about durable time in-
terval, since Krasnoshchekov dynamics encourage all possible opinion
percolation directions, which can occur only through long time span.

Using lemma 1 the convergence properties of the Krasnoshchekov
model can be precisely examined.

Theorem 1. For any initial condition ~y(0) the process (7) converges:

lim
t→∞

~y(t) = ~y(∞) (8)

Thus, in contrast to French-DeGroot or Friedkin-Johnsen processes
opinion evolution obeyed (7) is free of periodic dynamics and converges
eventually. The question is whether it reaches consensus?

Theorem 2. In theorem 1 the vector ~y(∞) is a consensus for any
initial condition ~y(0) if and only if (i) the number of closed strong com-
munities doesn’t exceed 1; (ii) number of ”stubborn” agents in the closed
strong community doesn’t exceed 1.

Theorem 2 does not differ from the corresponding statement in
French-DeGroot model. The analysis we introduced is limited: we do
not consider the case when the matrix W does not exists. In this sit-
uation equation (2) has the unlimited set of solutions which have the
prominent signature: they are all alike in such a way that on each time
step conformists cooperate to choose the same random opinion [5]. This
behavior is close to the conduction electrons interaction in superconduc-
tivity state. More rigorous analysis of such opinion phenomenon can be
found in [5].

The critical peculiarity of our society is the persistent disagreement
[2]. Correspondingly, one should introduce such opinion dynamics model
which capable to capture this situation. This statement stands for the
famous Abelson problem [2]. The critical points here are that if the in-
fluence network is strongly connected and agents’ resistances are less
than one (which are in fact the natural assumptions), then the hu-
mankind should reach consensus with respect to all possible topics. In
other words, Krasnoshchekov dynamics can not simulate persistent dis-
agreement without making some exotic assumptions. To reconcile this
problem one should introduce e.g. bounded confidence settings or repul-
sive dynamics. Nonetheless, we consider the Krasnoshchekovmodel to be
advanced from the perspective of high-intensity systems (public debates,
mass meetings) description.
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Introduction

A number of investigations of dynamics of complex plasma with dusty
component were published in recent years [1, 2]. The first dusty plasma
structure containing empty domains (voids) was discovered in the course
of the experiments on the board of the International Space Station [2].
Also, in laboratory conditions the voids have been found later [3–5]. At
the same time, it is not so much studies in which numerical simulations
of the structure generation in dusty plasma are performed. Evolution of
the dynamics of a single symmetric void from equilibrium was described
by electro–hydrodynamic model [6, 7] taking into account the effect of
an ion attraction force as a nonlinear function of the speed of ions. The

∗This research is partially supported by RFBR Grant 18-37-00059.
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algorithm for simulations of appearance of dusty plasma void using the
model [7] has been presented in [8] for the case of cylindrical geometry
of electrical field. Generation of a single symmetric void and concentric
symmetrical voids in unmoving flows of low–temperature dusty plasma
has been obtained in [9]. A study of generation of voids in moving flows
together with the research of the voids dynamics in unmoving media was
presented in [10, 11].

In this paper the results on voids dynamics are presented in depen-
dence on the value of initial electrical field for different initial density of
dust component. The simulations are based on the model [7] of forma-
tion of a void in a dusty plasma flow. The Lax–Friedrichs scheme with
re–calculation and the complex conservative difference scheme [12] have
been used for the hydrodynamic part of the model.

Physical model

Simulations are based on the model [7]. Here the model is considered
in dimensionless form, believing that the normalizing parameters from
[7] have been applied:

∂vd
∂t

+ vd
∂vd
∂x

= Fd − E − α0vd −
τd
nd

∂nd
∂x

, (1)

∂nd
∂t

= −∂(ndvd)
∂x

+D0
∂2nd
∂x2

, (2)

dne
dx

= −neE
τi

, (3)

dE

dx
= 1− ne − nd, (4)

Fd =
aE

b+ |vi|3
, vi = µE. (5)

Here nd, ne are concentrations of dust and electrons components, vd, vi
are velocities of dust and ions components, E is electric field currency,
Fd is ion–drag force, D0 is diffusion coefficient, a, b are fit parameters
of ion–drag force approximation, µ is coefficient of ions mobility, α0 is
friction coefficient, τd, τi are coefficients of normalized temperature for
dust and ion species, ne0 is the value of electrons density in initial time
moment. In fact the governing equations in this model contain dust mo-
mentum (1) and dust continuity equations (2), balance equation of elec-
trons neglecting the electron inertia (3), Poisson law which completes
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the nonlinear system of equations, and the expression for ion–drag force
are presented in (4), (5). Equations (1) and (2) constitute the hydrody-
namic part of the model and the equations (3)–(5) are the electrostatic
part of it. Parameters of the simulations are collected in Tab. 1.

Table 1: Parameters of the calculations
Parameters Values

τi 0.125
τd 0.001
a 7.5
b 1.6, 0.4
α0 2.0
µ 1.5
ne0 0.999

Numerical procedure

For the first order calculations of the hydrodynamic part of the model
the Lax–Friedrichs scheme with re–calculation is used (with D0 = 0) for
the divergent form of the equations (1), (2):

∂u

∂t
+
∂F

∂x
= f ,

u =

(
nd
vd

)
, F =

(
ndvd

τd ln(nd) + 0.5v2d

)
, f =


 D0

∂2nd
∂x2

Fd − E − α0vd


 .

(6)

The second order scheme for the algorithm [8, 9] was obtained using the
approach of [12] for increasing the difference scheme order. By this way
the systems of divergent equations (6) are used for unknown functions
together with the system for their space derivatives

∂ux
∂t

+
∂Fx
∂x

= 0,

ux =

(
ndx
vdx

)
, Fx =

(
(ndvd −D0ndx)x(

τd ln(nd) + 0.5v2d
)
x
+ E − Fd + α0vd

)
.

(7)

The space derivatives of the right parts are included into the flux
functions in the systems of the derivatives (7). It provides the absence
of the numerical (parasite) sources and runoffs. Equations (3), (4) are
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approximated with the second approximation order using the central
form for the space derivatives and the method of Runge–Kutta of the
fourth order of approximation is used, too. The next restrictions were
imposed in the numerical simulations: if nd>1, then nd was applied by
1.0 and vd was applied by vd0 (index ”0” refers to the initial values of
the parameters).

a) b)

Fig. 1. Comparison of dynamics of dusty component nd during the void
formation calculated with the use of first (blue curve, D0 = 0) and

second (red curve, D0 = 0) order schemes for the hydrodynamic part of
the model, nd0 = 0.3, vd0 = 0.1: a) beginning stage (without restrictions

on nd and vd); b) subsequent stage (with restrictions on
nd and vd), black curve — D0 = 0.1.

Comparison of the simulations using the difference schemes of the
first and second approximation order is presented in Fig. 1. It can be
seen that the obtained dynamics are quite the same (Fig. 1a). It should
be noted that the restriction on vd is introduced for ”cutting” the high
frequency numerical oscillations in the dynamics of vd (when nd becomes
more than 1). These oscillations are seen in the profile of nd calculated
with the use of the second order scheme (Fig. 1b, red curve). Introduc-
tion into the scheme the term with the diffusion of concentration of the
dusty component (which plays the role of ”viscosity” in (2)) allowed
smoothing these oscillations (Fig. 1b, black curve D0 = 0.1). Note that
the diffusion term is introduced into the difference approximations via
the flux function in (7).
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a) b)

Fig. 2. Dynamics of concentration of dusty component nd during the
void formation, E0 = 4 · 10−4 (first order scheme):

a) — non–dimensional time t = 70 (unsteady ring structure);
b) — t = 200 steady void.

Dynamics of a void generation

The initial and final stages of void generation in the unmoving flow
(vd0 = 0) of dusty particles are shown in Fig. 2. Two–dimensional figures
for nd obtained by the rotation technique are presented. The mechanism
of voids generation is connected with the superposition of the electrical
field and the ion attraction force action. Void grows in time uder the
constant parameters via the initial circular stage (Fig. 2a) and becomes
saturated at time moment t = 200 (Fig. 2b).

Fig. 3. Simulations with the use of second order scheme,
nd0 = 0.2, b = 0.4, vd0 = 0, E0 = 4 · 10−5, ni = 2000, D0 = 0.1 :

a) – profiles of the defining flow parameters on the stage when the
steady void is formed, t = 120; b) – steady void obtained (nd), t = 120.
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, En = 4 · 10−6.

Dynamics of a void generation with the use of the second order dif-
ference scheme for hydrodynamic part of the model [7] is shown in Fig. 3
(here D0 = 0.1, b = 0.4). Figure 3a demonstrates the profiles of all the
defining parameters for the steady flow containing the formed void. Two–
dimensional figure for nd obtained by the rotation technique is presented
in Fig. 3b. Presence of diffusion of the concentration increases the values
of nd at the void’s center but by decreasing the constant b in the expres-
sion of the ion–drag force Fd (5) the value of residual dusty component
concentration can be decreased into the void’s centre. In addition, the
decrease in nd0 has been obtained to provide some icrease in the void’s
radius.

Dependences of the void’s boundary r∗ and time of steady state void
establishing t∗ on the initial relative electric field value E0/En, En =
4 ·10−6 are presented in Fig. 4. It is seen that when increasing the initial
electic field the void radius decreases toghether with the time value of
steady void establishing.

Conclusion

Generation of steady structures with empty regions (voids) has been
modelled numerically in complex plasma. The simulations are based on
the known model of Avinash, Bhattacharjee and Hu of formation of a
void in a field of dust particles. The model has been reduced to the di-
vergent form and two algorithms for calculations have been suggested.
The Lax–Firedrichs scheme with re–calculation and the complex con-
servative difference scheme have been used for the hydrodynamic part
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of the model. Results on the dynamics of voids have been obtained at
the stage of circular ring structure generation and at the final stage of a
steady round void formation. Dependences of the defining flow parame-
ters on the initial value of the electric field have been obtained for differ-
ent initial values of dusty component up to the steady voids formation.
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Game-theoretic models

Equilibria
in games with common local utilities

Nikolai S. Kukushkin
Dorodnicyn Computing Centre, FRC CSC RAS, Moscow, Russia

The first ever examples of the games considered here were discovered
in the 1970s by Rosenthal [1] and Germeier and Vatel’ [2]. The former
model played an important role in Monderer and Shapley’s theory of po-
tential games [3]. The latter model was generalized in [4,5] and especial-
ly in [6]. Here, we introduce a much wider class of games, which includes
all those models. The theorems have been published in a series of articles
[7–12]. Somewhat similar, but weaker, results can be found in [13–16].

Model

A game with common local utilities (a CLU game) may have an ar-
bitrary (finite) set of players N and arbitrary strategy sets Xi, whereas
the utility functions are generated by the following construction. There
is a finite set A of facilities ; we denote B the set of all nonempty subsets
of A and N the set of all nonempty subsets of N . For each i ∈ N , there
is a mapping Bi : Xi → B describing what facilities player i uses having
chosen xi.

For every α ∈ A, we denote I−α := {i ∈ N | ∀xi ∈ Xi [α ∈ Bi(xi)]}
and I+α := {i ∈ N | ∃xi ∈ Xi[α ∈ Bi(xi)]}. For each i ∈ I+α , we denote
Xα
i := {xi ∈ Xi | α ∈ Bi(xi)}; if i ∈ I−α , then Xα

i = Xi. Then we
set Iα := {I ∈ N | I−α ⊆ I ⊆ I+α } and Ξα := {〈I, xI〉 | I ∈ Iα &
xI ∈ Xα

I }. Without restricting generality, we may assume I+α 6= ∅ – if
nobody can use a facility, there would be no point in including it in the
description of the game – and hence Ξα 6= ∅ too. The local utility function
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at α ∈ A is ϕα : Ξα → R. For every α ∈ A and xN ∈ XN , we denote
N(α, xN ) := {i ∈ N | α ∈ Bi(xi)}: the set of players using α under xN ;
obviously, I−α ⊆ N(α, xN ) ⊆ I+α . For every i ∈ N and xi ∈ Xi, there
is an aggregation rule, a mapping Uxi

i : RBi(xi) → R. The total utility
function of each player i is

ui(xN ) := Uxi

i

(
〈ϕα(N(α, xN ), xN(α,xN ))〉α∈Bi(xi)

)

for all xN ∈ XN .
Generally, CLU games do not have any remarkable properties. Inter-

esting results emerge under certain assumptions about the aggregation
rules and/or local utility functions.

Player i has a negative impact on facility α if, whenever i /∈ I ∈ Iα,
I ∪ {i} ∈ Iα, xi ∈ Xα

i , and x
α
I ∈ Xα

I , there holds

ϕα(I, x
α
I ) > ϕα(I ∪ {i}, 〈xαI , xi〉).

A definition of positive impacts is obtained by reversing the inequality
sign. Γ is a game with negative/positive impacts if the appropriate condi-
tion holds for all i ∈ N and α ∈ A.

Games with structured utilities are defined by the condition I−α =
I+α =: N(α) for all α ∈ A (hence A must be finite); in simple words, the
players cannot choose facilities. The games of [4] are distinguished by
the minimum aggregation of local utilities. Every game with structured
utilities exhibits both negative and positive impacts (by default); actual-
ly, such games are characterized by the combination of strictly negative
and strictly positive impacts.

In a generalized congestion game, A is finite, Xi ⊆ B for each i ∈ N ,
and each Bi is an identity mapping (i.e., each player chooses just a set
of facilities); besides, ϕα only depends on #I. Proper congestion games
of [1] are distinguished by additive aggregation of local utilities (i.e., the
players just sum them up).

A facility α ∈ A is trim if there is a real-valued function ψα(m)
defined for integer m between minI∈Iα

#I = max{1,#I−α } and #I+α − 1
such that

ϕα(I, xI) = ψα(#I) (T)

whenever I ∈ Iα, I 6= I+α , and xI ∈ Xα
I . In other words: whenever a

trim facility is not used by all potential users, neither the identities of
the users, nor their strategies matter, only the number of users. A CLU
game is trim if so is every facility.
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Both generalized congestion games and games with structured util-
ities are trim. In the first case, (T) holds for all I ∈ Iα, even for I = I+α . In
the second case, conversely, I−α = I+α for each facility α; hence Iα = {I+α },
and hence (T) is not required at all.

Results

In Theorems 1, 1∗, and 4, appropriate topological assumptions should
be imposed on sets Xi and functions ϕα. An aggregation rule in The-
orems 2, 3, 5 and 6 is a mapping U : RΣ(U) → R, where Σ(U) is a finite set
(of potential names for local utilities). An aggregation rule is (strictly)
admissible if it is continuous and strictly increases w.r.t. strong (weak)
Pareto order on RΣ(U).

Theorem 1. Let Γ be a CLU game with negative impacts where A
is finite and each player uses the minimum aggregation. Then coalition
improvements in Γ are acyclic and hence Γ possesses a strong Nash
equilibrium.

Theorem 1∗. Let Γ be a CLU game with positive impacts where each
player uses the maximum aggregation. Then coalition improvements in
Γ are acyclic and hence Γ possesses a strong Nash equilibrium.

Theorem 2. If a set U of admissible aggregation rules ensures the
existence of a weakly Pareto optimal Nash equilibrium in every general-
ized congestion game with negative impacts, then for every U ∈ U, there
is a continuous and strictly increasing mapping λU : R→ R such that

∀U ∈ U ∀vΣ(U) ∈ RΣ(U)
[
U(vΣ(U)) = λU ( min

s∈Σ(U)
vs)
]
;

and

∀U ′, U ∈ U
[
λU

′

= λU or λU
′

(R) ∩ λU (R) = ∅
or #Σ(U) = 1 = #Σ(U ′)

]
.

Theorem 3. If a set U of admissible aggregation rules ensures the
existence of a weakly Pareto optimal Nash equilibrium in every finite
game with structured utilities, then for every U ∈ U, there is a continuous
and strictly increasing mapping λU : R→ R such that either

∀U ∈ U ∀vΣ(U) ∈ RΣ(U)
[
U(vΣ(U)) = λU ( min

s∈Σ(U)
vs)
]
,

or
∀U ∈ U ∀vΣ(U) ∈ RΣ(U)

[
U(vΣ(U)) = λU ( max

s∈Σ(U)
vs)
]
;
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besides,

∀U ′, U ∈ U
[
λU

′

= λU or #Σ(U) 6= #Σ(U ′) or λU
′

(R) ∩ λU (R) = ∅
]
.

Theorem 4. Let Γ be a trim CLU game where each player uses
additive aggregation. Then individual improvements in Γ are acyclic and
hence Γ possesses a Nash equilibrium.

Theorem 5. If #N > 2 and there are sets Ui (i ∈ N) of strictly
admissible aggregation rules ensuring the existence of a Nash equilibrium
in every generalized congestion game, then:
(1) there are a continuous and strictly increasing mapping ν : R → R,
and a continuous and strictly increasing mapping λU : ν(R)Σ(U) → R for
every i ∈ N and U ∈ Ui such that

∀i ∈ N ∀U ∈ Ui ∀vΣ(U) ∈ RΣ(U)
[
U(vΣ(U)) = λU

( ∑

s∈Σ(U)

ν(vs)
)]

;

(2) for every i ∈ N and U,U ′ ∈ Ui such that #Σ(U) > 1 < #Σ(U ′),
there is a constant ūUU

′ ∈ R ∪ {−∞,+∞} such that

sign
(
λU

′

(u′)− λU (u)
)
= sign(u′ − u− ūUU ′

)

for all u′ ∈ (#Σ(U ′)) · ν(R) and u ∈ (#Σ(U)) · ν(R).
Theorem 6. If #N > 2 and there are sets Ui (i ∈ N) of strictly

admissible aggregation rules ensuring the existence of a Nash equilibrium
in every finite game with structured utilities, then there are a continuous
and strictly increasing mapping ν : R→ R and a continuous and strictly
increasing mapping λU : ν(R)Σ(U) → R for every i ∈ N and U ∈ Ui such
that

∀i ∈ N ∀U ∈ Ui ∀vΣ(U) ∈ RΣ(U)
[
U(vΣ(U)) = λU

( ∑

s∈Σ(U)

ν(vs)
)]
.

Theorem 7. Every potential game is isomorphic to a game with
structured utilities where each player just sums up the relevant local
utilities.

Theorem 8. A set of aggregation rules ensures the existence of an
exact potential in every trim CLU game if and only if every rule pre-
scribes just summing up the relevant local utilities.
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A cooperative game in international electric
power integration∗

I.M. Minarchenko
Melentiev Energy Systems Institute of Siberian Branch
of the Russian Academy of Sciences, Irkutsk, Russia

The present study is concerned with the special model of the long-
term development and functioning of electrical power systems. This mo-
del is called the ORIRES model [1]. The ORIRES is a Russian abbre-
viation that means the Optimization of Development and Operating
Conditions of Electric Power Systems. One of its main properties is that
it takes the development of the power system into consideration. In that
way the model can provide not only the amount of generated electricity
but also the capacities of power generators and electrical transmission
lines installed in the system.

In this paper we focus on the problem of the long-term analysis of
international electric power integration using the ORIRES model. This
statement describes a cooperation of countries in the field of electric
power industry. Such a cooperation may lower the costs of countries,
which take part in the coalition. It is assumed that, if lack of the energy
is the case, the transmission of electricity from the existing station of
another country is less expensive than the expansion of own capacities.
Thus we obtain the problem of dividing the surplus of the coalition
between the countries in it. This problem can be solved by using coope-
rative game theory [2].

The ORIRES represents a static multi-node linear model. It allows
for the four seasons, whereas every season consists of working days and
holidays, every day is separated into 24 equal periods of time (hours).
The variables in the model are capacities and operating powers of gene-
rating stations, capacities of transmission lines, and the amounts of elec-

∗This work is a part of the project III.17.3.1 of the basic research program of
Siberian Branch of the Russian Academy of Sciences, no. AAAA-A17-117030310444-
2.
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tricity transmitted between nodes via the lines. The total annual dis-
counted cost of the system plays the role of the objective function. The
costs consist of the following components: the power generation costs,
as well as capital and maintenance costs of both power generators and
transmission lines. A node represents a local energy system, which con-
tains possibly various types of electrical power stations, for example,
thermal, hydroelectric or nuclear. Every node belongs to a certain coun-
try presented in the system. Our investigation is based on the real data
on the six countries of Asian region: Russia, Mongolia, China, North
Korea, South Korea and Japan.

In order to define a cooperative game, we need to specify a charac-
teristic function. Let N be the set of all countries under consideration.
Every non-empty subset K ⊆ N is referred to as a coalition. The set
N is called the grand coalition. A characteristic function v : {K | K ⊆
N} → R assigns to every coalition K ⊆ N an attainable payoff v(K) [2].
The value v(K) represents the maximal payoff that may be guaranteed
for K. As we mentioned before, building up capacities is significantly
more expensive than electricity generating and transmitting. Hence the
guaranteed payoff of a coalition is defined by this coalition’s minimal
costs in the case of its isolated functioning. In that way one need to solve
(2|N | − 1) large-scale linear programming problems in order to specify
v(K) for every coalition K ⊆ N .

We investigate two solution concepts for the derived cooperative
game: the Core and the Shapley value [2]. The Core is the set of un-
dominated imputations which is defined by linear constraints. The Core
in our problem is non-empty. Let us give an example of imputation that
belongs to the Core. Table 1 describes Chebyshev center of the Core.
The column “Isolated” represents costs for every country when it does
not cooperate with any of other countries. The last two columns reflect
the decreasing of costs, when countries cooperate in the grand coalition
with the given imputation, as compared to isolated functioning.

The Shapley value is a unique imputation that always exists. Moreo-
ver, for our problem, the Shapley value turns out to be an element of
the Core. Information on the Shapley value is gathered in Table 2.
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Table 1. Chebyshev center of the Core.
Imputation (costs) Isolated Integration effect

mill. doll. % mill. doll. % mill. doll.

Russia 7353 2.21 7591 −3.14 −239
Mongolia 670 0.20 909 −26.26 −239
China 135301 40.63 147757 −8.43 −12455
North Korea 0 0 5047 −100.00 −5047
South Korea 54239 16.29 57153 −5.10 −2915
Japan 135438 40.67 138441 −2.17 −3004

Total 333001 100.00 356899 −6.70 −23898

Table 2. The Shapley value.
Imputation (costs) Isolated Integration effect

mill. doll. % mill. doll. % mill. doll.

Russia 3867 1.16 7591 −49.07 −3725
Mongolia 350 0.11 909 −61.46 −559
China 141328 42.44 147757 −4.35 −6429
North Korea 527 0.16 5047 −89.56 −4520
South Korea 52578 15.79 57153 −8.01 −4575
Japan 134351 40.35 138441 −2.95 −4090

Total 333001 100.00 356899 −6.70 −23898

rarchies. Berlin: Springer-Verlag, 2010.

On an equilibrium in pure strategies for
final-offer arbitration∗

V.V. Morozov
Lomonosov Moscow State University, Moscow, Russia

A mechanism of final-offer arbitration (FOA) was introduced by Ste-
vens [1] , in which the arbitrator has to choose between the offers submit-
ted by the parties. In [2] the following zero-sum game was conceded. The
first player-employee and the second player-employer offer a salary x ∈ R
and y ∈ R. If x 6 y then the settled salary is (x + y)/2. Otherwise the
arbitrator takes value z of random variable Z distributed with continuous
cumulative probability function F (z) and chooses the offer from the set
{x, y} closest to z. The first player payoff function is a mean salary

H(x, y) = yF
(x+ y

2

)
+ x
(
1− F

(x+ y

2

))
.

∗The reported study was funded by RFBR according to the research project
16-01-00353 a.
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In [2] a sufficient conditions for pure equilibrium existence in the game
Γ = 〈R,R, H〉 were derived. In given work these conditions are refined.
Furthermore, another conditions are formulated for a constrained game
Γ+ = 〈R+,R+, H〉.

Suppose that the probability density function f(z) = F ′(z) has at
least one-sided derivative for each z. Let Mo and Me designate a mode
and a median of the distribution. As shown in [2] under f(Me) > 0 an
equilibrium using pure strategies in the game Γ is necessary

x0 = Me +
1

2f(Me)
, y0 = Me− 1

2f(Me)
.

The sufficient condition for local equilibrium (see [2]) is

f2(Me) >
1

4
|f ′(Me)|. (1)

For (x0, y0) to be a global equilibrium one can add to (1) the following
sufficient conditions (see [2]):

f(z) 6 f(Me) + 4f2(Me)|Me− z|, ∀ z : |Me− z| 6 1/(4f(Me)), (2)

and for some constants c1, c2 such that −∞ 6 c1 6 Me 6 c2 6 +∞

f(z) > f(Me) exp(−2f(Me)|Me− z|) iff z ∈ [c1, c2]. (3)

Instead of (2) and (3) let’s formulate another conditions. The defini-
tion of the equilibrium

H(x, y0) 6 H(x0, y0) 6 H(x0, y), ∀ x, y,

is equivalent to inequalities

G(x)
def
= F

(x+ y0
2

)
− 1 +

1

2f(Me)(x − y0)
> 0, ∀ x > Me, (4)

D(y)
def
=

1

2f(Me)(x0 − y) − F
(x0 + y

2

)
> 0, ∀ y 6 Me. (5)

Define two functions

g(x) =
1

4
f ′
(x+ y0

2

)
+

1

x− y0
f
(x+ y0

2

)
, x > Me,

d(y) = −1

4
f ′
(x0 + y

2

)
+

1

x0 − y
f
(x0 + y

2

)
, y 6 Me.
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Theorem 1. Let (1) be true and f(z) > 0 for all z. Suppose that
function g (function d) on each interval (Me, x0) and (x0,∞) ((−∞, y0)
and (y0,Me)) has no more than one zero. Besides that at the zero of the
function g (function d) it changes sign. Then (x0, y0) is the equilibrium
in the game Γ.

Note that for Cauchy distribution with f(z) = 1/(1+π2z2) conditions
of the theorem 1 are fulfilled but (3) doesn’t hold (see [2]).

Theorem 2. Let (1) be true, variable Z be distributed on R+ and
f(z) > 0 for all z > 0. Suppose that Me+y0 > 0 and function g (function
d) on each interval (Me, x0) and (x0,∞) ((−x0, y0) and (y0,Me)) has no
more than one zero. Besides that at the zero of the function g (function
d) it changes sign. Then (x0, y0) is the equilibrium in the game Γ. If
Me+ y0 < 0 then the equilibrium doesn’t exist.

In the game Γ+ = 〈R+,R+, H〉 the random variable Z is distributed
on R+. If y0 < 0 then an equilibrium in the game Γ+ is necessary (x∗, 0)
where x∗ = 2z∗, z∗ = argmax

z>0
z(1− F (z)). Note that z∗ exists if

lim
z→∞

z(1− F (z)) = 0. (6)

Theorem 3 Let f be unimodal function and Mo 6 Me < z∗. Then
(x∗, 0) is the equilibrium in the game Γ+.

Examples.
1. Gamma distribution with

f(z) =
1

Γ(a)
za−1e−z, z > 0, a > 0.

It is known [3] that Mo = a − 1 < Me < a. Calculations show that (1)
is true if a > â ≈ 0.4148 and Me + y0 > 0 is true if a > ã ≈ 0.615.
In last case (x0, y0) is the equilibrium in the game Γ. One can prove
that (1) holds if a > 1. Also calculations show that z∗ = x∗/2 > Me
if a < a∗ ≈ 1.8318. So, in the last case by theorem 3 (x∗, 0) is the
equilibrium in the game Γ+. Under a > a∗ (x0, y0) is the equilibrium in
the game Γ+.

2. Weibullah-Gnedenko distribution with

F (x) = 1− exp(−zc), z > 0, c > 0.

Here

Me = (ln 2)1/c,Mo =

{
((c− 1)/c)1/c, c > 1;

0, 0 < c < 1.
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The inequality (1) is true iff c > (1 + ln 2)−1 and Me + y0 > 0 iff
c > (2 ln 2)−1. In last case (x0, y0) is the equilibrium in the game Γ.
Further if 0 < c < (ln 2)−1 (c > (ln 2)−1) then (x∗, 0) ((x0, y0)) is the
equilibrium in the game Γ+.

3. Lognormal distribution with

f(z) =
1

σz
√
2π

exp
(
− 1

2

( ln z − a
σ

)2)
, z > 0, σ > 0.

Here Me = exp(a), Mo = exp(a−σ2). The pair (x0, y0) is the equilibrium
in the game Γ iff 0 < c < 2

√
2/π. Further if σ >

√
2/π (σ 6

√
2/π)

then (x∗, 0) ((x0, y0)) is the equilibrium in the game Γ+.
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Survey of statistical games of parameter
estimation with linear minimax rules∗

V.V. Morozov and V.A. Gribov
Lomonosov Moscow State University, Moscow, Russia

Consider density function f(x|θ) with unknown parameter θ. Statisti-
cian observes sequence of independent identical distributed random
variables X = (X1, ..., Xn), Xi ∼ f(x|θ), and estimates value h(θ)
by decision rule δ(X). Let δ0(X) designates unbiased estimate that
is E[δ0(X)|θ] = h(θ). We restrict ourselves with games where linear
minimax rule δ(X) = c1δ0(X) + c2 exists among all class of decision
rules ∆. We use risk function R(θ, δ) =E[w(θ)(h(θ) − δ(X))2|θ] with
weight function w(θ). For a distribution ξ(θ) of random variable Θ de-
fine a mean risk function R(ξ, δ) = Eξ[R(Θ, δ)]. In the statistical game
Γ = 〈Λ,∆, R(ξ, δ)〉 the nature (first player) chooses a prior distribution

∗The reported study was funded by RFBR according to the research project
16-01-00353 a.
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ξ(θ) ∈ Λ and the statistician (the second player) chooses a minimax
estimation δ∗ minimizing the worst value of risk function max

θ
R(θ, δ).

For given distribution ξ(θ) ∈ Λ an estimation δξ is said Bayesian if
it minimizes R(ξ, δ) on δ ∈ ∆. Let g(θ|X) be a posterior distribution of
the variable Θ. It is known (see for example [1]) that

δξ(X) =
E[w(Θ)h(Θ)|X ]

E[w(Θ)|X ]
.

An estimation δ is said equalizing if R(θ, δ) doesn’t depend on θ. If an
equalizing estimate is the limit of Bayesian ones then it is the minimax
estimate.

1. The Poisson distribution f(x|θ) = θxe−θ/x!, x ∈ Z+, θ > 0. Here
E[Xi|θ] =Var[Xi|θ] = θ, i = 1, ..., n. Let be h(θ) = θ, w(θ) = 1/θ. Then
the unbiased estimate δ0(X) = X̄ = (X1+ ...+Xn)/n is equalizing with
risk value v = 1/n. It’s the limit of Bayesian estimates

δg(X) =
1

E[1/θ|X ]
=
a− 1 + nX̄

b+ n

corresponding to the gamma distribution g(θ) = baθa−1e−bθ/Γ(a) when
a ↓ 1, b ↓ 0. So, X̄ is the minimax estimate.

Let be w(θ) = 1. In this case the risk function R(θ, X̄) is unrestricted
from above. That’s why instead of Λ the statistician may suppose that
distribution ξ(θ) ∈ Λ(M) = {ξ(θ)|Eξ[θ] 6 M} where M is a known
constant. Here X̄ is also minimax estimate with risk value v =M/n.

2. Exponential distribution f(x|θ) = θe−θx, x > 0, θ > 0. Here
E[Xi|θ] = 1/θ, Var[Xi|θ] = 1/θ2. Let be h(θ) = θ, w(θ) = 1/θ2.

Note that a random variable Y = X1+...+Xn has Erlang distribution
with density function pn(y|θ) = θnyn−1e−θy/(n − 1)!, y > 0. Under
n > 2 E[1/X̄|θ] = nθ/(n − 1), E[1/X̄2|θ] = n2θ2/((n − 1)(n − 2)).
For any distribution ξ(θ) ∈ Λ and an estimate δ(X) = k/X̄ we have
R(ξ, δ) = 1−2kn/(n−1)+k2n2/((n−1)(n−2)). The value v = 1/(n−1) is
a minimal value of the last expression which it reaches on k∗ = (n−2)/n.
The equalizing estimate δ∗(X) = (n − 2)/(nX̄) is the limit of Bayesian
estimates

δg(X) =
E[1/θ|X ]

E[1/θ2|X ]
=
a+ n− 2

b+ nX̄

corresponding to the gamma distribution G(a, b) when a ↓ 0, b ↓ 0. So,
δ∗(X) is the minimax estimate.
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If we want to estimate a mean of the distribution f(x|θ) then we
take h(θ) = 1/θ, w(θ) = θ2. Here the minimax estimate is δ∗(X) =
nX̄/(n+ 1), n > 1. The value of the game is v = 1/(n+ 1).

3. Normal distribution f(x|θ) =
√
θe−θx

2/2/
√
2π, where θ is a mea-

sure of exactness (1/θ is a variance). Let be h(θ) = 1/θ, w(θ) = θ2.
Denote S = X2

1 + ... + X2
n. We have E[S/n|θ] = 1/θ, E[S2|θ] =

(3n+ n(n− 1))/θ2.

For any distribution ξ(θ) ∈ Λ and an estimate δ(X) = kS/n we have
R(ξ, δ) = 1−2k+k2(n+2)/n. The value v = 2/(n+2) is a minimal value
of the last expression which it reaches on k∗ = n/(n+2). The equalizing
estimate δ∗(X) = k∗S/n = S/(n+ 2) is the limit of Bayesian estimates
δg(X) =E[θ|X ]/E[θ2|X ] = (b+ S/2)/(b+ n/2 + 1) corresponding to the
gamma distribution G(a, b) when a ↓ 0, b ↓ 0. So, δ∗(X) is the minimax
estimate.

Let be h(θ) = 1/
√
θ, w(θ) = θ. A random variable S′ =

√
θS has χ2

n

distribution. For any distribution ξ(θ) ∈ Λ and an estimate δ(X) = k
√
S

we have R(ξ, δ) =E[θ(1/
√
θ − δ(X))2] = 1 − 2kE[S′] + k2E[(S′)2]. A

value k∗ =E[S′]/E[(S′)2] = (
√
2/n)Γ((n + 1)/2)/Γ(n/2) minimizes the

last expression. The equalizing estimate δ∗(X) = k∗
√
S is a limit of

Bayesian estimates

δg(X) =
E[
√
θ|S]

E[θ|S] =
(b+ S/2)1/2Γ(a+ (n+ 1)/2)

(a+ n/2)Γ(a+ n/2)

corresponding to the gamma distribution G(a, b) when a ↓ 0, b ↓ 0. So,
δ∗(X) is the minimax estimate.

The estimate X̄ is minimax for the estimation of the mean when the
variance is known [2].

3. Uniform distribution f(x|θ) = I[0,θ](x)/θ, Denote Z = max
i=1,...,n

Xi,

E[Z|θ] = nθ/(n + 1), E[Z2|θ] = nθ2/(n + 2). Let be h(θ) = θ, w(θ) =
1/θ2, δ(X) = kZ. Then for any distribution ξ(θ) ∈ Λ

R(ξ, δ) = E
[ (θ − δ(X))2

θ2

]
= 1− 2nk

n+ 1
+

nk2

n+ 2
.

A value k∗ = (n + 2)/(n + 1) minimizes the last expression. Take the
prior Pareto distribution with density function

g(θ) =
{ αθα0 /θ

α+1, θ > θ0,
0, θ 6 θ0.
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A posterior distribution is

g(θ|X) =
{ (α+ n)(Z ′)α+n/θα+n+1, θ > Z ′,

0, θ 6 Z ′

where Z ′ = max(θ0, Z) (see [4]). A Bayesian estimate

δg(X) =
E[1/θ|X ]

E[1/θ2|X ]
=

(α+ n+ 2)

α+ n+ 1
Z ′

converges to the equalizing estimate δ∗(X) = (n + 2)Z/(n + 1) while
θ0 ↓ 0, α ↓ 0. So, δ∗(X) is the minimax estimate.

4. Binomial distribution f(t|θ) = Ctnθ
t(1− θ)n−t, t = 0, 1, ..., n. Here

θ is a probability of success in Bernoulli trials. Denote T = X1+ ...+Xn

where Xi = 1 if it’s a success in ith trial and Xi = 0 otherwise. T/n is
an unbiased estimate of θ. Let be h(θ) = θ, w(θ) = 1. Then in [3] it is
shown that an estimate

δ∗(T ) =
T

n+
√
n
+

1

2(
√
n+ 1)

= δg(T ) = E[θ|T ] = a+ T

a+ b + n

is equalizing and Bayesian corresponding to beta distribution g(θ) =
θa−1(1− θ)b−1/B(a, b) where

B(a, b) =

1∫

0

θa−1(1− θ)b−1dθ, a = b =

√
n

2
.

So, δ∗(T ) is the minimax estimate.
Let be h(θ) = θ(1− θ), w(θ) = 1. An estimate δ∗(T ) = c∗1δ0(T ) + c∗2

where

δ0(T ) =
T (n− T )
n(n− 1)

, c∗1 =
1

1 +
√
ω
, c∗2 =

1

2n(ω +
√
ω)
, ω =

4n− 6

n(n− 1)

is equalizing and Bayesian for some discrete distribution on [0, 1] for
n = 3, 5, 6, ..., 13. So, δ∗(T ) = c∗1δ0(T ) + c∗2 is the minimax estimate [4].
If w(θ) = 1/h(θ) then an estimate

δ∗(T ) = k∗δ0(T ), k
∗ =

√
n(n− 1)

n(n− 1) + 2(2n− 3)

is minimax for n = 2, 4, ..., 11 [5].
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5. Negative binomial distribution f(t|θ) = Ctr+t−1θ
r(1 − θ)t, t ∈

Z+, r > 0. Let be

h(θ) = E[T |θ] = r(1 − θ)
θ

, w(θ) =
r

Var[T |θ] =
θ2

1− θ .

Then the estimate δ∗(T ) = rT/(r + 1) is minimax [6].

References

1. Gren J. Statistical Games and their Applications (translated from
the Polish), Moscow: Statistika, 1975.

2. Wolfowitz Minimax estimates of the mean of a normal distribution
with known variance // The Annals of Mathematical Statistics.
1950. V. 21, N 2. P. 218–230.

3. Hodges J.L., Lehmanm E.L. Some problems in minimax point esti-
mation // Annals of Mathematical Statistics. 1950. V. 21, N 2.
P. 182–192.

4. DeGroot M.H. Optimal statistical decisions (translated from En-
glish). Moscow: Mir, 1974.

5. Ferguson T.S, Kuo L. Minimax estimation of a variance// Annals
of the Institute of Statistical Mathematics. 1994. V. 46, N 2. P.
295–308.

6. Ferguson T.S. Mathematical statistics. New-York and London:
Academic Press, 1975.

Dynamic multicriteria games
with finite horizon∗

A.N. Rettieva
Institute of Applied Mathematical Research,

Karelian Research Centre of RAS,
Saint Petersburg State University,

Petrozavodsk, Saint Petersburg, Russia

Mathematical models involving more than one objective seem more
adherent to real problems. Players can have more that one goal which
are often not comparable. These situations are typical for game-theoretic
models in economics and ecology. Traditionally, equilibrium analysis in

∗This research is supported by the Russian Science Foundation, project no. 17-11-
01079.
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multicriteria problems is based on the static variant. Some concepts have
been suggested to solve multicriteria games (the ideal Nash equilibrium
[5], the E-equilibrium concept [1]). However the notion of Pareto equilib-
rium [4] is the most studied concept in multicriteria game theory.

In [3] a new approach to construct noncooperative equilibrium in dy-
namic multicriteria games is presented. A multicriteria Nash equilibrium
is constructed adopting the bargaining concept (via Nash products) with
the guaranteed payoffs playing the role of the status quo points.

This work is dedicated to linking multicriteria games with coopera-
tive dynamic games. A new approach to obtain the cooperative equilib-
rium in dynamic games with many objectives is proposed. To construct
cooperative behavior we adopt the approach presented for the game-
theoretic models with asymmetric players [4]. Namely, we obtain coop-
erative strategies and payoffs in multicriteria dynamic game via Nash
bargaining solution. The multicriteria Nash equilibrium payoffs play the
role of the status quo points.

Consider a multicteria dynamic game with two participants in dis-
crete time. The players exploit a common resource and both wish to
optimize m different criteria. The state dynamics is in the form

xt+1 = f(xt, u1t, u2t) , x0 = x , (1)

where xt > 0 is the resource size at time t > 0, f(xt, u1t, u2t) gives the
natural growth function, and uit ∈ Ui denotes the strategy of player i at
time t > 0, i = 1, 2.
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The payoff functions of the players over the finite time horizon are
defined by

J1=




J1
1 =

n∑
t=0

δtg11(u1t, u2t)

. . .

Jm1 =
n∑
t=0

δtgm1 (u1t, u2t)


 , J2=




J1
2 =

n∑
t=0

δtg12(u1t, u2t)

. . .

Jm2 =
n∑
t=0

δtgm2 (u1t, u2t)


 ,

(2)
where gji (u1t, u2t) > 0 gives the instantaneous utility, i = 1, 2,
j = 1, . . . ,m, and δ ∈ (0, 1) denotes a common discount factor.

We design the equilibrium in dynamic multicriteria game applying
the Nash bargaining products [3]. Therefore, we begin with the construc-
tion of guaranteed payoffs which play the role of status quo points.

There are three possible concepts to determine the guaranteed pay-
offs. In the first one four guaranteed payoff points are obtained as the
solutions of zero-sum games. In particular, the first guaranteed payoff
point is a solution of zero-sum game where player 1 wishes to maximize
her first criterion and player 2 wants to minimize it. Other points are
obtained by analogy. Namely,
Gj1 is the solution of zero-sum game 〈I, II, U1, U2, J

j
1 〉, j = 1, . . . ,m,

Gj2 is the solution of zero-sum game 〈I, II, U1, U2, J
j
2 〉, j = 1, . . . ,m.

The second approach can be applied when the players’ objectives
are comparable. Consequently, the guaranteed payoff points for player
1 (G1

1,. . . ,G
m
1 ) are obtained as the solution of a zero-sum game where

she wants to maximize the sum of her criteria and player 2 wishes to
minimize it. And, by analogy, for player 2. Namely,
G1

1, . . . , G
m
1 are the solution of zero-sum game 〈I, II, U1, U2, J

1
1 + . . . +

Jm1 〉,
G1

2, . . . , G
m
2 are the solution of zero-sum game 〈I, II, U1, U2, J

1
2 + . . . +

Jm2 〉.
In the third approach the guaranteed payoff points are constructed

as the Nash equilibrium with the appropriate criteria of both players,
respectively. Namely,
G1

1 and G1
2 is the Nash equilibrium in the game 〈I, II, U1, U2, J

1
1 , J

1
2 〉,

. . .
Gm1 and Gm2 is the Nash equilibrium in the game 〈I, II, U1, U2, J

m
1 , J

m
2 〉.
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To construct multicriteria payoff functions we adopt the Nash prod-
ucts. The role of the status quo points belongs to the guaranteed payoffs
of the players:

H1(u1t, u2t) = (J1
1 (u1t, u2t)−G1

1) · . . . · (Jm1 (u1t, u2t)−Gm1 ) , (3)

H2(u1t, u2t) = (J1
2 (u1t, u2t)−G1

2) · . . . · (Jm2 (u1t, u2t)−Gm2 ) . (4)

Definition 1. A strategy profile (uN1t, u
N
2t) is called a multicriteria Nash

equilibrium of the problem (1),(2) if

H1(u
N
1t, u

N
2t) > H1(u1t, u

N
2t) ∀u1t ∈ U1 , (5)

H2(u
N
1t, u

N
2t) > H2(u

N
1t, u2t) ∀u2t ∈ U2 . (6)

Under the presented equilibrium concept players maximize the prod-
uct of the differences between the optimal and guaranteed payoffs (3),(4).

To construct cooperative behavior we adopt the approach presented
for the game-theoretic models with asymmetric players [4]. Namely, the
multicriteria cooperative equilibrium is obtained as a solution of a Nash
bargaining scheme with the multicriteria Nash equilibrium playing the
role of status quo points.

First we have to determine noncooperative payoffs as players’ gains
when they apply multicriteria Nash strategies (uN1t, u

N
2t):

JN1 =




J1N
1 =

n∑
t=0

δtg11(u
N
1t, u

N
2t)

. . .

JmN1 =
n∑
t=0

δtgm1 (uN1t, u
N
2t)


 , JN2 =




J1N
2 =

n∑
t=0

δtg12(u
N
1t, u

N
2t)

. . .

JmN2 =
n∑
t=0

δtgm2 (uN1t, u
N
2t)


 .

(7)
Then we construct Nash product where the sum of players’ non-

cooperative payoffs plays a role a status quo points. To construct the
cooperative behavior we adopt Nash bargaining solution, so it is required
to solve the next problem

(V 1c
1 + V 1c

2 − J1N
1 − J1N

2 ) · . . . · (V mc1 + V mc2 − JmN1 − JmN2 ) =

= (

n∑

t=0

δt(g11(u
c
1t, u

c
2t) + g12(u

c
1t, u

c
2t))− J1N

1 − J1N
2 ) · . . .

·(
n∑

t=0

δt(gm1 (uc1t, u
c
2t) + gm2 (uc1t, u

c
2t))− JmN1 − JmN2 )→ max

uc
1t,u

c
2t

, (8)
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where JjNi are the noncooperative gains determined in (7), i = 1, 2,
j = 1, . . . ,m.

The next definition presents the suggested solution concept.

Definition 2. A strategy profile (uc1t, u
c
2t) is called a multicriteria

cooperative equilibrium of the problem (1),(2) if it solves the problem
(8).

A dynamic multicriteria model related with the bioresource manage-
ment problem (harvesting) is investigated to show how the suggested
concepts work.
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Axiomatic approach to conspiracy theory

M.A. Savchenko
Moscow State University, Moscow, Russia

Lets consider n–player normal–form games with incomplete infor-
mation. Axiomatic foundation for analysis of such games was devel-
oped by Robert J. Aumann in [1]. His correlated equilibrium is pow-
erful abstraction that allows modeling of very different conflict situa-
tions with informational asymmetry. We are focusing on one particu-
lar kind of such situations — games were groups of players can secretly
use shared strategies to improve their individual rewards. For example,
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constant sum game of three players with following payouts:

1
3 ,

1
3 ,

1
3

1
2 , 0,

1
2

1
2 ,

1
2 , 0 0, 12 ,

1
2

0, 12 ,
1
2

1
2 ,

1
2 , 0

1
2 , 0,

1
2

1
3 ,

1
3 ,

1
3

Here first player picks the row, second the column and third the matrix.
All classical, non–correlated Nash equilibria in this game are predicting
payouts of (13 ,

1
3 ,

1
3 ). On the other side, if players are allowed to commu-

nicate privately, we can easily imagine different viable outcomes. For
example, first and second player can secretly arrange synchronous choice
between top–left and bottom–right cells, while third player won’t be able
to adjust his choice of matrix accordingly, giving payout of (12 ,

1
2 , 0) when

he guesses wrong. Thanks to Aumann, this payout can be predicted by
Nash equilibrium in correlated strategies with world consisting of one
event with two equally probable outcomes (fair coin toss), which can be
distinguished by first and second player, but not by the third, leading to
payout of ( 5

12 ,
5
12 ,

1
6 ).

Correlated equilibrium as model of private communication between
players seems natural and intuitive in simple cases like above, but, when
one looks closer, noticeable gap in interpretation appears. Our choice
of parameters for Aumann’s solution was pretty much intuitive — no
formal theory prescribes usage of this particular world of fair coin toss
to be model of such collusion. Moreover, there is infinite amount of pa-
rameter sets, which lead to same payout prediction — for example, we
can replace coin toss with roulette here. Unfortunately it means that in
more complex cases (larger number of players, sophisticated communica-
tion structure, etc) we can’t be sure that intuitively designed correlated
extension actually represents situation in question.

To address this difficulties we propose new formal model using no-
tion of probability spaces [2] and two core abstractions derived from Au-
mann’s model. First one is correlation space Φ = 〈A,Ω, Ia,P, a ∈ A〉 that
represents set of parameters for correlated extension of any normal–form
game with A as player set. Here Ω is sample space of the world with prob-
ability measure P. For any player a σ–field Ia represents set of events re-
garding which a is informed, making triplet 〈Ω, Ia,P〉 into his personal
correlation subspace. Basically, this abstraction relates to Aumann’s cor-
related extension without its subjectivity aspect.

Seconly, for each group of players A∗ we take notice of its shared
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secret 〈Ω, κ(A∗),P〉 — correlation subspace, where

κ(A∗) = {X ∈
⋂

a∈A∗

I
a | P(X ∩ Y ) = P(X)P(Y ), ∀Y ∈ σ(

⋃

a∈A\A∗

I
a)}

is set of events, regarding which all members of A∗ are informed, while
all the others can get no hint, even by pooling their knowledge. For
convenience we also define

η(X) = σ(
⋃

X∈X

κ(X)), ∀X ⊆ 2A

that is σ–field, generated by joining σ–fields in shared secrets belonging
to arbitrary set of player groups.

On this basis we introduce conspiracy of structure A ⊆ 2A — any
correlation space with following properties:

1. For each non–empty subset of players A∗, its shared secret has ei-
ther measure consisting of singular atom (A∗ /∈ A, interpreted as
group without means of private communication), or diffuse mea-
sure (A∗ ∈ A, for groups capable of secretly sharing any amount
of information);

2. Ia = η(Aa), ∀a ∈ A, where Aa = {X ∈ A | a ∈ X} — simply
stated, every player’s personal correlation subspace is generated
by joining shared secrets of all groups he belongs to.

Let’s return to our example game to use it as showcase for new ab-
stractions. What would be the conspiracy structure in situation where
1st and 2nd player are colluding against 3rd? Firstly, conspiracy struc-
ture includes all singleton player groups {1}, {2} and {3}, because all
players can individually use uncorrelated mixed strategies. Secondly, it
includes group {1, 2}, as 1st and 2nd player should be able to share infor-
mation privately. Finally, remaining groups {1, 3}, {2, 3} and {1, 2, 3} are
not included in conspiracy structure, as problem statement says nothing
about 3rd player ability to communicate with anyone else. This gives us
conspiracy structure {{1}, {2}, {3}, {1, 2}}.

What easily constructible correlation space can serve as example of
conspiracy with this structure? Most natural answer is world of 4 in-
dependent roulette wheels, one per group in conspiracy structure. With
that, personal correlation subspaces are defined in such a way that 1st
(2nd and 3rd respectively) player is informed regarding state of 1st (2nd
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and 3rd respectively) roulette, plus 1st and 2nd players are informed
regarding 4th roulette. Original game extended with such correlation
space can be solved in terms of ordinary correlated Nash equilibrium,
successfully predicting payout of ( 5

12 ,
5
12 ,

1
6 ).

Why should we give some special attention to solution with this set
of parameters? Importance of conspiracies subclass among all correlation
spaces arises from following

Theorem 1 For any normal–form game with finite strategy sets all con-
spiracies of same structure produce identical sets of payouts in correlated
Nash equilibria.

This theorem allows us to abstract away from specific probabil-
ity spaces, highlighting structure of conspiracy as its only meaningful
characteristic. Game solved for any correlation space, which is conspir-
acy of given structure, becomes automatically solved for whole class of
correlation spaces, that are conspiracies of same structure. World of one
independent roulette per each group in conspiracy structure emerges as
canonic recipe for prediction of important outcomes in any game, which
interpretation is consistent with definition of conspiracy.

Also, model of conspiracy gives opportunity to ask further questions:

• if we have a game with player set A, can there be correlated Nash
equilibrium with payout not achievable in conspiracy of structure
2A?

• can this model be extended for games with more complex player
sets (population games, for example)?

• what about different solution concepts, such as strong or coalition-
proof Nash equilibrium?
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The repeated game modeling an agreement
on protection of the environment∗

A.A. Vasin and A.G. Divtsova
Moscow State University, Moscow, Russia

We consider repeated games with sliding planning horizons. The ini-
tial game includes two stages: the first stage is a game that generalizes the
known model ”The Tragedy of the Commons” [1] . At the second stage
the players redistribute the payoffs by means of side payments. Our pur-
pose is to find conditions for existance of a subgame perfect equilibrium
(SPE) realizing in the repeated game some Pareto-optimal outcome, that
is, an outcome that maximizes the total payoff in the one-short game.
The problem is of interest in context of the study of international agee-
ments on limitation of environmental pollution (see [2,3]). Existance of
the SPE means the possibility for a stable and efficient agreement of such
sort. This concept takes into account a possibility of unexpected break-
ing the agreement by some country and assumes that only endogeneous
economic mechanisms in frame of the agreement prevent such breaking.
Side payments reflect possibilities for redistribution of the welfare among
the players. Note that in the one-short game there is a ”bad” Nash equi-
librium in dominant strategies corresponding to a high pollution level.
We examine two types of SPE realizing some Pareto-optimal outcome:
1) after any deviation, all players start playing dominant strategies; 2) if
one player deviates, the rest continue cooperation maximizing their to-
tal payoff under the dominant strategy of the disturber; after the sec-
ond deviation everybody plays his dominant strategy. For each type, we
determine the set of Pareto-optimal SPE outcomes.

We consider the game Γ = 〈 I, Zi , Fi(z), i ∈ I 〉 with the set of
players I = {1, ..., n}. Strategy zi ∈ Zi = [0, zmaxi

] of player i shows the
pollution amount induced by his production activity. His payoff function
Fi(z) = vi(zi)−Hi(

∑
j∈I

πjizj), z = (z1, ..., zn), aggregates his utility func-

tion vi(zi) that relates to production activity, is monotonous and con-
cave, and loss function Hi(ẑi) that is monotonous and convex and de-
pendes on the total pollution level ẑi =

∑
j∈I πjizj for player i. Here

πji ∈ [0; 1], j, i ∈ I, is the share of the pollution amount induced by
player j and transferred to player i.

For player i, z∗i is called a dominat strategy if, for any z, Fi(z|z∗i ) >
Fi(z). We assume that for each player there exists a dominating strategy

∗This research is supported by RFBR 16-01-00353/16
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in the game. Then z∗ is Nash equilibrium. In particular, such equilibrium
exists if Hi(ẑi) is a linear function or πii = 0. Profile z̄ is Pareto optimal
if it realizes maxz̄

∑n
i=1 Fi(~z).

In reality the interaction repeats many times. We assume that play-
ers can make side payments in order to compensate utility losses to
those who reduce the production activity and the corresponding pollu-
tion amount. Each player chooses his strategy at some period t is con-
cerned with his total payoff till period t + Ti, where Ti is his planning
horizon.

The interaction model is a repeated game with complete information
on prehistory and sliding planning horizons Ti, i = 1, ..., n. Each period
t = 1, 2, ... of the interaction includes two stages: at stage t1 each player
determines the amount of pollution zti , i ∈ I and gets payoff F ti = Fi(z

t),
i ∈ I. At stage t2 players get or pay side payments yti , i ∈ I,

∑
i

yti = 0.

They determine final payoffs F ti (z
t, yt) = Fi(z

t)+yti , i ∈ I for this period
t. At every stage t each player choses his action proceeding from the
history of the interaction up to this time: ht−1 = (zτ , yτ )t−1

τ=1 for stage
t1. At stage t2 the realized situation zt is also known to all the players.
A strategy of player i is formally given by functions zti = σ1

i (h
t−1), yti =

σ2
i (h

t−1, zt). Strategy profile σ∗ is called an SPE of the repeated game
if, for any i, t and h,

σ∗
i = argmax

σi

t+Ti∑

τ=t

Fi(z
τ (σ∗||σi), yτ (σ∗||σi)),

Below we aim to find such SPE that realize Pareto optimal profile z̄ in
every period. We examine two types of such SPE. The strategies for the
simpler type a order to play profile z̄ and pay agreed side payments until
some player deviates from this. Then the rest players stop side payments
and switch to realization of equilibrium z∗ in the following periods (see
[2]). For an SPE of the type b, after the first deviation, the rest players
continue cooperation maximizing their total payoff under the dominant
strategy of the disturber. After the second deviation everybody plays his
dominant strategy.

For any vector-function (fi(z), i ∈ I) introduce the following nota-
tion: f∗

i := fi(z
∗), f̄i := fi(z̄), fΣ(z) :=

∑
i∈I

fi(z), fΣ(I\i)(z) :=
∑
j∈I\i

fj(z).

Theorem 1. An SPE of the type a exists if and only if
∑

i∈I

((H∗
i −Hi(

∑

j∈I\i

πjiz̄j + πiiz
∗
i ))/(1 + Ti)) 6 F̄Σ − F ∗

Σ.
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Under this condition, side payments may be set as

yi = F ∗
i − F̄i − (H∗

i −Hi(
∑

j∈I\i

πjiz̄j + πiiz
∗
i ))/(1 + λTi),

where λ 6 1 is a solution of equation
∑

i∈I

((H∗
i −Hi(

∑

j∈I\i

πjiz̄j + πiiz
∗
i ))/(1 + λTi)) = F̄Σ − F ∗

Σ.

Let ¯̄zI\i(i) = arg max
(zj,j∈I\i)

∑
j∈I\i

Fj(zI\i, zi
∗), ¯̄z(i) = (¯̄zI\i, z

∗
i ),

¯̄Fj(i) =

Fj(¯̄z(i)) ∀i, j ∈ I.

Theorem 2. An SPE of the type b exists if and only if:
1) ¯̄FΣ 6 F̄Σ, 2)

¯̄FΣ(I\i) > F ∗
Σ(I\i), ∀i ∈ I,

3)
∑
i∈I

Hi(
∑

j∈I πji ¯̄zj(i))−Hi(
∑

j∈I\i πji z̄j+πiiz
∗
i )

1+Ti
6 F̄Σ − ¯̄FΣ,

4)
∑
j∈I\i

Hj(
∑

k∈I πkjz
∗
k)−Hj(

∑
k∈I\{i,j} πkj ¯̄zk+πijz

∗
i +πjjz

∗
j )

1+Tj
6 ¯̄FΣ(I\i)(i) −

F ∗
Σ(I\i), i ∈ I.

Note 1: Theorem 1 and Theorem 2 permit the following general-
ization for a model where planning horizons Ti(t) depend on the time.
The SPE specified in these propositions exist also in this case if the con-
ditions hold for Ti = min

t
Ti(t). However, the conditions are not nec-

essary for the existence in general. Another generalization relates to re-
peated games with time-dependent discounting coefficients. In such game
a player i at every period t aims to maximize the present value of his
future payoffs

∑∞
τ=t d

i
τtWi(τ), where Wi(τ) is his payoff at time τ , diτt

is the discounting coefficient, ditt = 1. The theorems hold as sufficient
conditions for the SPE existence if we set Ti(t) =

∑∞
τ=t+1 d

i
τt.
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The typical models for
congested traffic

The estimation of the capacity of the
highway intersected by a crosswalk without

traffic lights∗

L. Afanaseva, M. Gridnev, and S. Grishunina
Department of Probability, Faculty of Mathematics and Mechanics,

Lomonosov Moscow State University, Moscow, Russia

The study of traffic flows has a long history (see, e.g. [1–5] and refer-
ences therein). Various methods such as cellular automate [6], statistical
mechanics and mathematical physics [7–11] or queueing theory [12–20]
were used.

The purpose of the proposed study is an estimation of the carrying
capacity of the automobile road, crossed by a crosswalk. Under the ca-
pacity we mean the upper limit of the intensity of the flow of cars, when
the queue of cars does not tend to infinity. This means that the sta-
bility condition for the process determining the number of these cars is
satisfied. Our analysis will be based on the results obtained in [12, 21,
22].

Let’s move to the description of models.
We consider a road with two directions of traffic and m traffic lanes

in each. The flow of cars Xi in i− th direction is a regenerative flow with

intensity λ
(i)
X (i = 1, 2) [17]. The road is intersected by a two-directions

pedestrian crossing (pic.1). We denote that pedestrians following from

∗This research is supported by Russian Foundation for Basic Research grant 17-
01-00468
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right side (A) to the left side (B) have the first type, and from B to A - the
second type. The flow of pedestrians of i− th type is a Poisson flow with
intensity λi(i = 1, 2). Pedestrians cross the crosswalk independently of
each other with a random (but constant during the entire time of being
at the crosswalk) speed.

We assume that there are no traffic lights at the crossing and pedes-
trians have an absolute priority over cars. At this case the number of
pedestrians at the crosswalk is a number of customers for an infinite-
channel queueing system of the M |G|∞ type.

Let’s assume that 2b is an average time of crossing the road by a
pedestrian. Then the probability P0 that there is no pedestrian at the
crosswalk in a stationary regime is defined by an expression

P0 = e−2(λ1+λ2)b (1)

(see [23], for example).
First assume that a car can cross a pedestrian crossing only if there

are no pedestrians at it (Model 1). Let’s number the traffic lanes in the
direction from A to B so that cars at lanes 1, 2, ...,m are going at one
direction and cars at lanes m + 1, ..., 2m - at another. We will consider
the process Q1(t) - the number of cars at the lanes 1, 2, ...,m at time
t (the consideration of lanes m + 1,m + 2, ..., 2m is analogous).Denote
Hj(t) as the expected value of the number of cars that pass through
the crosswalk at the lane j during time t under the condition that there
are always cars at this lane and the crosswalk is free. Also denote that
H(t) =

∑m
j=1Hj(t). In relation to the process Q1(t), we have a single-

channel queueing system with an unreliable server. The operating time
has an exponential distribution with the parameter λ1+λ2, and time u2
is the period of the system M |G|∞ being busy.

Since P0 = Eu1

Eu1+Eu2
, then a = Eu1 + Eu2 = (λ1 + λ2)

−1e2(λ1+λ2)b.
Then basing on results from [22] it is not difficult to show that the

traffic rate ρ is determined by an expression

ρ1 =
λ
(1)
X e2(λ1+λ2)b

(λ1 + λ2)h(λ1 + λ2)
, (2)

where h(λ) = λ
∫∞

0 e−λyH(y)dy.
The necessary and sufficient condition for the stability of the process

Q1(t) means that the inequality ρ1 < 1 is fulfilled, and the capacity of

the road λ̄
(1)
X is defined as

λ̄
(1)
X = (λ1 + λ2)h(λ1 + λ2)e

−2(λ1+λ2)b.
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If, for example H(t) = mνt, which corresponds to the assumption
that each car crosses the pedestrian crossing for an exponentially dis-
tributed time with a parameter ν, then

λ̄
(1)
X = mνe−2(λ1+λ2)b.

When the real intensity λ̄
(1)
X is less then, but close to λ̄

(1)
X , large queues

accumulate before the crosswalk.
Their asymptotic analysis, as well as expressions for the characteristics
of the process Q1(t) in a stationary regime, when ρ(1) < 1 can be found
at the article [12].

Now we will consider Model 2, in which the rules for crossing the
crosswalk by a car are weakened. Namely, we assume that the car can
move along the lane j (j = 1, 2, ..m) if there are no pedestrians of the
first type (going from A to B) on the lanes 1, 2, ...j, and on the lanes
with numbers j, j+1, ..., 2m there are no pedestrians of the second type.
Denote P0(j) as the probability of this event in a steady state.

Since the number of pedestrians of the first type on the lanes
(1, 2, ...j) - is the number of customers at the system M |G|∞ with the
intensity λ2 and with an average queueing time (2m− j + 1) bm , then

P0(j) = e−jλ1
b
m

−(2m−j+1)λ2
b
m . (3)

So we have a queueing system with m unreliable servers. All the servers
break when a pedestrian of the first (second) type appears on the lane

1 (2m− th).This means that the avalible period τ
(1)
j of j − th server is

exponentially distributed with parameter λ1 + λ2. Let τ
(2)
j be a block

period of j − th server and aj = Eτ
(1)
j + Eτ

(2)
j . Then P0(j) =

Eτ
(1)
j

aj
, so

aj = (λ1 + λ2)
(−1)ejλ1

b
m

+(2m−j+1)λ2
b
m .

Assuming that hj(λ) = λ
∫∞

0 e−λtHj(t)dt and using results from [22],
we can find the traffic rate ρ2 for Model 2

ρ2 = λ
(1)
X [(λ1 + λ2)

m∑

j=1

P0(j)hj(λ1 + λ2)]
−1. (4)
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If hj(λ) =
1
mh(λ), j =

¯1,m, then (4) can be written as

ρ2(m) =





mλ
(1)
X

(λ1+λ2)h(λ1+λ2)
eλ2

b
m −eλ1

b
m

e−(λ1+λ2)b−e−2λ2b , whenλ1 6= λ2

λ
(1)
X e2λb+ λb

m

2λh(2λ) , whenλ1 = λ2.

When m = 1 we get

ρ2(1) =
λ
(1)
X e2λ2b+λ1b

(λ1 + λ2)h(λ1 + λ2)
<

λ
(1)
X e2(λ2+λ1)b

(λ1 + λ2)h(λ1 + λ2)
= ρ1.

It is easy to show that for all m > 1 the inequality ρ2(m) < ρ1 holds.
Weakening the rules of crossing the crosswalk increases the capacity of
the road. To estimate this effect, we consider the ratio

ρ2(m)

ρ1
=





m(eλ2
b
m −eλ1

b
m )

e(λ1+λ2)b−e2λ1b , whenλ1 6= λ2

e−2λb+λb
m , whenλ1 = λ2 = 1.

Assume x = eλ1b > 1, λ2 = αλ1, we have

φ(x) =
ρ2(m)

ρ1
=





m(x
α
m −x

1
m )

x1+α−x2 , when α 6= 1

x−2+ 1
m , when α = 1.

We have that the effect of the weakened rule (Model 2) in comparison
with the standard rule (Model 1) becomes stronger, when the number of
lanes and the intensity of the flow of pedestrians increase.
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Non-ergodicity and non-Markovianity of
some simple traffic flow models
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Moscow, Russia

The celebrated Nagel-Schreckenberg model allows to study a reason-
ably large class of one-dimensional traffic flow models with parallel up-
dates. Unfortunately further generalizations of this construction turn
out to be not especially fruitful. Namely, numerical simulations of such
generalizations did not demonstrate stable behavior qualitatively differ-
ent from the original model, and more to the point their mathemati-
cal treatment is still not available even up to nowadays. I’ll discuss sev-
eral features of these models which partially explain the failure of both
numerical and mathematical attempts to study generalizations of the
Nagel-Schreckenberg model.

First, let us recall the original Nagel-Schreckenberg model belong-
ing to the class of the so called cellular automatons. The road with
cars is represented either by be-infinite binary sequences of type x :=
. . . 0011100 . . . (where by ones we mark positions of cars and by zeros
their absence), or a finite binary sequence in the case of a finite cyclic
road. In both cases the dynamics is defined as follows each car moves
(with probability p) to the next position to the right if and only if this
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position is not occupied (i.e. the next to the right element in x is equal to
0). Since all the movements proceed independently and simultaneously,
this type of models is called models with parallel updates. If the prob-
ability p is chosen to be equal to 1 we get a pure deterministic version
of the process. In mathematical terms models of this sort are known as
discrete time TASEP (totally asymmetric exclusion process). In this set-
ting the model is well understood (see physics arguments in [1,2] and the
complete mathematical analysis in [3]). Among other things this model
demonstrates the classical gas-liquid phase transitions which in terms of
traffic flows is related to free (when all cars are moving at full speed)
and congested (when traffic jams are present all the time) types of flows.

The first generalization that we consider is the case with several lanes
of cars. Again each lane is represented by a be-infinite binary sequence
(periodic if the road is cyclic). To take into account the presence of
neighboring lanes we assume that if a car is blocked (i.e. locally it is
represented by 11), it can change the lane with the probability q under
the condition that this change does not affect the movement of cars at
that lane. This simple generalization of the one-lane model is indeed very
natural and can be easily implemented in numerical simulations. So, why
these simulations do not demonstrate stable results (in distinction to
the one-lane case)? Our analysis shows that already in the deterministic
setting (p = q = 1) the system is becoming highly non-ergodic. The latter
means that two initial configurations with the same density of cars may
lead to very different types of behavior. For example, we demonstrate
the situations, when the motion of cars on some lanes is free, while all
other lanes are congested. Moreover, the density of cars on different lanes
eventually will be different from each other.

Another possible generalization is to take into account that normally
the cars in the traffic flow are rather different: they might have different
local velocities and might have some preferences during overtaking (when
a car with larger velocity overtakes other cars, or the car with even
lower velocity overtakes other cars staying in a jam). Examples are fire
or police cars, ambulance cars, etc. We shall discuss some very naturally
looking models of these processes based again on the cellular automaton
representation. Unfortunately as we shall show these models are non-
ergodic in the manner similar to the one discussed above.

To be precise let us define the simplest model of this sort (which
we shall call a Multi-species TASEP) explicitly. Each site of the integer
lattice Z is occupied by a single particle (representing a car) of one of r+1
types. The particle’s type plays the role of its priority under dynamics
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and the 0-th type corresponds to the “holes” (non-occupied sites). Thus
a configuration of particles is described by the sequence x := {xi}i∈Z

from the alphabet {0, 1 . . . , r}.
Our model is a discrete time version with parallel updates of the

model introduced in [4], in which to each bond between the sites one
associates a random Poisson “alarm clock” and when it rings for the
i-th particle (the probability of simultaneous ringing of several alarm
clocks is zero) the adjacent particles swap places if the one on the left
is of larger type. The discrete time parallel update means that all the
particles in the configuration are trying to move simultaneously which
not only makes the analysis more difficult, but demands to adjust the
construction of the local dynamics since several pairs of particles with
intersecting members may compete for the swapping simultaneously.

To overcome this difficulty we define the dynamics through the map
T acting on particle configurations, described by the relation

(Tx)i :=




xi−1 if xi−1 > xi, xi−2 6 xi−1

xi+1 if xi−1 6 xi, xi > xi+1

xi otherwise.

In other words, a particle moves forward if and only if the type of the
preceding particle is not higher and the type of the succeeding particle is
lower comparing to the type of the particle under consideration. Thus the
particles of the highest type move completely independently on others,
when the moving of all other particles is subordinated to the particles
of higher types.

Mathematical arguments in the analysis of the Nagel-Schreckenberg
model is very different in the deterministic (p = 1) and pure random
(0 < p < 1) cases. In the later case one unavoidably needs to find the
stationary probability of the process under study, and all the further
analysis is based on the properties of this stationary probability. An im-
portant feature of the Nagel-Schreckenberg model is that this station-
ary probability turns out to be Markovian in space. Roughly speaking if
we fix a position of one car at time t, then the positions of cars to the
left and to the right from this position are independent from each other.
This feature helps a lot in the exact calculation of average velocities as
functions of car densities. From the first sight it seems that this feature
should hold for the two generalizations that we have considered above.
Moreover, numerical simulations indicated that this should be the case.
Unfortunately, for none of these models the Markovian structure of the
stationary distributions was not proven.
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Decentralized fast gradient method for
computation of Wasserstein barycenter

D.M. Dvinskikh
Moscow Institute of Physics and Technology,

Skolkovo Institute of Science and Technology, Moscow, Russia

Wasserstein distance allows to find the distance between probabilistic
measures on a certain metric space and it is defined as a solution of
transport optimization problem which is a task of linear programming.
Instead of Wasserstein distance, regularized Wasserstein distance was
being considered which is the solution of an entropy-regularized optimal
transport problem.

Wγ(p, q) , min
X∈U(p,q)



〈M,X〉+ γ

n∑

i,j=1

Xij logXij



 ,

where U(p, q) ,
{
X ∈ Rn×n+ | X1 = p,XT1 = q

}
.

A wide-range of modern problems are based on calculating the aver-
age of a set of objects. These problems arise in image processing, com-
puter graphics, statistics and clusterization. For example, calculation of
the mean of objects is a base of K-means algorithm, well-known in ma-
chine learning, for finding cluster centers. Also, optimal transport ap-
proach gives good results for the classification of images, for example,
recognition of handwritten digits from the MNIST dataset; for compar-
ing texts, applying Wasserstein distance to the distance between words;
and for many other tasks. The mean of probability measures is the solu-
tion of the problem minimizing the sum of Wasserstein distances to each
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element in the set.

min
p∈S1(n)

m∑

i=1

λiWγ,qi(p). (1)

This mean is known as the Wasserstein barycenter of discrete proba-
bility measures. Notation Wγ,q(p) means Wasserstein distance of any
point p to a fixed histogram q on a probability simplex S1(n).

Large amount of data and their large-dimensional feature space
motivates us to seek for distributed methods for computation of
Wasserstein barycenter. For instance, the dimension of the image is the
number of its pixels and for large number of images with good resolu-
tion we are faced with a problem of processing a huge number of fea-
tures. The idea of distributed optimization is to distribute the calcula-
tions between computational agents that form a connected network. Also
distributed optimization is based on the fact that the computing capa-
bilities of agents are higher than the speed of information sharing with
neighboring nodes. To present the problem (1) in a distributed manner,
we introduce the connected graph G = (V,E) represented the network of
agents, Laplacian matrixW (communication matrix) defining this graph,
stacked column vectors p = [pT1 , · · · , pTm]T and q = [qT1 , · · · , qTm]T for each
agent i ∈ V , pi, qi ∈ S1(n). After some transformations the problem (1)
can be rewritten in the equivalent form as follows

min
y

W∗
γ,q(
√
Wy) =

m∑

i=1

W∗
γ,qi([

√
Wy]i), (2)

where W∗
γ,qi([

√
Wy]i) = maxpi∈S1(n)

{〈
[
√
Wy]i, pi

〉
−Wγ,qi(pi)

}
is

conjugate function (Fenchel-Legendre transform).

Assuming that every agent in a graph G has its probabilistic distribu-
tion, we prove that the agents are able to reach the consensus (barycen-
ter) interacting with neighboring nodes. Our method is based on dual
approach and uses accelerated gradient descent from [1] executed in a
distributed manner [2].

Algorithm

Input Each agent i ∈ V is assigned its distribution qi.

1. All agents set w̃i
0 = ỹi

0 = z̃i0 = 0 ∈ Rn and N
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2. Set K = exp(−M/γ)

3. For each agent i ∈ V : k = 0, 1, 2, · · · , N − 1

4. τk = 2
k+2

and αk+1 = k+2
2

1
L

5. ỹi
k+1 = τkz̃

i
k + (1− τk)w̃

i
k

6. Share yi
k+1 with {j | (i, j) ∈ E}

7. Calculate p∗j (ỹ
j
k+1) = exp(ỹj

k+1/γ) ◦
(

K · qi
K exp(ỹ

j
k+1

/γ)

)

by agent i

for {j | (i, j) ∈ E}
8. w̃i

k+1 = ỹi
k+1 − 1

L

∑m
j=1 Wijp

∗

j (ỹ
j
k+1)

9. z̃ik+1 = z̃ik − αk+1

∑m
j=1 Wijp

∗

j (ỹ
j
k+1)

10. end

11. Set (y∗

N)i = w̃i
N , ∀i ∈ V

12. Set (p∗N)i =
∑N−1

k=0
(k+2)

N(N+3)
p∗i (ỹ

i
k+1), ∀i ∈ V

We demonstrate the optimal estimates of the complexity of a dis-
tributed algorithm for calculating the Wasserstein barycenter of dis-
crete probabilistic measures.

Assuming that ‖∇W∗
γ,q(ỹ)‖2 ≤ G on a ball BR(0) and set γ =

ε/(4m logn), we prove [3] that after

N ≥
√

128G2m logn

ε2
χ(W )

iterations the outputs of Algorithm, i.e. p∗N = [(p∗N )T1 , · · · , (p∗N )Tm]T and
y∗N = [(y∗N )T1 , · · · , (y∗N )Tm]T have the following properties

W0,q(p
∗

N )−W0,q(p
∗) ≤ ε and ‖

√
Wp

∗

N‖2 ≤ ε/(2R).

Thus, distributing the calculation between multi-agent network sys-
tem, the agents compute the barycenter of probabilistic distribution hav-
ing only its distribution and exchanging the information with neighbor-
ing agents.
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On the complexity of optimal transport
problem

P. Dvurechensky
Weierstrass Institute for Applied Analysis and Stochastics,

Berlin, Germany

Optimal transport (OT) distances between probability measures, in-
cluding the Monge-Kantorovich or Wasserstein distance, play an increas-
ing role in different machine learning tasks, such as unsupervised learn-
ing, semi-supervised learning, clustering, text classification, as long as in
image retrieval, clustering and classification, statistics, and other appli-
cations. Our focus in this work is on the computational aspects of OT
distances for the case of two discrete probability measures with support
of equal∗ size n. The state-of-the-art approach [1] for this setting is to
apply Sinkhorn’s algorithm (also known as balancing or RAS algorithm)
to the entropy-regularized OT optimization problem. As it was recently
shown in [2], this approach allows to find an ε-approximation for an OT

distance in Õ
(
n2

ε3

)
arithmetic operations. In terms of the dependence

on n, this result improves on the complexity Õ(n3) achieved by the net-
work simplex method or interior point methods, applied directly to the
OT optimization problem, which is a linear program. Nevertheless, the
cubic dependence on ε prevents approximating OT distances with good
accuracy.

Approximating the OT distance amounts to solving the OT problem
proposed by L. Kantorovich:

min
X∈U(r,c)

〈C,X〉,

U(r, c) := {X ∈ Rn×n+ : X1 = r, XT1 = c}, (1)

∗This is done for simplicity and all the results easily generalize to the case of
measures with different support size.
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where X is transportation plan, C ∈ Rn×n+ is a given ground cost matrix,
r, c ∈ Rn are given vectors from the probability simplex ∆n, 1 is the
vector of all ones. The regularized OT problem is

min
X∈U(r,c)

〈C,X〉+ γR(X), (2)

where γ > 0 is the regularization parameter and R(X) is a strongly
convex regularizer, e.g. negative entropy or squared Euclidean norm.
Our goal is to find X̂ ∈ U(r, c) such that

〈C, X̂〉 ≤ min
X∈U(r,c)

〈C,X〉+ ε. (3)

In our work we choose a different approach. We construct the dual
problem to the problem of entropy-regularized optimal transport and
solve it by accelerated gradient descent from [3]. This algorithm allows
to reconstruct also the primal solution of the problem and has accelerated
convergence rate both for the primal objective residual and constraints
feasibility. Then we apply the rounding procedure from [2] to obtain a
feasible point from the transport polytop. For our approach we prove
the following theorem.

Theorem 1 Our algorithm outputs X̂ ∈ U(r, c) satisfying (3) in

O

(
min

{
n9/4

√
R‖C‖∞ lnn

ε
,
n2R‖C‖∞ lnn

ε2

})
(4)

arithmetic operations. Here R is the norm of the solution to the dual
problem with minimum norm.

We also perform numerical experiments to compare our result with
the result obtained by Sinkhorn’s algorithm.
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Figure 1: Comparison of working time of the Sinkhorn’s algorithm and
our algorithm APDAGD.
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Formulation, algorithms for solution
synthesis and computational complexity of

minimax bi-assignment problem∗

Yu.S. Fedosenko1, D.I. Kogan2, and D.A. Khandurin2
1Volga State University of Water Transport, Nizhny Novgorod,

2Moscow Technological University, Moscow,
Russia

1. The problem of the use of discrete resources arising in various ap-
plications is being investigated - the optimization of the distribution be-
tween agents of the pairs of non-mutually replaceable tasks. As an exam-
ple of such an application, let us mention a logistic system of the Kam-
sky cargo area type, in which a dedicated group of multi-type cargo ships
(multi-section ship convoys) is used to transport non-metallic construc-
tion materials (NCM) loaded in a single technological cycle with float-

∗The Russian Foundation for Fundamental Research supported this research under
grant 15-07-03141.
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ing hydro-mechanized mining complexes (HMC) on the landfill sites. At
the end of the session of the development of the next operational plan
for the operation of the logistic system of the type in question, the dis-
patching service must unequivocally determine: a) to which HMC from
the number of channeled deposits located at the landfill site, each indi-
vidual ship of the selected group should be loaded for loading the NCM;
b) what destination for discharge should be assigned to each particu-
lar vessel after its loading. For the development of operational plans for
the functioning of a logistics system that are effective in the conditions
of the developing operational environment, it is actual to develop and
use a specialized digital management support system that includes both
mathematical modeling procedures for the water transport logistics sys-
tem and means for resolving suitably assigned extreme ship distribution
tasks HMC for loading of the NCM and distribution of vessels at the
unloading points of the NCM.

2. In discrete idealization, a mathematical model for the optimization
of the distribution between agents of discrete resources of the type under
consideration leads to the general bi-assignment problem with the
minmax criterion formulated and studied below. There is set of agents
I = {1, 2, . . . , n} and two sets of tasks P= {p1, p2, . . . , pn} and Q=
{q1, q2, . . . , qn}. Each agent must be assigned to one of the tasks of the
set P and to one of the tasks of the set Q. Each of the tasks must
be performed in full by exactly one agent. They are given by the given
(n × n)-matrices of the numerical estimates A= {aij} and B= {bij},
where aij is the estimation of the performance of the task pj by the agent
i, and bij is the performance of the same agent qj , i = 1, n, j = 1, n. We
introduce the following notation: π1 - the assignment of the agents to the
tasks from the set P, π2 - the assignment of the agents to the tasks from
the set Q. Each assignment is a one-to-one mapping of the set 1, 2, . . . , n
into itself. If pi1(i) = j, then agent i should assign to task pj . Similarly,
the equality π1(i) = j means that agent i must also perform the task qj .

A bi-assignment is called a pair of the form < π1(i), π2(i) >. It is
considered that when implementing the bi-assignment < π1(i), π2(i) >,
each agent i starts with the task number π1(i) starting from time 0, and
immediately starts the task with the number π2(i).

In general form, the general problem of bi-assignment with a minmax
criterion - problem 1 is written as follows:

min
π1,π2

(max
α

[aαπ1(α) + bαπ2(α)]). (1)
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If the matricesA andB determine the duration of the task performed
by the agents, then solving (1) we find a bi-assignment ensuring the min-
imum total length of the whole task package {p1, p2, . . . , pn, q1, q2, . . .,
qn}.

It is easy to see that (1) is the generalization of the classical minmax
assignment problem [1].

3. To construct the solving (1) algorithm, we use the concept of dy-
namic programming. Let i be a natural constant not exceeding n, and
W1, W2 be arbitrary i-element subsets of 1, 2, . . . , n.

We denote by Z(i,W1,W2) the subproblem of problem 1 in which the
authors of the set 1, 2, . . . , i should distribute the tasks with the lower
indices (numbers) from the subsets W1 and W2; each agent must receive
exactly one task of the set P (with the number entering the subset W1)
and exactly one task of the set Q (with the number entering the subset
W2). The set of tasks defined by subsets W1, W2 should be performed
in the minimum time. The optimal value of the criterion in the problem
Z(i,W1,W2) is denoted by B(i,W1,W2). It is obvious that B(i,W1,W2)
is the Bellman function for (1), and

B(1, {j}, {k}) = a1j + b1k, j, k ∈ {1, 2, . . . , n}. (2)

According to the Bellman principle, we have the following relation:

B(i,W1,W2) = min(max
α,β

[(aiα + biβ), B(i − 1, {W1\α}, {W2\β})]). (3)

where (α, β) are arbitrary pairs of indices from the set W1 ×W2.
Formulas (2), (3) are recurrence relations of dynamic programming

for solving the problem (1).
The execution of the computational algorithm realizing these rela-

tions begins with the definition of the quantities B(1, {j}, {k}) for all
singleton sets W1 and W2.

Then, in order of increasing i (i = 2, 3, . . . , n), for all possible sets
W1 and W2, the values of the function B(i,W1,W2) are determined
by formula (3); the value of B(n, 1, 2, . . . , n, 1, 2, . . . , n) of the Bellman
function with the extreme set of argument values is the optimal criterion
value in problem 1.

In the process of performing the described computational procedure,
for each triplet (i,W1,W2) of argument values, it is necessary to fix the
pair (α, β) on which the minimum of the right-hand side of relation (3)
is realized. This will allow, after finding the optimal value in task 1 of
the criterion value, to write down the corresponding bi-assignment.
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The complexity of the constructed decision algorithm (1) is determin-
ed by the number of calculated values of the Bellman function and, as
is obvious, is determined by the quantity O(4n).

4. Let us introduce the application-specific laboriousness (1) prob-
lem 2, in which each of the available 2n tasks is characterized by its
laboriousness: the task pj has the laboriousness t(pj), the task qj , has the
laboriousness t(qj)). We also assume that each agent i is characterized
by its performance wi, and the elements of the matrices A and B are
calculated by the relations

aij = t(pj)/wi, bij = {t(qj)/wi}, i = 1, n, j = 1, n.

Under the conditions of problem 1 and problem 2, we select the cor-
responding recognition problems - problem 3 and problem 4, respecti-
vely.

In problem 3, with the initial data of problem 1 and the addition-
ally indicated constant T, it is asked whether there is a bi-assignment,
in the implementation of which the entire set of available tasks can be
performed no later than the moment of time T (the directive deadline
for completing the prescribed task package). In problem 4 an identical
question is posed for the initial data of problem 2 and additionally indi-
cated constant T. Obviously, the computational complexity of problem
1 is not lower than the computational complexity of problems 2 and 3,
and the computational complexity of both problems and problems 3 is
no less than the computational complexity of problem 4.

It is easy to show that problem 4 is polynomially equivalent to the
NP -complete problem of ”Combination with restrictions on weight” [2].

Thus, it is established that all the problems studied in this article are
difficult to solve and, according to the natural scientific hypothesis ”P 6=
NP”, algorithms of polynomial computational complexity for them can
not be constructed.

5. Taking into account the applied significance of the discrete resour-
ces distribution problem under consideration, it is expedient to design
an iterative solving algorithm for the general bi-assignment problem that
realizes the concept of the branch and boundary method. To calculate
the upper estimate of the value of the optimization criterion, the classi-
cal assignment problem with a minmax criterion, determined by the ma-
trix A, is solved at the root of the variants of problem 1. The resulting
assignment is denoted by π∗

1 . Next, we construct the matrix B*, each el-
ement of which is found by the formula b∗ij = bij + aiπ∗(i). The function
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π∗
2 is obtained analogously to the synthesis of π∗

1 - as a result of solv-
ing the classical assignment problem defined by the matrix B* with a
minmax criterion.

The resulting bi-assignment π∗∗ =< π∗
1(i), π

∗
2(i) > provides an upper

bound in the root of the tree for the solution of the problem being solved.
It is easy to see that, as the lower bound in the root of the variants tree,
we can take the value of θ, calculated by the relation

θ = max
α

[min
β
aαβ +min

β
bαβ].

The above methods of obtaining the upper and lower estimates of
the value of the optimized criterion in the root of the tree of variants
induce in an obvious way the algorithms for finding them in subsequent
intermediate vertices of this tree.

At the same time, the smallest of the upper bounds obtained in the
process of the described construction of a variant of the variants tree
sufficient for solving the problem is called the current record, and its
value in general decreases in this process. The algorithm described above
solves the problem as soon as a set of promising open vertices for future
branching is empty.

The root of the variants tree is considered to be the vertex of the
first rank; vertices of the k -th rank generate, on branching, a vertex of
rank k+1.

The procedure of branching at an arbitrary vertex of the k -th rank
consists in constructing from it branches, each of which corresponds to
fixing for the k -th agent of some pair of free tasks from the set P×Q ; In
this case, branches of the variants tree must be built only for those pairs
(pα, qβ) of free tasks for which the sum akα+bkβ is less than the value of
the current record. At the same time, note that the number of branches
of the tree of variants emerging from an arbitrary vertex of rank k can,
in general, reach the value (n− k)× (n− k).

The final value of the current record is the optimal value of the crite-
rion, and the path from the root to the top of the variants tree in which
it is reached uniquely determines the solution of the bi-assignment prob-
lem.

In addition, we note that the presence of some pre-built even a small
initial fragment of the variants tree can significantly shorten the duration
of the solution of the problem by the method of dynamic programming.
In fact, let the number U be the final (minimum) value of the current
record when constructing such a fragment of the tree of variants. Then at
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each stage of calculations using formula (3) it is enough to consider only
such pairs of indices (α, β) from W1 ×W2 for which the sum akα + bkβ
does not exceed U.

The procedures for obtaining upper and lower bounds for the solution
of problem 1 according to the scheme of BaB can be variously modified.
We give the simplest example of such a modification.
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Dynamic network loading problem by
means of link transmission approach

V.V. Kurtc and A.V. Prokhorov
A+S, Peter the Great St. Petersburg Polytechnic University,

St. Petersburg, Russia

Introduction
Nowadays the problem of reliable forecast of traffic flows has a high

degree of relevance. Realistic prediction of traffic flow propagation should
be done both for urban roads and motorways out of the city. Moreover,
it is necessary that the calculation be performed for large road networks
in real or scalable time.These points lead to the dynamic traffic assign-
ment problem [1–3] and to the need to use the Dynamic Network Load-
ing models [4, 5]. These models allow to determine the link flows which
correspond to given transport demand and route choices. The Iterative
Link Transmission Model (ILTM) [6] provides realistic results according
to first order kinematic wave theory [7] and allows traffic flow simula-
tion in practical large scale networks in a reasonable time. In this paper
we propose some modifications (improvements) of the ILTM. The con-
tributions of this research are situated on three issues: the node model,
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calculation of turning portion matrix with respect to destination node
and algorithm of distributing changes towards neighboring nodes.

The ILTM exploites the triangular shape of fundamental diagram
with only two kinematic wave speeds (forward and backward). The ILTM
procedure consists of three consequtive steps going over all nodes: calcu-
lation of sending and receiving flows, running node model to find turn-
ing flows and updating cumulative value numbers at the link ends for all
connected links. For more details the reader is referred to [6].

Modifications of the Iterative Link Transmission Mode
In this paper we suggest the node model as a solution of optimization

problem that minimizes linear function, what corresponds to the optimal
control within the intersection

max
TFab

∑

a∈BSn

∑

b∈FSn

TFab, (1)

with linear constraints

TFab ≥ 0, ∀a ∈ BSn, ∀b ∈ FSn,
va =

∑

b∈FSn

TFab ≤ SFa, ∀a ∈ BSn,

ub =
∑

a∈BSn

TFab ≤ RFb, ∀b ∈ FSn,

TFab = θab · va, θab =
TPab∑

b∈FSn
TPab

, ∀a ∈ BSn, ∀b ∈ FSn.

(2)

Here TFab is a turning flow from link a to link b, BSn and FSn are
incoming and outgoing links of the node n respectively, θab is a turning
fraction such that

∑
b∈FSn

θab = 1, ∀a ∈ BSn. One can reformulate the
problem (1), (2) in order to reduce the number of variables from M ∗N
to M (here M = |BSn|, N = |FSn|)

max
va

∑

a∈BSn

va,

va ≤ SFa, ∀a ∈ BSn,∑

a∈BSn

θab · va ≤ RFb, ∀b ∈ FSn,
(3)

The problem (3) is a linear programming problem which can be solved by
means of simplex algorithms. Afterwards the turning flows are calculated
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according to the following relation

TFab = θab · va. (4)

The second contribution introduced in this paper is the algorithm
for calculation of turning flows in a node taking into account destination
node. Let us consider node n and TPab(i) is a number of vehicles trans-
fering via node n from incoming link a ∈ BSn to outgoing link b ∈ FSn
during [ti, ti+1]. Moreover the dynamic OD-matrix splitted according all
routes is provided as one of the model input, that is volp(i) is a number
of vehicles departing on a route p during time period [ti, ti+1]. Firstly,
let us define all routes going through the node n from link a to link b as
Pab. Next, considering Pab one defines all routes P dab, which end at the
destination node d. Finally, turning portion from link a to link b towards
destination d is as follows

TP dab(i) = TPab(i)

∑
p∈Pd

ab
volp(i)∑

p∈Pab
volp(i)

(5)

The third contribution of this research is the algorithm of distribut-
ing changes towards neighboring nodes. In [6] flows in a node are dis-
tributed according to sending flow values, but it is not taken into ac-
count that several routes with the same destination can use different
outgoing links. Here we present another way for distributing changes to-
wards neighbouring nodes considering above-mentioned issue. The for-
mulas for computing upstream Ubd(i) and downstream Vad(i) cumulative
values are as follows

Ubd(i) = Ubd(i− 1) +
∑

a∈BSn

TFab
TP dab(i)∑
d TP

d
ab(i)

, ∀a ∈ BSn, ∀d ∈ D (6)

Vad(i) = Vad(i− 1) +
∑

b∈FSn

TFab
TP dab(i)∑
d TP

d
ab(i)

, ∀b ∈ FSn, ∀d ∈ D (7)

Results and Conclusion
We consider two networks to illustrate the performance of the ILTM

with presented contributions. The first case study is from [5] (Fig. 1, left)
whereas the second one is a practical large scale network – the part of
Varshavskoe highway in Moscow which is more than three kilometers in
length (Fig. 1, right). The second network includes 51 nodes, 106 links
and 17 routes between different origin-destination pairs. The simulation
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time step ∆t = 10 s and the total simulation time 150 min and 180
min respectively. Time-dependent OD-matrices spiltted according to all
routes are imported every 180 seconds for the first and every 60 seconds
for the second case study.

Fig. 1. Simple diverge netwok (left) and Varshavskoe highway network
(right)

Figure 2 illustrates queue propagation according to ILTM for the
simple diverge network. The height of the block represents the flow,
whereas the color represents the speed. One can observe that merge
node m acts as a bottleneck what leads to queue appearance on the link
r2m gradually growing and moving backwards.

Fig. 2. Queue propagation over time. Simple diverge netwok

Simulation results for the second case study are presented in Figure 3.
Initially network is empty. Later on densities on links increase and be-
come stationary. At 1510 s flow from the north to the south disappears.
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No queues and no bottlenecks are observed throughout all simulation
period.

Fig. 3. Queue propagation over time. Varshavskoe highway, Moscow

The first case study demonstrates that the ILTM with presented in
this paper contributions are able to reproduce basic phenomena of traf-
fic flow such as bottlenecks activation, queue formation and its propa-
gation backwards. The second case study shows the applicability of this
model to practical networks. For further research, we plan to consider
another practical and large scale networks and analyze the reliability of
the simulation results. It will be done by comparison to real data or to
results obtained with some commercial software.

References

1. Chiu Y.C. et. al. Dynamic Traffic Assignment. Transportation Net-
work Modeling Committe. 2011. P. 1–39.

2. Szeto W., Wong S. Dynamic Traffic Assignment: model classifica-
tions and recent advances in travel choice principles // Open En-
gineering. 2012. Vol. 2, P. 1–18.

3. Viti F., Tampere C.M.J. Dynamic Traffic Assignment: Recent Ad-
vances and New Theories Towards Real Time Applications and
Realistic Travel Behaviour. Edward Elgar, 2010.

4. Gentile G. The General Link Transmission Model for dynamic net-
work loading and a comparison with the DUE algorithm // Pro-
ceedings of the Second International Symposium on Dynamic Traf-
fic Assignment. Leuven, Belgium, 2008.

5. Yperman I. The Link Transmission Model for Dynamics Network
Loading. June, 2007.

6. Himpe W. Integrated algorithms for repeated dynamic traffic as-
signments. The iterative link transmission model with equilibrium
assignment procedure. March, 2016.



The typical models for congested traffic 287

7. Jin W.L. Development and validation of kinematic wave traffic flow
models for road networks // University of California Transporta-
tion Center Dissertation Grant, University of California. Davis,
CA, 2002.

Fair energy flow redistribution after damage

Yu.E. Malashenko, I.A. Nazarova, and N.M. Novikova
Dorodnicyn Computing Centre, Federal Research Center ”Computer

Science and Control” of Russian Academy of Sciences,
Moscow, Russia

A dynamic network flow model (MEF model) [1, 2] is constructed
for the analysis of power supply processes, including the aggregated ex-
traction, transportation, transformation, and redistribution of the main
types of fuel and energy resources. Suppose that consumers and produc-
ers of energy resources are spatially distributed and integrated into a
common energy complex (EC). In the MEF model, individual network
micromodels correspond to each of the EC functional subsystems. Also,
the common EC infrastructure is described by a set of network submod-
els. In general, the EC operation is reduced to the single-commodity flow
optimization problem for a specially constructed multilayer graph whose
layers correspond to different time intervals of EC analysis. Within the
MEF model, energy supply options in spatially distributed systems after
destructive impacts are studied. In this report, the strategies for control-
ling the flows are determined based on a posteriori information on the
change in the capacity of the arcs of the model network. The control ob-
jective is the maximum of possible fulfillment of user requirements tak-
ing into account the regulatory constraints on the admissible levels of the
accident/load on the network subsystems. This problem is considered as
a multicriterial one [3].

Let L+ be the set of all MEF model’s arcs (i, j):
i ∈ N ∪ {U}, j ∈ N ∪ {S}, i 6= j, lij ∈ L, if i = U , then j 6= S,

where N is the set of indices of model nodes, U is fictitious common
source of infinite power, S is fictitious common sink, and L is the set
of model arcs, except for those that connect the nodes to an fictitious
source U and fictitious sink S. The flow in the network is determined
by the vector x = 〈xUj , ..., xij , ..., xiS〉. Each component of x corre-
sponds to the flow along the arc lij ∈ L+. Let us introduce the set X of
flow vectors x that satisfy the conditions of flow conservation in transit
nodes, constraints on the capacity of the corresponding arcs, and con-
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straints on the given initial volumes of resources [1].The set X is called
the set of feasible flows.

LetK be the set of indices of all consumer nodes of the MEF model;K
be the total number of consumer nodes, |K| =K; vkm(t) be the sink vertex
of the micromodel of the k-th consumer node for the m-th resource type,
k = 1,K, m ∈ {1, ..., 4} (for electricity, oil, gas, and coal respectively),
the flow through which is considered on the interval τt ∈ [0, T ]; and
xkm(t) be the flow along one of the sink arcs of the micromodel of the
kth consumer node into a single fictitious sink vS equal to the amount of
the mth resource fully utilized by the kth consumer for the time interval
τt ∈ [0, T ], m ∈ {1, ..., 4}, k = 1,K. Let us renumber all the sink vertices
of all consumer nodes for all types of resources over all time intervals with
natural numbers from 1 to L, according to some rule and introduce the
set L of all sink arcs of the MEF model; i.e., let us establish a one-to-one
correspondence

L = {liS ∈ L+ | (i,S) = (vkm(t), vS), i = 1, L, k = 1,K, m ∈ {1, ..., 4}}.

It is assumed that each consumer node during the time interval τt has
a specific request (requirement) for the supply of some quantity of the
required types of energy resources. Let us define the kth consumer requi-
rement for the mth resource type or the requirement at the vertex vkm(t),
for the time interval τt, k = 1,K, m ∈ {1, ..., 4}, by fm(k)(t), and let us
proceed to the new notation: fiS is the requirement on the sink arc liS ,

fiS = fm(k)(t), liS ∈ L, i = 1, L, m ∈ {1, ..., 4}, k = 1,K, τt ∈ [0, T ].

Vector f = 〈f1j , ..., fij , ..., fLj〉, lij ∈ L, i = 1, L, j = S, describes
all the requirements for all types of energy resources for all consumer
nodes for the entire considered period [0, T ] using sink arcs. Formally,
assume the capacity dij of a sink arc lij ∈ L to be equal to the request

of the consumer node on this sink arc, i.e., dij = fij , lij ∈ L, i = 1, L,
j = S. For the purposes of the present report, it is convenient to take
the values obtained by consumers in the EC before the network damage
(for example, according to the statistics, see [1]) as the model volume
of the requirements. The measure for requirement satisfaction of the
kth consumer node by the mth type of resource on the interval τt is
equal to the flow running along the corresponding sink arc divided to
the requirement at the sink vertex vkm(t). Using the original indices, we
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denote this quantity by ηkm(t), i.e.,

ηkm(t) =
xkm(t)

fm(k)(t)
, m ∈ {1, ..., 4}, k = 1,K, τt ∈ [0, T ],

or by proceeding to the notation given by the numbers of the sink arcs,

ηij =
xij
fij

=
xij
dij

, i = 1, L, j = S.

The measure of the requirement satisfaction of the kth consumer
node for the mth type of resource on the interval τt shows how much
of the requested mth energy resource can actually be delivered to the
kth consumer and is one of the most important characteristics of the
EC after damage. Although in the initial network before the damage
all ηij = 1, and the network flow value corresponded to the sum of
all requirements, under the conditions of large-scale damage, the flow
value decreases. However, the measure of the requirement satisfaction of
different users can change disproportionately. Therefore, in addition to
the general problem of the minimum cost flow described in [1], let us
consider in details the more particular problem: how to determine a flow
that provides the most fair requirement satisfaction.

Suppose that the problem of controlling flows after damage is to
reach the initial requirements of the users as much as possible. In this
section, we a Assume that all consumers have equal rights and at any
time none of them is given preference for any kind of energy resource.
What is the guaranteed measure to fulfill all requirements? The answer
to this question can be obtained by solving the problem of maximizing
the minimal measure that fulfills the requirements given by the users.

Problem A. Let us find max
x∈X

min
lij∈L

ηij

subject to

ηij =
xij
dij

, lij ∈ L. (1)

The solution of problem A is equivalent to the solution of the following
linear programming problem.

Problem B1. Let us find max
x∈X, θ

θ

subject to

θ 6
xij
dij

, lij ∈ L. (2)



290 The typical models for congested traffic

Let the optimal value of the parameter θ obtained as a result of solving
problem A or B1 subject to (1): be

θ∗ = max
x∈X

min
lij∈L

ηij = max
x∈X

min
lij∈L

xij
dij

= max
(x∈X, θ)∈(2)

θ.

Taking into account constraints imposed on the flows (including those for
sink arcs in which the capacity is equal to the requirements per flow) the
value of θ cannot be greater than 1. If θ∗ = 1 then all user requirements
can be fully satisfied. If 0 < θ∗ < 1 then the requirements of some users
at a time point can be fulfilled only at the level of θ∗ × 100% of the
requirements. If θ∗ = 0 then there is a consumer in the network who at
least at one point in a time period cannot be provided with any kind of
energy resource at all. It means that the damage in the energy resource
transportation network cut off at least one consumer node from being
supplied with at least one type of resource.

Suppose that while solving the original problem B1 the best guaran-
teed measure to fulfill the requirements of consumers θ∗1 = θ∗ is found. In
this case, the distribution of the flows along the sink arcs corresponding
to the level of fulfillment θ∗1 is called the competitive distribution of flows.

If θ∗1 < 1, then there is a nonempty subset of sink arcs L∗

1, L
∗

1 ⊆ L, for
which the measure of fulfillment of the requirements is exactly equal to
θ∗1 , and it cannot be increased without violating the relation ηij > θ∗1 for
at least one sink arc (i, j) ∈ L:

L∗1 = {lij ∈ L |
x1ij
dij

= θ∗1 ∀ x1 : (x1, θ∗1) ∈ Arg max
(x∈X, θ)∈(2)

θ}.

Let us call the arcs in the set L∗1 by the arcs of the first level of ful-

fillment of the requirements. The set L∗1 can be constructed, for exam-
ple, using the problem B1 by the standard network flow programming
methods. If L∗1 coincides with L then the problem of maximizing the
minimum measure of fulfilling requirements for all sink arcs is solved.
Otherwise, we will continue the maximization in order to find more fair
competitive distribution of flows.

Just fix the flows along the arcs of the set L∗1 with the achieved level
θ∗1 and solve the following problem of maximizing the minimum measure

of requirement satisfaction for the sink arcs from the set L1 = L\L∗1.
Problem B2. Let us find max

x∈X, θ
θ
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subject to 



θ 6
xij
dij

, lij ∈ L1,

xij
dij

= θ∗1 , lij ∈ L
∗

1.
(3)

The process of constructing Pareto-optimal flow vector will stop at
the Sth step, as soon as it turns out that for all the sink arcs, whose flows
are not yet fixed, the guaranteed measure of their requirement fulfillment
is exactly equal to the optimal value of the parameter θ∗S . The process will
also be completed in the case when the guaranteed measure of fulfillment
of the requirements of the considered sink arcs becomes unity.

Thus, we solve a finite lexicographic sequence of problems of type A
(or B1) and construct the flow that fairly meets the requirements. This
means that it is impossible to increase the measure of the requirement
satisfaction for any sink arc without simultaneously reducing the satis-
faction requirement measure for another sink arc which has the same
or worse conditions. Suppose that the lexicographic maximin problem is
solved and θ∗S < 1. Thus it is impossible to fulfill the requirements of
any consumer for either type of energy resources. Note that the process
of solving the sequence of maximin problems can be interrupted at any
step based on substantive considerations. In this case, θ∗1 < ... < θ∗s < 1.

In order to identify network arcs, the insufficient capacity of which
hinders increasing the target function, it is useful to carry out a postopti-
mal analysis of the obtained solution. In particular, if the flow along the
arc is less than its capacity, then the latter is not required. In the case
of equality, it is necessary to determine the values of the dual variables
for the corresponding flow constraints along the arc. The large values of
the dual variables indicate that the increase in the target function will
be significant when this constraint is mitigated.

Within the MEF model, it is convenient to study the possibilities of
supplying the network by one resource or by their group, estimate the
measure of fulfillment of the requirements for one user or for a group of
users. These features modify the type of functionals and constraints of
problems but can be described within the propoused methodology for
using the MEF model.
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Travel demand forecasting model based on
dynamic traffic assignment

D.S. Mazurin
Institute for Systems Analysis, Federal Research Centre “Computer

Science and Control” of Russian Academy of Sciences,
Moscow, Russia

We consider the problem of travel demand forecasting in a large city.
The common approach to solve this problem is the four-step model [1],
which involves (i) trip generation, (ii) trip distribution, (iii) modal split
and (iv) static traffic assignment. Static assignment models rely on sim-
ple link travel time functions and can’t reproduce observed network con-
ditions, which raises questions about the accuracy of the forecasts. This
work presents an alternative modelling framework for long-term trans-
portation planning, transport policy evaluations and scenarios compari-
son based on dynamic traffic assignment (DTA) [2]. The general scheme
is shown in Figure 1.

In our framework we take into account trip chaining behaviour: trips
combine into tours starting and ending at the same place, usually at
home [3]. In this paper we limit ourselves to the simplest two-leg tours
Home → Object → Home with a single destination. The trip genera-
tion aims at predicting the total daily number of trips generated at and
attracted to each zone for each demand stratum. The trip distribution
model describes the activity location choice for each demand stratum.
We use here the combined gravity model with two person groups with
and without car availability:

Qkij = akiO
k
i bjDjf(c

k
ij),∑

j

Qkij = Oki ,
∑

i

∑

k

Qkij = Dj .

Here Qkij is the total daily number of tours from i to j and back for

person group k, Oki is the total daily generation of zone i for person
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Fig. 1. The general scheme of the proposed modelling framework.

group k, Dj is the total daily attraction of zone j, ckij is the aggregated
generalized travel cost of choosing zone j from zone i for person group
k, f(c) is decreasing gravity function, aki and bj are balancing factors.
The generalized travel cost usually includes travel time, monetary costs
and some other components.

The next block, mode and departure time choice model, describes
two more travel behaviour dimensions. It takes as input OD matrices
for each demand stratum and splits them by mode (private car, public
transport, etc.) and by departure time choice intervals (with time step ∼
15 min) on the basis of discrete choice theory [4]. We consider two types
of tours with respect to departure time choice: mandatory tours with
fixed schedule (most of commuters, school trips, etc.) and discretionary
tours with flexible schedule (shopping, leisure, some of commuters, etc.).

For the first tour type (e.g., Home → Work → Home) we assume
preferred arrival (to work) time window [ta1 ; t

a
2 ] and preferred departure

(from work) time window [td1; t
d
2] given. For any deviation from preferred

arrival/departure time so-called schedule delay penalty is included in
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generalized travel costs. Then the utility of the whole tour from i to j at
time interval t1 and back at time interval t2 by mode m is the following:

Umijt1t2 = αcmijt1 + βmax(ta1 − τmijt1 − t1, 0) + γmax(t1 + τmijt1 − ta2 , 0)+
+αcmijt2 + βmax(t2 − td2, 0) + γmax(td1 − t2, 0).

Here τmijt and cmijt are travel time and travel cost from i to j at time t
accordingly, α, β and γ are travel behaviour parameters.

For the second tour type (e.g., Home → Shopping → Home) we as-
sume preferred arrival (to shop) time window [ta1 ; t

a
2 ] and activity dura-

tion ∆ given. Then the utility of the whole tour is the following:

Umijt1t2 = αcmijt1 + βmax(ta1 − τmijt1 − t1, 0) + γmax(t1 + τmijt1 − ta2 , 0)+
+αcmijt2 + βmax(t2 − t1 − τmijt1 −∆, 0) + γmax(t1 + τmijt1 +∆− t2, 0).

Given utility values for each triple (t1, t2,m) we can calculate choice
probabilities skmijt1t2 and aggregated utility Ukij for the people group k.
For example, Multinomial Logit model leads to:

skmijt1t2 =
exp(Umijt1t2)∑

(t1,t2)

∑
m∈Mk

exp(Umijt1t2)
,

Ukij = ln


 ∑

(t1,t2)

∑

m∈Mk

exp
(
Umijt1t2

)



where Mk is the set of modes available for the people group k.
The dynamic traffic assignment model consists of two fundamental

components: a route choice model and a dynamic network loading (DNL)
model. The DNL model describes traffic flow propagation on road net-
works and reproduces traffic flow characteristics such as density, flow
and average speed. It takes as input time-dependent path flows and out-
puts time-dependent link flows, densities and travel times. In this pa-
per we use a macroscopic first-order traffic flow model, Link Transmis-
sion Model (LTM) [5]. This model captures spatial and temporal con-
gestion dynamics (queue build-up, spillback, and dissipation) in terms
of cumulative inflows and outflows and requires a minimum number of
input data (capacity, free flow speed and jam density for each link).

The DNL model consists of a link model and a node model. The link
model describes the traffic flow dynamics on homogeneous road sections
without intersections (given the boundary conditions) and can be con-
sidered as a mapping Λ that determines the maximum possible inflows
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Ra(t) and outflows Sa(t) for link a at time t given cumulative inflows
Ua(t

′) and outflows Va(t
′) at time t′ < t:

(Sa(t), Ra(t)) = Λ (Ua(t
′), Va(t

′)) , t′ < t.

The node model provides the connection between links and captures
flow interactions at junctions [6]. For each node n it can be seen as a
mapping Υ from the maximum outflows Sa(t) of incoming links a ∈
BS(n) and the maximum inflows Rb(t) of outgoing links b ∈ FS(n) at
time t to actual instantaneous outflows va(t) and inflows ub(t) for these
links at time t:

(va(t), ub(t)) = Υ(Sa(t), Rb(t), φab(t)), a ∈ BS(n), b ∈ FS(n).

Here φab(t) are the splitting rates determined by the route choice model
(conditional probabilities of choosing outgoing link b for vehicles arrived
to node n at time t from link a). In our model we use multi-commodity
DNL procedure, keeping track of individual flow components towards
different destinations, so all loading and routing variables are disaggre-
gated by destination d. Given cumulative inflow and outflow temporal
profiles Ua(t) and Va(t) we can easily calculate link travel times τa(t)
and traffic flow variables (flow, density and speed) at any intermediate
point.

The route choice model describes drivers’ route choice behaviour. It
takes as input time-dependent link travel times and generalized travel
costs and outputs time-dependent path flows. Each driver is assumed to
follow the dynamic user equilibrium (DUE) route choice principle, which
is the simplest dynamic extension of Wardrop’s first principle [2]. It
states that for each origin-destination pair, any routes used by travelers
departing at the same time must have equal and minimal travel cost.
In this work we use implicit path enumeration via splitting rates at
nodes. To solve the DUE problem we use heuristic gradient projection
algorithms [7].

We applied our approach to the transport system of Nizhny Nov-
gorod, the fifth largest city in Russia with a population of over 1.2 mil-
lion. The road network graph consists of 1901 nodes, 5478 links and 264
zones. Our computational experiments show that satisfactory conver-
gence level can be achieved in a reasonable number of iterations for mod-
erate congestion. In contrast to static traffic assignment, dynamic traffic
assignment models with spillback are extremely sensitive to the network
parameters. The biggest problem is that gridlock situations may occur
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where the vehicles on the closed loop (e.g., roundabout) block each other,
therefore convergence progress should be monitored during the calcula-
tion or some gridlock prevention algorithms should be used here. The
computation time and the memory consumption for this medium-size
network are in acceptable limits even on an ordinary modern computer.
All computational procedures are designed to take full advantage of mul-
tiprocessor systems. In our future work, we aim at further increasing the
overall computational performance of our modelling framework, which
will make it possible to deal with more complex transport networks such
as the Moscow agglomeration [8].
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Some Adaptive Mirror Descent Algorithms
for a Special Class Convex Constrained

Optimization Problems∗

Fedor S. Stonyakin, Alexander A. Titov and Mohammad S. Alkousa
V. I. Vernadsky Crimean Federal University, Moscow Institute of
Physics and Technology, Simferopol, Moscow, Russian Federation

The report is devoted to a special Mirror Descent algorithm for prob-
lems of convex minimization with functional constraints (see [1], Section
3.3). The objective function may not satisfy the Lipschitz condition, but
it must necessarily have the Lipshitz-continuous gradient. We assume,
that the functional constraint can be non-smooth, but satisfying the Lip-
schitz condition. In particular, such functionals appear in the well-known
Truss Topology Design problem [3, 5]. Also we have applied the tech-
nique of restarts in the mentioned version of Mirror Descent for strongly
convex problems [2, 4]. Some estimations for a rate of convergence are
investigated for considered Mirror Descent algorithms.

Let (E, || · ||) be a normed vector space and E∗ be the conjugate space
of E with the norm:

||y||∗ = max
x
{〈y, x〉, ||x|| ≤ 1},

where 〈y, x〉 is the value of the continuous linear functional y at x ∈ E.
Let X ⊂ E be a (simple) closed convex set. We consider two convex

subdiffirentiable functions f and g : X → R. Also we assume that g is
Lipschitz-continuous:

|g(x)− g(y)| ≤Mg||x− y|| ∀x, y ∈ X. (1)

We focus on the next type of convex optimization problems.

f(x)→ min
x∈X

, (2)

s.t. g(x) ≤ 0. (3)

Let d : X → R be a distance generating function (d.g.f) which is
continuously differentiable and 1-strongly convex w.r.t. the norm ‖·‖,
i.e.

∀x, y ∈ X 〈∇d(x) −∇d(y), x− y〉 ≥ ‖x− y‖2,
∗The reported study was supported by Russian Foundation for Basic Research

according to the research project 18-31-00219.
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and assume that min
x∈X

d(x) = d(0). Suppose, we have a constant Θ0 such

that d(x∗) ≤ Θ2
0, where x∗ is a solution of (2)–(3).

Note, that if there is a set of optimal points X∗, then we may assume,
that

min
x∗∈X∗

d(x∗) ≤ Θ2
0.

For all x, y ∈ X consider the corresponding Bregman divergence

V (x, y) = d(y)− d(x) − 〈∇d(x), y − x〉.

Standard proximal setups, i.e. Euclidean, entropy, ℓ1/ℓ2, simplex, nuclear
norm, spectahedron can be found, e.g. in [2]. Let us define the proximal
mapping operator standardly:

Mirrx(p) = arg min
u∈X

{
〈p, u〉+ V (x, u)

}
for each x ∈ X and p ∈ E∗.

We make the simplicity assumption, which means that Mirrx(p) is eas-
ily computable.

Following [4], given a function f for each subgradient ∇f(x) at a
point y ∈ X , we define

vf (x, y) =





〈 ∇f(x)
‖∇f(x)‖∗

, x− y
〉
, ∇f(x) 6= 0

0 ∇f(x) = 0

, x ∈ X. (4)

The following adaptive Mirror Descent algorithm for Problem (2) –
(3) was proposed by the first author.

Algorithm 1. Adaptive Mirror Descent, non-standard
growth
Require: ε,Θ2

0, X, d(·)
1: x0 = argmin

x∈X
d(x)

2: I =: ∅
3: N ← 0
4: repeat
5: ifg(xN ) ≤ ε→then
6: hN ← ε

||∇f(xN )||∗

7: xN+1 ←MirrxN (hN∇f(xN )) (”productive steps”)
8: N → I
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9: else
10: (g(xN ) > ε)→
11: hN ← ε

||∇g(xN )||2∗

12: xN+1 ←MirrxN (hk∇g(xN )) (”non-productive steps”)
13: end if
14: N ← N + 1

15: until Θ2
0 6 ε2

2

(
|I|+ ∑

k 6∈I

1
||∇g(xk)||2∗

)

Ensure: x̄N := argminxk,k∈I f(x
k)

Theorem 1. Let ε > 0 be a fixed positive number and Algorithm 1
work

N =

⌈
2max{1,M2

g }Θ2
0

ε2

⌉
(5)

steps. Then

min
k∈I

vf (x
k, x∗) < ε. (6)

We can apply Algorithm 1 to some class of problems with a special
class of non-smooth objective functionals.

Corollary 1. Assume that f(x) = max
i=1,m

fi(x), where fi is differen-

tiable at each x ∈ X and

||∇fi(x) −∇fi(y)||∗ ≤ Li||x− y|| ∀x, y ∈ X.

Then after

N =

⌈
2max{1,M2

g }Θ2
0

ε2

⌉

steps of Algorithm 1 working the next estimate can be fulfilled:

min
0≤k≤N

f(xk)− f(x∗) ≤ εf +
L

2
· ε2,

where

εf = ε · max
i=1,m

||∇fi(x∗)||∗, L = max
i=1,m

Li.

Let us consider the following problem

f(x)→ min, g(x) ≤ 0, x ∈ X (7)
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with assumption (1) and additional assumption of strong convexity of f
and g with the same parameter µ, i.e.,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2
‖y − x‖2, x, y ∈ X

and the same holds for g. We also slightly modify assumptions on prox-
function d(x). Namely, we assume, that 0 = argminx∈X d(x) and that d
is bounded on the unit ball in the chosen norm ‖ · ‖E , that is

d(x) ≤ Ω

2
, ∀x ∈ X : ‖x‖ ≤ 1, (8)

where Ω is some known number. Finally, we assume that we are given
a starting point x0 ∈ X and a number R0 > 0 such that ‖x0−x∗‖2 ≤ R2

0.

Algorithm 2. Algorithm for the strongly convex problem
Require: accuracy ε > 0;
strong convexity parameter µ; Θ2

0 s.t. d(x) ≤ Θ2
0 ∀x ∈ X : ‖x‖ ≤ 1;

starting point x0 and number R0 s.t. ‖x0 − x∗‖2 ≤ R2
0

1: Set d0(x) = d
(
x−x0

R0

)

2: Set p = 1
3: repeat
4: Set R2

p = R2
0 · 2−p

5: Set εp =
µR2

p

2
6: Set xp as the output of partial adaptive version of Algorithm 1
with accuracy εp, prox-function dp−1(·) and Θ2

0

7: dp(x)← d
(
x−xp

Rp

)

8: Set p = p+ 1

9: until p > log2
µR2

0

2ε
Ensure: xp

Consider the function τ : R+ → R+:

τ(δ) = max

{
δ‖∇f(x∗)‖∗ +

δ2L

2
; δ

}
.

It is clear that τ increases and therefore for each ε > 0 there exists

ϕ̂(ε) > 0 : τ(ϕ̂(ε)) = ε.



The typical models for congested traffic 301

Theorem 2. Assume that f(x) = max
i=1,m

fi(x), where fi is differen-

tiable at each x ∈ X and

||∇fi(x) −∇fi(y)||∗ ≤ Li||x− y|| ∀x, y ∈ X. (9)

Let f and g satisfy (9). If f, g are µ-strongly convex functionals on X ⊂
Rn and d(x) ≤ θ20 ∀x ∈ X, ‖x‖ ≤ 1. Let the starting point x0 ∈
X and the number R0 > 0 be given and ‖x0 − x∗‖2 ≤ R2

0. Then for

p̂ =

⌈
log2

µR2
0

2ε

⌉
xp̂ is the ε-solution of Problem (2) – (3)

(i.e. f(xp̂)− f(x∗) < ε and g(xp̂) < ε), where

‖xp̂ − x∗‖2 ≤
2ε

µ
.

At the same time, the total number of iterations of partial adaptive
version of Algorithm 1 does not exceed

p̂+

p̂∑

p=1

2θ20 max{1,M2
g }

ϕ̂2(εp)
, where εp =

µR2
0

2p+1
.
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Neural network approach to remodel
stochastic freeway capacity∗

A. Sysoev and J. Geistefeldt
Lipetsk State Technical University,

Ruhr University Bochum, Lipetsk, Russia, Bochum, Germany

Introduction. To study and then to predict the capacity of free-
way section, it is necessary firstly to construct the mathematical model,
that allows to estimate the dynamics of the system under consideration.
There are many approaches to determine this parameter. But the main
definition considers deterministic concept and says that capacity is the
maximum number of vehicles, that a particular section of the transporta-
tion system is able to serve during specified time interval. This idea is a
leading one in HCM 2010 (Highway Capacity Manual, USA), HBS 2015
(German Highway Capacity Manual, Germany) and ODM 218.2.020–
2012 (Guidelines to estimate road capacity, Russia).

But it was proven, that the capacity rate of a freeway segment has a
stochastic nature. The first paper [1] following this concept introduces an
analogy of lifetime analysis, which is called the Product Limit method.
The non-parametric estimation of a fit function in this method indicates
the probability of exceeding the capacity of a freeway segment. Late it
was found out [2], that Weibull distribution function fit the probability
of breakdown the best. The ranges for shape and scale parameters of
the distribution law were also investigated. These values correlate to the
other research [3]. So, the stochastic capacity could be estimated using
the formula

F (q) = 1− exp
(
−
(q
b

)a)
, (1)

here F (q) is a capacity distribution function, q is a flow rate, a and b are
shape and scale parameters of Weibull law respectively.

Capacity has a very special nature and could not be measured di-
rectly, except certain time intervals when traffic flow transits from fluid
to congested regime. And, of course, the capacity during thaffic jam could

∗The reported study is supported by the Russian Science Foundation within the
project 18-71-10034.
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be assumed as the number of vehicles which are within the freeway seg-
ment, i.e. traffic flow rate. The idea proposed in [1,2] supposes, that ob-
servations during both fluid and congested traffic are included in the ca-
pacity analysis. The capacity during congestion differs from the capacity
before a breakdown. Thus, it is more appropriate to include only those
values measured during fluid traffic conditions. So, time intervals are di-
vided into “uncensored” (the observed volume causes a breakdown of
traffic flow) and “censored” (traffic is fluent in the current interval and
remains fluent in the following interval). The question was how to spec-
ify the transition point. The paper [2] proposes to use the speed as a
criteria to determine time interval of that transition.

It should be noted, that the freeway capacity does not depend on
the traffic flow rate, however, it depends on the number of other (in-
cluding traffic flow) parameters. According to the HCM 2010, HBS 2015
and ODM 2012 they are geometric characteristics of the road, charac-
teristics of the traffic flow (average speed, number of trucks, etc.), con-
trol conditions in case of traffic light control (e.g., cycle time, control
parameters).

Remodeling Concept. The natural fact, that when analyzing the
capacity in the current time interval, it is reasonable to include values
of the selected parameters from the previous interval, to add the process
dynamics. Regardless of which model is used to estimate the freeway ca-
pacity, this problem has to be fixed. The approach which could provide
the new model to describe the capacity based on some existing mod-
els and “measured” capacity values in congested intervals is Mathemat-
ical Remodeling [4,6]. This is an approach to describe complex and/or
composite systems based on the transition from mathematical or simu-
lation models of one type to models of the other unified class. Depend-
ing on purposes and specific applied tasks, various interpretations of re-
modeling are possible. A theoretical model of some dependency built on
the basis of its physical background, can have a structure which is quite
complex and not appropriate for further analysis. In this case an array
of dependency “input-output” data can be generated (which can be in-
accessible under real conditions) and a simpler model of some unified
structure with the required accuracy could be proposed. This is an ap-
proximation remodeling. To construct a new model a neural network and
neuron-fuzzy models could be applied. In this case a remodeling has a
neurostructural nature [5].

The following algorithm can be used to remodel freeway segment
capacity.
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Step 1. To divide the whole observed data into two subsets: (a)
“congested” (uncensored) intervals, where the capacity rate could be es-
timated directly and (b) “fluid” (censored) intervals, where the capacity
are obtained by using model (1). The criteria to separate intervals must
be predefined at this step.

Step 2. Using the data sample obtained on Step 1, to train the neural
network model with the predefined structure. On this step the analysis of
the model accuracy must be done and corrections (in case of unsatisfied
results) should be applied.

Step 3. Using the model obtained on Step 2, to estimate capacity
rate within the new data set.

The proposed scheme is concerned to be a remodeling approach be-
cause it combines different ways to estimate capacity and presents a uni-
fied model to simulate this parameter.

Scope of Experiment. The initial for the modeling data obtained
by the loop-detector system from German Autobahn A57. They are 1-
minute intervals array from 01.01.2014 to 31.12.2014. Since only one seg-
ment of the freeway was involved in the study, some constant parameters
(such as number of lanes, geometric characteristics, etc.) were neglected.
The average speed in the current and previous time intervals, the per-
centage of trucks were considered as factors. Since the loop-detector sys-
tem provides separate information on average speeds of personal vehicles
and trucks, the average weighted speed indicator was used. Data were
aggregated in 3, 5 and 10 min intervals and their different combinations
to train and test neural network were applied.

To remodel the freeway capacity, various different structures of neu-
ral network were investigated and it was determined, that the best re-
sult demonstrated the network with one input layer, one hidden layer
consisting of one neuron and the output layer. In its analytic form the
model can be written as

y = σ

(
σ

(
w0,input +

3∑

i=1

wixi

)
+ w0,hidden

)
. (2)

Here y is freeway capacity (veh/h), xi = {vcars, tr, vprevcars}, vcars is an
average speed of vehicles in the current time interval (km/h), tr is a
percentage of trucks and vprevcars is an average speed of vehicles in the
previous time interval (km/h), wi are weights, w0,input and w0,hidden are
coefficients of the offset in the input and hidden layers respectively, σ(·)
is the activation function. T
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Numerical experiments shown that logistic function gives the best
results

σ(net) =
1

1 + exp(−net) .

To train the neural network model (2), it was prepared a data sample
including input parameters mentioned above and output capacity values
obtained by the presented algorithm. The criteria to specify the time in-
terval as congested was the average speed below 70 km/h (then the cur-
rent flow rate was used as the actual capacity value). In other cases out-
put values were simulated as a random Weibull-distributed value with
defined parameters typical for this freeway segment. Different variants
of neural network training and testing based on the duration of time in-
tervals were studied. Presented numerical results demonstrate the dura-
tion of training intervals of 1 min and the duration of test intervals of 5
min, when the size of training sample was 393 120 intervals, the size of
testing set was 26 496 intervals.

Figure 1 shows time series for flow rate and corresponding capacity.
It is evident that the developed neural network well reacts to the increase
of flow rate.

Fig. 1. Comparing flow rate and simulated capacity

Figure 2 shows the flow rate in comparison with the speed. Time
intervals when traffic jam took place are specified. The accuracy of the
neural network model (2) in prediction is 90.3% (of 81% of cases the
traffic jam was identified).

Conclusion and outlook. Many approaches allow estimating the
value of freeway segment capacity. But it is naturally (and confirmed
empirically) to treat this important parameter as a random value with a
certain statistical distribution. Regardless of which approach to estimate
capacity is used, there are time intervals where this parameter could be
measured directly. It occurs when the traffic flow has a congested regime.
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Fig. 2. Flow rate and speed in comparison

In the other time intervals capacity rate could be only estimated with
some degree of probability. The proposed approach allows to remodel the
estimation of freeway segment capacity, i.e. to build an analytical model
representing the estimated parameter, based on data obtained by direct
measurements in some cases and probabilistic estimates in others. The
presented neural network model allows adding the dynamics to stochastic
capacity in the current time interval by including flow parameters from
the previous time intervals. It should also be mentioned, that the traffic
flow parameters (primarily segment capacity) could be estimated at fixed
in the meaning of time duration interval. The perspective problem is
to find such a duration of time interval, using of which will give more
adequate (in some sense) results.
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Stability conditions for constant retrial rate
queueing system with a regenerative

input flow∗

L.G. Afanaseva
Department of Probability, Faculty of Mathematics and Mechanics,

Lomonosov Moscow State University, Moscow, Russia

We consider a multiserver queueing system in which primary cus-
tomers arrive according to a regenerative stream of rate λ > 0. The sys-
tem has m stochastically identical servers. An arriving customer find-
ing one or more servers idle obtains service immediately. Customers who
find all servers busy go directly to the orbit. In the pioneering studies
of retrial queues [1,2,3,4] it is assumed that each customer of the orbit
generates a stream of repeated requests independently of the rest of the
customers in the retrial group. Here we assume that the orbit works in
the following way.

The requests for service appear through iid random intervals {ζj}∞n=1.
If there are customers on the orbit and at least one server is idle then
the service of one of these customers begins. Note, the orbit size (num-
ber of customers on the orbit) does not affect the orbit rate ν = (Eζ)−1.

∗This research is partially supported by Russian Foundation for Basic Research
grant 17-01-00468
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This constant retrial policy was introduced by Fayolle [5] who modeled
a telephone exchange system. Since this work, there was a rapid groth
in the literature [6,7,8,9,10]. Note also that this retrial policy is a useful
device for modeling the retrial phenomen in communication and com-
puter networks. To the best of our knowledge, stability conditions for
these systems have not yet been formally proved in general propositions
with respect to input flow, service time distribution and retrial process.
In the paper [11] M |M |m retrial queue with a constant retrial rate and
exponential distribution of interval ζ was studied by matrix-geometric
methods. In particular the necessary and sufficient condition of stability
of the system was obtained.

The main contribution of this paper is a proof of the stability criterion
for the model with a regenerative input flow, general distributions of
service times and intervals between requests from the orbit.

Now we discribe the model in more details. We consider an m-server
queueing system S with a regenerative input flow X(t) of rate λ. Let
{θj}∞j=1 be a sequence of regeneration points forX(t), τj = θj−θj−1(θ0 =
0) regeneration periods (j = 1, 2, . . .) and ξj = X(θj)−X(θj−1). Assume

Eτ1 <∞, Eξ1 <∞ then w.p.1 λ = X(t)
t = Eξ1

Eτ1
. For more details on these

types of flows see, for instance, the works of Afanaseva and Bashtova [12],
Thorisson [13]. We consider the retrial system with the constant retrial
policy and the sequence {ζj}∞j=1 of iid random variables consists of time-

intervals between requests from the orbit, ν−1 = Eζ. Service times are
defined by the sequence {ηn}∞n=1 of iid random variables wth c.d.f. B(x)
and Eη = b.

Let q(t) be the number of the customers and n(t) the number of the
occupied servers at the moment t ≥ 0. We call q(t) a stable process if
there is

lim
t→∞

P(q(t) ≤ x) = Φ(x) (1)

and Φ(x) is a c.d.f. which does not depend on the initial state of the
system.

Condition 1 P(ξ1 = 0, τ1 > 0) + P(ξ1 = 1, τ1 − t1 > η1) > 0, where
θ1+ t1 is the arrival time of the customer on the first regeneration period
and η1 is its service time.

Condition 2 The random variable ζn has the second exponential phase.

This means that ζn = ζ
(1)
n + ζ

(2)
n , where ζ

(1)
n and ζ

(2)
n are independent

random variables and P(ζ
(2)
n > x) = e−δx(δ > 0).
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Under these conditions the process q(t) is a regenerative one.
Also Conditions 1 and 2 provide the realization of the conditions of

Theorem 1 from [14]. Therefore there are two possibilities for q(t): q(t)
is a stable process or

q(t)
P−−−→

t→∞
∞. (2)

For the system S let Y (t) be the number of served customers and
N(t) - the number of requests from the orbit up to time t.

Here we introduce an auxiliary retrial system S̃ with the same input
flow X(t), sequence {ηn}∞n=1 of service times and the process N(t) as-
suming that there are always customers in the orbit. Let Ỹ (t) and ñ(t)
be the processes Y (t) and n(t) respectively for S̃. Then the stochastic
inequality

Y (t) ≤ Ỹ (t) (3)

takes place.
Although X(t) and Ỹ (t) are dependent flows we may construct the

common points of regeneration for them.
For instance, if Conditions 1 and 2 are fulfilled we define the common

points of regeneration {T̃ (0)
n }∞n=1 by the recursion

T̃
(0)
n = min{θk ≥ T̃n−1 :

∞⋃
k=1

{ñ(θk − 0) = 0}∩

∩
∞⋃
s=0
{θk ∈ (Zs + ζ

(1)
s+1, Zs+1)}},

T̃
(0)
0 = 0.

(4)

Here Zj = ζ1 + . . . + ζj , Z0 = 0. Since Ỹ (t) is a regenerative flow there

is lim
t→

Ỹ (t)
t = λ̃Y .

Now let {T̃n}∞n=1 be a sequence of common regeneration points for
X(t) and Ỹ (t), τ̃n = T̃n+1− T̃n. Define the increments of X(t), Y (t) and
Ỹ (t) on the regeneration period

∆X(n) = X(T̃n+1)−X(T̃n),∆Y (n) = Y (Tn+1)− Y (Tn), (5)

∆̃Y (n) = Ỹ (Tn+1)− Ỹ (Tn).

Then {∆X(n), ∆̃Y (n)}∞n=1 is a sequence of iid random vectors and

λ =
E∆X(1)

Eτ̃1
, λ̃Y =

E∆̃Y (1)

Eτ̃1
. (6)
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Consider the system S0 with failures, m servers and a regenerative
input flow U(t) = X(t) +N(t), i.e. Reg|G|m. Service times are defined
by the sequence {ηn}∞n=1. As regeneration points for U(t) we may take
the sequence {T̂n}∞n=1 defined by the recursion

T̂n = min{θk > T̂n−1 :
∞⋃

l=1

{θk ∈ (Zl + ζ
(1)
l+1, Zl+1)}}, T̂0 = 0. (7)

Then Ỹ (t) is the number of served customers up to time t and ñ(t)
is the number of busy servers at instant t in the system S0.

Denote {tk}∞k=1 the sequential moments of jumps of the input flow
U(t). Since ñ(t) is a regenerative process (under Conditions 1 and 2)
then there exists lim

k→∞
P(ñ(tk) = j) = Pj(j = 0,m).

Lemma 1 Under Conditions 1 and 2

λ̃Y = lim
t→∞

Ỹ (t)

t
= (λ+ ν)(1 − Pm) (8)

The proof is based on the renewal theory.
We define the traffic rate for the system S as follows ρ = λ

λ̃Y
where

λ̃Y is given (6) or (8).

Condition 3 The distribution of the service time has the second expo-
nential phase.

Theorem 1 Let the Conditions 1 and 2 be fulfilled. If ρ < 1 then q(t)
is a stable process. If ρ > 1 or ρ = 1 and additionally Condition 3 is
fulfilled then (2) takes place.

For ρ > 1 the proof follows from the inequality (3) For the case ρ = 1
we construct the majorizing system and use results for a random walk
with zero drift [13].

Consider the case ρ < 1. Without the loss of generality we assume
that ζn has the first exponential phase. As common points of regenera-

tion {T̂ (0)
n }∞n=1 for X(t) and Ỹ (t) we take subsequence {θnk

}∞k=1 of the
sequence {θn}∞n=1 such that θnk

gets into the first exponential phase of

intervals {ζn}∞n=1 and ñ(θnk
− 0) = 0 We define ∆

(0)
X (n), ∆̃

(0)
Y (n) and

∆
(0)
Y (n) by formulas (5) with T̃

(0)
n instead of T̃n.
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If the convergence (2) takes place then for any ǫ > 0 there is nǫ

such that for n > nǫ we have E∆
(0)
Y (n) ≥ E∆̃

(0)
Y (1) − ǫ. Then for ǫ =

(1− ρ)E∆̃(0)
Y (1) we obtain

Eq(T̂ (0)
n ) ≤ Eq(T̂

(0)
n−1) + E∆

(0)
X (1)− E∆̃

(0)
Y (1) + ǫ = Eq(T̂

(0)
n−1)

that contradicts (2).

Theorem 2 Let X(t) and N(t) be Poisson processes with rates λ and
ν respectively. Then q(t) is a stable process if and only if

λ

λ+ ν
<

m−1∑

j=0

αj

j!
(

m∑

j=0

αj

j!
)−1 (9)

where α = (λ + ν)b

Let us note that condition (9) is the same as obtained in [11] for a
model with exponentially distributed service times.
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Controlled reflected one-dimensional
diffusions∗

S.V. Anulova
V.A. Trapeznikov Institute of Control Sciences of
Russian Academy of Sciences, Moscow, Russia

Given a standard probability space (Ω,F , (Ft), P ) and a one-dimen-
sional (Ft) Wiener process B = (Bt)t≥0 on it we considered controlled
one-dimensional SDEs:

• a compact set U ⊂ R is a range of possible control values, and each
control parameter is a measurable function α : R→ U ;

• the coefficients for SDEs, the drift b and diffusion σ, are continuous
bounded functions U × R→ R, C1 on R, and σ is uniformly non-
degenerate;

∗This research is supported by RFBR grant No. 16-08-01285 a “Control over
stochastic, deterministic and quantum systems in the fast motion phases”.
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• for each control parameter α the corresponding SDE is

dXα
t = b(α(Xα

t ), X
α
t ) dt+ σ(α(Xα

t ), X
α
t ) dWt, t > 0,

(1)

Xα
0 = x ∈ R;

its (weak) solution exists [2] and under our conditions – one-dimen-
sional, boundedness of all coefficients and uniform non-degeneracy
of σ – is weakly unique;

• for ergodicity

lim
|x|→∞

sup
u∈U

x b(u, x) = −∞. (2)

.

Given a running cost function f : U ×R→ R, continuous and bounded,
for each x ∈ R and a control strategy α : R → U we define for the
corresponding solution Xα the averaged cost function

ρα(x) := lim inf
T→∞

1

T

∫ T

0

Exf(α(X
α
t ), X

α
t ) dt. (3)

Maximizing this value for a fixed x ∈ R, we discover a uniform α for all
x ∈ R, with all values equal: there exists ρ := ρα(x), x ∈ R (see [3]).

The optimal control parameter α in [3] was an important generaliza-
tion of results for this described problem with σ not depending on u ∈ U ,
see [4] (they have another object for ergodicity). The problem for SDEs
with reflection was also solved in previous researches with this restriction.
Now we generalize the result of [3] to reflection.

Now the controlled process is situated on [0,∞) ⊂ R with reflection
on 0.

Theorem. The equation

max
u∈U

[
b(u, x)V

′

(x) +
1

2
σ(u, x)V

′′

(x) + f(u, x)− ρ
]
= 0, x ∈ (0,∞),

(4)

V
′

(0) = 0,

holds true for ρ and some auxiliary function V ∈ C2; solution of this
equation is unique for ρ and for V up to a constant.
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To prove this theorem we study again a full one-dimensional controlled
process with coefficients: for all x ∈ R

b̄(u, x) =

{
b(u, x) for x > 0,

−b(u,−x) for x < 0
σ̄(u, x) =

{
σ(u, x) for x > 0,

−σ(u,−x) for x < 0

f̄(u, x) =

{
f(u, x) for x > 0,

f(u,−x) for x < 0.

For a given control α of the reflected process denote ᾱ a control for the
full process

ᾱ(x) =

{
α(x) for x > 0,

α(−x) for x < 0

and X̄ ᾱ the corresponding full process. It is clear that for each control α
the reflected process Xα equals the process |X̄ ᾱ| and hence the search of
the optimal control comes to this for a full process. Although the optimal
control is found in [3], we cannot use it for the reflected process: now the
functions b̄, σ̄ are made not continuous by the point x = 0. Still we can
generalize the result of [3] for this case, namely, we use again Theorem
1 of [1] because it is possible to prove the measurability in U × R of
(u, x) with u for x maximizing a consecutive function vn(x), x ∈ R, n =
0, 1, 2, ..., described in the beginning of section “4 Main result” of [3].
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Evolutionary operator for supercritical
branching random walk with different

branching sources∗

D.M. Balashova
Lomonosov Moscow State University, Moscow, Russia

We consider continuous-time branching random walk (BRW) with
a finite number of branching sources situated at the points x1, x2...xN
on multidimensional lattice Zd (d > 1). A random walk is defined by
a matrix of transition intensities A = (a(x, y))x,y∈Z , that is symmetric
and a(x, y) = a(y, x) = a(0, y − x) = a(y − x) for all x and y. Thus, the
transition intensities are spatially homogenous. The walk is described in
terms of the function a(z), z ∈ Zd, where a(0) < 0, a(z) > 0 when z 6= 0
and a(z) = a(−z). We assume that

∑
z∈Zd

a(z) = 0 and the matrix A is

irreducible, i.e. for all z ∈ Zd there exists a set of vectors z1, z2, ..., zk ∈ Zd

such that z =
k∑
i=1

zi and a(zi) 6= 0 for i = 1, 2, ..., k.

The transition probability p(t, ·, y) is treated as a function p(t) in
l2(Zd) depending on time t and the parameter y. For time h→ 0

p(h, x, y) = a(x, y)h+ o(h) for y 6= x,

p(h, x, x) = 1 + a(x, x)h+ o(h).

Then according to [1] we can rewrite the evolution equation as the fol-
lowing differential equation in space l2(Zd):

dp

dt
= At, p(0) = δy,

where δ is Kronecker delta and the operator A acts as

(Au)(z) :=
∑

z∈Zd

z(z − z′)u(z′).

Branching occurs at some sources xi and is defined by an infinitesimal

generating functions fi(u) =
∑∞

n=0 bi,nu
n such that βi,r = f

(r)
i (1) < ∞

for all r ∈ N. The value βi ≡ βi,1 characterizing the intensity of xi source.
The behaviour of the mean number of particles both at an arbitrary

point and on the entire lattice can be described in terms of the evolu-
tionary operator of a special type (e.g. [1]), which is a perturbation of

∗This research is supported by RFBR Grant no. 17-01-00468.



Asymptotic analysis of complex stochastic systems 317

the generator A of a symmetric random walk. This operator has form

Hβ = A+

N∑

i=1

βiδxi
δTxi
, xi ∈ Zd,

where A : lp(Zd) → lp(Zd), p ∈ [1,∞] is a symmetric operator and
δx = δx(·) denotes a column vector on the lattice taking the value one
at the point x and zero otherwise.

Green function of the operator A can be represented as the Laplace
transform of the transition probability p(t, x, y):

Gλ(x, y) :=

∫ ∞

0

e−λtp(t, x, y)dt =
1

(2π)d

∫

[−π,π]d

ei(θ,y−x)

λ− φ(θ)dθ, λ > 0,

where φ(θ) =
∑

z∈Zd

a(z)ei(θ,z), θ ∈ [−π, π].

The average number of hits of the particle to the point y with the
start of the process from the point x as time tends to infinity is G0(x, y).
We denote G0 := G0(0, 0).

If the condition of finite variance of jumps

∑

z∈Zd

|z|2a(z) <∞, (1)

where |z| — the Euclidean norm of a vector z, G0 = ∞ for d = 1 and
d = 2 and G0 <∞ for d > 3.

If for all sufficiently large norm z ∈ Zd it is satisfied the asymptotic
property

a(z) ∼
H
(
z
|z|

)

|z|d+α
, α ∈ (0, 2), (2)

where H(·) — positive function, symmetric on the sphere Sd−1 = {z ∈
Rd : |Z| = 1}, then G0 = ∞ for d = 1, α ∈ [1, 2) and G0 < ∞
ford = 1, α ∈ (0, 1) or for d > 2, α ∈ (0, 2). Condition (2) leads to a
convergence series

∑
z∈Zd |z|2a(z) and infinite variance of jumps.

Analysis of such operator in more general form was investigated in [1].

The perturbation of the form
∑N

i=1 βiδxi
δTxi

of the operatorA may result
in the emergence of positive eigenvalues of the operator Hβ and the
multiplicity of each of them does not exceed N . In [2] it was proved that
for the case of equal βi and finite variance of jumps the total multiplicity
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of all eigenvalues (counting their multiplicity) does not exceed N and
the multiplicity of each eigenvalue of the operator Hβ does not exceed
N − 1. In [3] the case of infinite variance of jumps was analyzed and it
was demonstrated that the appearance of multiple lower eigenvalues in
the spectrum of the evolutionary operator can be caused by a simplex
configuration of branching sources.

The main aim of the study is a numerical analysis of phase transitions
in the supercritical case, where branching sources have negative and
positive intensities and model with finite number of different sources in
an arbitrary configuration.

Branching sources with positive and negative intensities

We consider branching random walk with N = p + n sources, that
are located in the vertices of a simplex on Zd. P sources x1...xp have
intensities β > 0 and n sources xp+1...xp+n have intensities (−β). Source
intensity is negative when degree of death prevails over the degree of
birth. The evolutionary operator in this case has form

Hβ = A+ β∆x1 + β∆x2 + · · ·+
+ β∆xp

− β∆xp+1 − β∆xp+2 − · · · − β∆xp+n
.

For p > 2 denote βc := βc(n, p) is such a minimal positive intensity
that for β > βc operator Hβ has positive eigenavalues and βc1 > βc that
for β ∈ (βc, βc1) operator Hβ has only one eigenavalue λ0(β).

Theorem 1 The amount of eigenvalues λ > 0 of the evolutionary op-
erator Hβ (counting their multiplicity) does not exceed the amount of
branching sources with positive intensities, the maximal of these eigen-
values is simple and βc1 > βc.

Assume |xi − xj | = s, i 6= j. Then according to [1] λ > 0 is an
eigenvalue of the operator Hβ if and only if

(βGλ − βGλ(s)− 1)p−1(βGλ − βGλ(s) + 1)n−1

× ((βGλ)
2 + (p+ n− 2)β2GλGλ(s)− (p+ n− 1)

× (βGλ(s))
2 + (p− n)βGλ(s)− 1) = 0
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and hence the values βc and βc1 can be found:

βc =
(n− p)G̃0 +

√
(n− p)2(G̃0)2 + 4(G0 − G̃0)(G0 + G̃0(n+ p− 1))

2(G0 − G̃0)(G0 + G̃0(n+ p− 1))
,

βc1 =
1

G0 − G̃0

.

Note that

βc1 − βc =
8G̃0p(G0 + G̃0(n+ p− 1))

G0 − G̃0

> 0.

Branching sources with different positive intensities

Let put N brancing sources with arbitrary positive intensities in
an arbitrary configuration. We denote βmin := min

i
{βi} and βmax :=

max
i
{βi}. Let βamin

is a minimal value such that for βmin > βamin
op-

erator Hβ1,...,βN
contains a positive eigenvalue and βamax

is a maximal
value such that for βmax < βamax

operator Hβ1,...,βN
is not contains

positive eigenvalues.

Theorem 2 Let BRW satisfy the condition of finite varience of jumps
(1) or infinite varience of jumps (2). If G0 =∞, then BRW is supercrit-
ical and βamin

= 0 for N > 1. If G0 <∞, then βamin
= G−1

0 for N = 1
and 0 < βamax

6 βamin
< G−1

0 for N > 1.
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Stochastic counterparts for nonlinear
parabolic systems∗

Ya.I. Belopolskaya and A.O. Stepanova
PDMI RAS, SPbSUACE, St.Petersburg, Russia

We consider the Cauchy problem for systems of nonlinear second
order parabolic equations describing conservation and balance laws in
physics, chemistry, biology and other fields. We show that these systems
allow a probabilistic interpretation as systems of forward Kolmogorov
equations for corresponding Markov processes. Motivated by this inter-
pretation we are interested in generalised solutions of the forward Cauchy
problem for systems with fully nondiagonal second order terms (systems
with cross-diffusion) as well as classical,. We construct stochastic repre-
sentations for generalised solutions of the forward Cauchy problem solu-
tions in terms of diffusion processes and their multiplicative functionals
[1].

For a certain subclass of these systems which includes systems with
diagonal principal part with different coefficients of the second order
terms and nondiagonal first and/or zero order terms we reduce the con-
struction of a generalised solution of the forward Cauchy problem for
a PDE system to the correspondent stochastic problem. Namely, with-
out appealing to an original nonlinear PDE solution we derive a closed
stochastic problem and solve it under some suitable assumptions. Fi-
nally, we state conditions on the stochastic problem data that allow to
verify the solution of the stochastic problem gives rise to the required
generalised solution of the original PDE problem [2].

Recall that stochastic approach to investigation of a PDE or a sys-
tem of PDEs includes three steps. The first is to find a stochastic repre-
sentation of a solution to the problem under consideration. The second
is to derive a closed stochastic system which we call a stochastic coun-
terpart of the original PDE problem. The final step is to investigate the
stochastic system derived at the second step and to prove that it yields
a required solution of the PDE problem under consideration.

∗This research is supported by RNF Grant 17-11-01136
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To be more precise we consider two types of nonlinear parabolic sys-
tems

∂um
∂t

=
1

2

d∑

i,j=1

∂

∂xi∂xj
[Fmij (x)um] +

d1∑

l=1

cml(u)ul, (1)

and

∂um
∂t

+
d∑

i=1

d1∑

l=1

∂

∂xi
[Bmli (x, u)ul] =

1

2

d∑

i,j=1

∂2

∂xi∂xj
[Fmij (x)um], (2)

where Fmij (x) =
∑d
k=1 A

m
ik(x)A

m
kj(x).

Our aim is to study the probabilistic interpretation of the Cauchy
problem solution for them with initial data um(0, x) = u0m(x). We show
that there exist stochastic processes which allow to construct stochastic
representations of a solution to the required Cauchy problem. In other
words we will treat these systems as systems of forward Kolmogorov
equations for some Markov processes and thus we will be interested in
generalised (weak) solutions of these Cauchy problems.

We start with reaction diffusion systems and construct its stochastic
counterpart. To this end first we give two definitions of a weak solution to
the system (1) which are equivalent in cases under consideration ( see [4]
lemma 1.1) but are useful for our purposes. LetH = [L2(Rd)]d1 , andD =
[C∞

0 (Rd)]d1 be the space of infinite differentiable functions with compact
supports, W k

d1
= [W k(Rd)]d1 be the space of k differentiable functions

with square integrable derivatives up to k-th order. and W−k
d1

be its

dual. We denote by 〈u, h〉 =
∑

m

∫
Rd um(x)hm(x)dx pairing between

these spaces as well as the inner product in H .
We say that u is a weak solution of (1) if the integral identity

∂

∂t
〈ul(t), hl〉+ 〈ul(t),

1

2

d∑

i,j=1

F lij(x)
∂2hl
∂xi∂xj

〉+ (3)

+〈ul(t),
d1∑

m=1

culm(x)hm〉 = 0

hold for m = 1, 2 and arbitrary hm ∈ D ∩ L2(R) and we say that u is a
weak solution of (2) if the integral identity

∂

∂t
〈ul(t), hl〉+ 〈ul(t),

1

2

d∑

i,j=1

F lij(x)
∂2hl
∂xi∂xj

〉+ (4)
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+〈ul(t),
d∑

i=1

d1∑

m=1

Blmi (x, u)
∂

∂xi
hm〉 = 0

hold for l = 1, 2 and arbitrary hl ∈ D ∩ L2(R).
In addition we need an alternative definitions, namely, we say that u

is a weak solution of the system (1), when the integral identity

〈u0l, hl(0)〉+
∫ T

0

〈ul(θ),


∂hl(θ)

∂θ
+

1

2

d∑

i,j=1

Fmij (x)
∂2hl(θ)

∂xi∂xj


〉dθ+ (5)

+

∫ T

0

〈ul(θ),
d1∑

m=1

culmhm(θ)〉dθ = 0

hold for l = 1, 2 and ∀hm ∈ C1,k
0 ([0, T ]×Rd) ∩ L2([0, T ]×Rd).

In the same manner we say that u is a weak solution of the system
(2), when the integral identity

〈u0l, hl(0)〉+
∫ T

0

〈ul(θ),


∂hl(θ)

∂θ
+

1

2

d∑

i,j=1

F lij(x)
∂2hl(θ)

∂xi∂xj


〉dθ+ (6)

+

∫ T

0

〈ul(θ),
d∑

i=1

d1∑

m=1

Blmi (x, u)
∂hm(θ)

∂xi
〉dθ = 0

hold for l = 1, 2 and ∀hl ∈ C1,k
0 ([0, T ]×Rd) ∩ L2([0, T ]×Rd).

Note that the second couple of definitions allows us to obtain the
form of a generator of a Markov process we are looking for. It appears to
be of crucial importance when we deal with fully nondiagonal systems
of parabolic equations [3],[4].

Below we consider some particular cases of systems of the form (1)
and (2) and restrict ourself to the cases d = 1, d1 = 2.

The systems which we analyse in this paper are a reaction-diffusion
system of the form

∂u1
∂t

= σ2
1

∂2u1
∂x2

+

[
−(b+ 1) + u1u2 +

a

u1

]
u1, u1(0, x) = u01(x), (7)

∂u2
∂t

= σ2
2

∂2u2
∂x2

+ [bu1 − u21]u2, u2(0, x) = u02(x) (8)
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called the Brusselator system and the MHD-Burgers system

∂u1
∂t

+
∂(u1u2)

∂x
=
σ2

2

∂2u1
∂x2

, u1(0, x) = u10(x) (9)

∂u2
∂t

+
1

2

∂(u21 + u22)

∂x
=
µ2

2

∂2u2
∂x2

, u2(0, x) = u20(x) (10)

where σ1, σ2, a, b are given constants.
The above systems can be treated as systems of forward Kolmogorov

equations for specific Markov processes which will be described below.
Due to this interpretation it is natural to look for generalised solutions
of the Cauchy problem for them.

Let (Ω,F , P ) be a given probability space and w(t) ∈ R be a standard

Wiener process. Consider a process ξ̂(t) = x − σw(t) and denote by

ψ0,t : x → ξ̂(t) a random map acting in R, called a stochastic flow

generated by ξ̂(t).
A stochastic counterparts of the Cauchy problem (7), (8) and (9),

(10) are presented in the following theorems.
Theorem 1.Assume that there exists a unique generalized solution

u ∈ W2
T ×W2

T of the Cauchy problem (7), (8). Then it admits a proba-
bilistic representation of the form

um(t, x) = E[η̃(t)u0m(ξ̂m(t))]. (11)

where

ξ̂m(t) = x−
√
2σmw(t), η̃(t) = exp{

∫ t

0

cum(ψθ,t(x))dθ}, (12)

cu1 (x) = −(b+ 1) + u1u2 +
a

u1
, cu2 (x) =

bu1
u2
− u21,

and ψm0,t are stochastic flows generated by ξ̂m(t).
Theorem 2.Assume that there exists a unique generalized solution

u ∈ W2
T ×W2

T of the Cauchy problem (9), (10). Then it admits a prob-
abilistic representation of the form

um(t) = E
[
η̃m(t)u0m ◦ ψm0,t

]
, m = 1, 2, (13)

where

dξ̂m(θ) = −σmdw(θ), (14)
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η̃m(t) = exp

{∫ t

0

Cum(ψθ,t(x))dw(θ) −
1

2

∫ t

0

[Cum]2(ψθ,t(x))dθ

}
, (15)

Cu1 (x) =
1

σ
u2(θ, x), Cu2 (x) =

1

2µ

[
u2(θ, x) +

u21(θ, x)

u2(θ, x)

]
,

and ψm0,t are stochastic flows generated by ξ̂m(t).
Theorem 3.Given bounded strictly positive square integrable initial

functions u0m there exists an interval [0, T ] such that for all t ∈ [0, T ]
there exist a solution to the system (11), (12) and the function u =
(u1, u2) of the form (11) is a weak solution of (7), (8).

Theorem 4.Given bounded strictly positive square integrable initial
functions u0m there exists an interval [0, T ] such that for all t ∈ [0, T ]
there exist a solution to the system (13)– (15) and the function u =
(u1, u2) of the form (13) is a weak solution of (9), (10).

See detailed proof of the theorems 2 and 4 in [6]. The proof of theo-
rems 1 and 3 will be given in a forthcoming paper.
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Topological, metric (Harris) and Poincare
recurrences for general Markov chains

M.L. Blank
Russian Academy of Sci. Inst. for Information Transmission
Problems,and National Research University Higher School of

Economics, Moscow, Russia

In this work we discuss a collection of questions related to the idea
of recurrence in general general Markov chains. The recurrence property
is well known in theory describing two very different classes of random
systems: lattice random walks and ergodic theory of continuous selfmaps.
On the other hand, the recurrence property is next to being neglected
in general theory of Markov chains (perhaps except for a few notable
exceptions which we will discuss in detail).

In literature one finds two approaches to the definition of a recurrent
point: topological and metric (defined in very different contexts). Since
our aim is to introduce their analogies for general Markov chains let us
recall basic definitions.

By an inhomogeneous Markov chain one means a random process
ξt : (Ω,F , P ) → (X,B,m) acting on a Borel (X,B) space with a finite
reference measure m (not connected to ξt). This process is completely
defined by a family of transition probabilities

Qts(x,A) := P (ξs+t ∈ A|ξs = x), A ∈ B,

having standard properties:

• For fixed s, t, x the function Qts(x, ·) is a probability measure on
the σ-algebra B.

• For fixed s, t, A the function Qts(·, A) is B-measurable.

• For t = 0 Qts(x,A) = δx(A).

• For each s, 0 6 t 6 t′ and A ∈ B we have

Qt
′

s (x,A) =

∫

X

Qts(x, dy)Q
t′−t
t (y,A).

The process ξt induces the action on measures:

Qtsµ(A) :=

∫
Qts(x,A) dµ(x)
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and the action on functions:

Qtsφ(x) :=

∫
φ(y)Qts(x, dy).

In particular, the well known Feller property in terms of the action on
functions means that Qts : C

0 → C0 ∀s, t > 0.
A Borel measure µ is said to be invariant or stationary for the Markov

chain ξt if it is a solution to the equation

Qtsµ = µ ∀s, t.

By the t-preimage with t > 0 of a set B ∈ B under the action of the
homogeneous Markov chain ξt we call the set of points

Q−t(B) := {x ∈ X : Qt(x,B) > 0}.

Now we are ready to return to the notion of recurrence. Observe that
since the phase space is equipped if the Borel σ-algebra, it is equipped
with the corresponding topology as well. We start from the well known
in the field of topological dynamics (see e.g. [1]) notion of the topological
recurrence.

A point x ∈ X is called topologically recurrent if for any open neigh-
borhood U ∋ x for each s there exists an (arbitrary large) t = t(x, U, s)
such that Qts(x, U) > 0 (i.e. a trajectory eventually returns to U with
positive probability).

A point x ∈ X is called metrically recurrent if for any set V ∋ x
of positive m-measure and any s there exists an (arbitrary large) t =
t(x, V, s) such that Qts(x, V ) > 0 (i.e. a trajectory eventually returns to
V with positive probability).

This is our modification of the metric version of the recurrence no-
tion proposed by T.E. Harris in [2] in order to get reasonably general as-
sumptions guaranteeing the existence of an invariant measure. In fact,
T.E. Harris used this property only in the case when the reference mea-
sure m is invariant with respect to the process. Another weak point of
this approach is that whence a point x is metrically recurrent, the cor-
responding trajectory (realization of the process) needs to visit any set
of positive measure with positive probability, which looks away too ex-
cessive.

The 3d approach to this notion is well known and studied in ergodic
theory of deterministic dynamical systems, but again only in the case
when the measure m is dynamically invariant.
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A point x ∈ X is called Poincare recurrent with respect to a B-
measurable set A ∋ x if for each s there exists an (arbitrary large)
t = t(x,A, s) such that Qts(x,A) > 0 (i.e. a trajectory eventually returns
to A with positive probability).

The main question of interest for us is to say how large is the set of
recurrent points?

The celebrated Poincare recurrence theorem (see e.g. [3]) states that
for a measurable discrete time dynamical system (T,X) and any mea-
surable set A the set of non Poincare recurrent points is of zero measure
with respect to any T -invariant measure. There is a number of problems
for the generalization of this result for a general Markov chain: continu-
ous time, inhomogeneity, and more important a principal absence of in-
variant measures (stationary distributions) for inhomogeneous Markov
chains. Nevertheless our main result in this direction is as follows.

Theorem 1. Let m be a finite measure on (X,B) and let Qts does
not depend on s. Then the property that for each set A ∈ B the set of
Poincare recurrent points in A is of full m-measure (i.e. its complement
in A is of zero m-measure) is equivalent to the existence of a constant
γ > 0 such that

∑

n>1

m(Q−nγ(A) ∩ A) =∞ ∀A ∈ B : m(A) > 0.

An important observation here is that if Qts does depend on s, then
(under a slight modification of the preimage definition) the direct state-
ment in theorem 1 is still correct, but the inverse one fails. Namely, it is
possible that the above sum in is infinite, but for some s

lim sup
t→∞

P (ξs+t ∈ A|ξs ∈ A) = 0.

The reason for this is that despite the chain of “(pre)images” of the
set A inevitably intersect itself an infinite number of times, but the
original set needs not to be included to the intersections. A sketch of the
counterexample gives a finite state discrete time Markov with 4 states,
whose graph of transitions is given by the following diagram:

x3 ← x3 ← x0 ← x1 ←→ x2.
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To be more precise, we consider a deterministic version of the process
and denoting the only image of a state x at time s by T 1

s x and its unique
preimage by T−1

s x we have

A := x0 = T−1
1 x1, T

−1
2 x1 = x2, T

−1
3 x2 = x1, T

1
1 x0 = x3, T

1
i x3 = x3 ∀i.

Observe that for the state x0 the relation (*) holds true for the uniform
measure, but this set is non-recurrent.

The situation with other types of recurrence is much more subtle, in
particular we demonstrate that a very “good” Markov chain for which all
points are topologically recurrent with respect to the “standard” topol-
ogy may change drastically when one chooses a different topology in-
stead. Under this new topology all points might be non-recurrent.

The following result gives sufficient conditions for the topological
recurrence of “typical” points.

Theorem 2. Let the space (X, T ) be compact with respect to the
topology T compatible with the σ-algebra B. Then under the assumptions
of Theorem 1 m-almost every point x ∈ X is topologically and metrically
recurrent.
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Asymptotic analysis of some applied
probability systems∗
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Introduction
The aim of presentation is asymptotic analysis of the mathematical

models describing the real-life systems pertaining to insurance, invento-
ries or queueing. It is necessary for establishing the systems stability with
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respect to small parameters fluctuations and perturbations of underlying
distributions and providing the optimal control.

We begin by treating a discrete-time insurance system (or other
organization) which is interested in short-term credits (or bank loans). It
is supposed that at the beginning of each period (year, month or week)
it is possible to apply to a bank in order to obtain a credit card valid
for a fixed number of periods. The card is provided immediately. The
upper limit z of the credit is chosen by the applicant who pays bank at
once the amount cz where c is the interest rate. The loan is used to sat-
isfy the claims flow described by a sequence of nonnegative i.i.d. ran-
dom variables {ξn}n>1. We assume that each claim ξ has a known dis-
tribution function F (t) possessing a density ϕ(t) > 0 for t > 0 and a fi-
nite expectation. If a claim amount ξ is larger than the cash amount u
available for payment then another loan is obtained at the interest rate
p, p > c, its size is ξ − u. The amount u − ξ, not used for payment be-
fore the card expiration term, is lost. Moreover, if the credit is taken in
a currency differing from that of the claims, the financial loss of appli-
cant is equal to k(u − ξ). Here the constant k depends on the exchange
rate. The fixed transaction cost K may be taken into account as well.
Our goal is to determine the optimal n-period strategy of applicant. Op-
timality means the minimization of expected discounted costs entailed
by the n-step credit strategy. Below we formulate the results only for the
simplest case.

One-period credit
Assume that the credit is valid for one period only. That means, the

money not used for payment during the period cannot be used later.
Denote by fn(x) the minimal expected discounted costs incurred by the
implementation of n-period credit strategy. Here x is the cash amount
available initially for claims payment if x > 0 and |x| is the debt amount
if x < 0. Put H1(y) = cy + L(y) with L(y) = p

∫∞

y
(s − y)ϕ(s) ds +

k
∫ y
0 (y − s)ϕ(s) ds and y = x + z where z is the credit limit. If we do

not take into account the transaction costs (in other words, put K = 0)
then the following statements are valid.

Lemma 1. For any x,

f1(x) = −cx+min
y>x

H1(y).

If p > c then there exists the critical level x̄1 defined by the relation

F (x̄1) = (p− c)(p+ k)−1
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such that the optimal credit limit is given by z1(x) = max(0, x̄1−x). The
function f1(x) is twice differentiable and convex, whereas

f ′
1(x) =

{
−c, x 6 x̄1,
L′(x), x > x̄1.

Turning to multi-period case we introduce a discount factor α ∈ (0, 1)
and establish the following results.

Theorem 1. The function fn(x) specified by

fn(x) = −cx+min
y>x

Hn(y), (1)

where Hn(y) has the form

Hn(y) = H1(y) + αfn−1(0)F (y) + α

∫ ∞

y

fn−1(y − s)ϕ(s) ds, (2)

is twice differentiable and convex for all n > 1. There exists x̄ > x̄1 such
that the optimal credit limit zn(x) = max(0, x̄− x) for any x and n > 1.
The critical level x̄ is defined by the relation

F (x̄) = (p− c(1− α))(p+ k + αc)−1. (3)

According to Bellman optimality principle (see, e.g., Bellman [1]) it
is possible to conclude that equations (1) and (2) are valid. Further proof
is carried out by induction.

Thus, for any n > 1, the optimal credit strategy is determined by a
single critical number x̄, whereas for one-step case it is necessary to use
x̄1 instead of x̄.

Corollary. The critical level x̄1 is an increasing function of p and
a decreasing function of c and k, whereas x̄ increases in p and α and
decreases in c and k.

Asymptotic analysis
Now we use the introduced short-term credit model to show how one

performs the asymptotic analysis of multi-step processes. First of all we
establish the limit behavior of the minimal costs as the planning horizon
tends to infinity.

Theorem 2. If α < 1 the functions fn(x) defined in Theorem 1
converge uniformly, as n→∞, to a function f(x) satisfying the following
functional equation

f(x) = −cx+min
y>x

[H1(y) + αf(0)F (y) + α

∫ ∞

y

f(y − s)ϕ(s) ds].
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In order to establish existence of f(x) = limn→∞ fn(x) we consider
un(x) = fn+1(x) − fn(x). According to (1) and (2) one easily gets the
inequality δn = supx |un(x)| 6 dαn−1 where d = 3H1(x̄) + c(x̄ + Eξ).
This enables us to prove that fn(x) converge uniformly on the whole
real line to the limit f(x) and estimate the convergence rate. Hence,
f(x) satisfies the functional equation.

Next, suppose that there exist two different claim distributions F and
G, and we would like to estimate the difference between the correspond-
ing optimal cost functions. So, the index F (or G) will be added to all
the functions arising in our study under assumption that claim distribu-
tion is F (resp. G). It is clear that LF (y) := L(y), HF

k (y) := Hk(y) and
fFk (x) := fk(x), k > 1, since previously we had only one distribution F .
Definition of analogous functions with index G is obvious, namely, in all
the formulas we write G instead of F .

We need also to introduce some probability metrics. Thus, (see, e.g.
[2]) Kantorovich (Wasserstein) metric is defined as

κ(F,G) =

∫ ∞

−∞

|F (x)−G(x)| dx.

The main result concerning the system stability is as follows.

Theorem 3. Let distributions F and G be such that κ(F,G) < ε
then, for any n > 1 and α ∈ (0, 1),

γn = sup
−∞<x<∞

|fFn (x)− fGn (x)| < Dε

where D = (max(k, p) + αc)(1 − α)−1.

Turning to the case α = 1 we note that minimal n-step costs tend
to ∞, as n → ∞, for any initial capital x and it is impossible to estab-
lish the estimate (not depending on n) for the difference between costs
corresponding to claim distributions F and G. However we can employ
another objective function, namely, long-run average costs per period.

Furthermore, we introduce the following

Definition. A policy ŷ(x) = {ŷn(x), n > 1} is asymptotically opti-
mal if

lim
n→∞

1

n
f̂n(x) = lim

n→∞

1

n
fn(x)

where f̂n(x) are the costs obtained by applying the policy ŷ(x) and fn(x)
are the minimal n-step costs.
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Theorem 4. The policy ŷ(x) with ŷn(x) = max(x̄, x) for all n > 1
is asymptotically optimal. Moreover,

lim
n→∞

1

n
f̂n(x) = D(x̄)

where D(x̄) = cx̄F (x̄) + c
∫∞

x̄
s dF (s) + L(x̄) and x̄ is given by (3).

Proof is carried out in two steps. Step 1. We establish that

1

n
(f̂n(x)− fn(x))→ 0, as n→∞.

Step 2. We obtain the explicit form of D(x̄).
Remark. It is possible to strengthen the result of Theorem 4 estab-

lishing that under the asymptotically optimal policy not only expected
average costs tend to limit D(x̄) but (random) average costs converge
with probability one to the same limit. For this purpose one has to use
Wald’s identity (see, e.g. Wald [3]), the strong law of large numbers and
other properties of renewal processes.

Other research directions
Now we briefly mention the other topics which will be treated in

the presentation. First, we investigate the credit models with k-period
validity (k > 2) and discrete-time insurance models introduces in Bulins-
kaya [4,5]. For these models we establish the stability with respect to
small perturbations of underlying distributions and carry out the sensiti-
vity analysis with respect to small fluctuations of parameters using the
methods of Saltelli et al. [6], see also Bulinskaya [7].

Second, we deal with continuous-time insurance models involving
reinsurance, dividends, investment and taxes. New optimization cri-
terions such as Gerber-Shiu function and Parisian ruin, permitting
bankruptcy implementation delays are used. Necessary definitions can
be found, e.g., in Bulinskaya [8].
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Queueing systems in which customer
requires a random number of servers∗

S. Grishunina
Department of Probability, Faculty of Mathematics and Mechanics,

Lomonosov Moscow State University; Moscow Institute of Electronics
and Mathematics, National Research University Higher School of

Economics, Moscow, Russia

In this paper we study the stability conditions of the system with m
identical servers in which customers arrive according to a regenerative
input flow X(t) [1]. An arrived customer requires service from i ≤ m
servers simultaneously with probability αi (1 ≤ i ≤ m). A customer who
arrives when the queue is empty begins service immediately if the num-
ber of servers he requires is available. Otherwise, when a customer be-
comes first in a queue, servers are held as they free up and service begins
immediately when the number he requires is available. If a customer ar-
rives to the system when the queue is not empty he goes to the end of
the queue. When service begins, each server’s completion time is inde-
pendent of all other servers. Thus servers assigned to the same customer
may free up individually. We consider two models according to the ser-
vice time of the customer on each server: in the first model S1 service

∗This research is supported by Russian Foundation for Basic Research grant 17-
01-00468



334 Asymptotic analysis of complex stochastic systems

time has an exponential distribution B1(x) = 1 − e−µx with the mean
1
µ . In the second model service time is a constant τ . Customer j occu-

pies ζj servers simultaneously for independent times ηj = (ηj1, . . . , ηjζj )
with distribution function B1(x) in the system S1 and for the time τ in
the system S2. The sequence {ζj}∞j=1 consists of independent identically
distributed (iid) random variables with given distribution

αj = P(ζ = j), j = 1, . . . ,m,

m∑

j=1

αj = 1.

We introduce an auxiliary process Zi(t)(i = 1, 2) for the systems
S1 and S2 that is the number of service completions by all m servers
up to time t under the assumption that there are always customers for
service. This means that Zi(t) is defined by the sequence of service times
{−→η n}∞n=1 and {ζn}∞n=1 and does not depend on the input flow X(t).

Then we construct the control Markov Chains for the processes
Zi(i = 1, 2). For the model S1 we define the stochastic process U1(t)
which is the number of occupied servers at time t. For the model S2

the stochasic process U2(t) is the number of empty servers at time t. In
the both cases we assume that there are always customers for service.
In the system S2 process U2(t) may change the state only in the mo-
ments nτ where n ∈ N. So we introduce the process Ũ2(n) = U2(t), t ∈
[nτ, (n+ 1)τ).

For the both processes there is a non-periodic class Ki(i = 1, 2) of
communicating states. Therefore there are limits

lim
t→∞

P(Ui(t) =
−→
k ) = Pi(

−→
k ) > 0 for

−→
k ∈ Ki(i = 1, 2). (1)

We note that Zi(t)(i = 1, 2) is a regenerative flow and we may take

the moments of hits U1(t) and Ũ2(n) into some fixed state
−→
k ∈ Ki(i =

1, 2) as points of regeneration. Since a regeneration period of Zi(t) has
a finite mean there exist the limits

lim
t→∞

Zi(t)

t
= λZi

w.p.1 (i = 1, 2)
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The rates λZi
(i = 1, 2) may be defined as follows

λZ1 = µ

m∑

j=1

jP1(j),

λZ2 =
1

τ

m−1∑

j=0

(m− j)P2(j)

(2)

Now we introduce the process

V (t) =

X(t)∑

j=1

ζj

that is the necessary number of servers for customers arrived to the
system up to time t. It is evident that the rate

λV = lim
t→∞

V (t)

t
= EζλX w.p.1.

We define the traffic rate ρi for the system Si(i = 1, 2). as follows

ρi =
λV
λZi

=
EζλX
λZi

(i = 1, 2). (3)

Then we construct the common points of regeneration for the both
processes X(t) and Zi(t). For the first system S1 Z1(t) is a strongly
regenerative flow. In the second system S2 we suppose that the input
flow X(t) is strongly regenerative. Strong regeneration means that the
regeneration period of the process may be considered as the sum of two
independent random phases where the first phase has an exponential
distribution.

For the system S1 common points or regeneration are those points of
regeneration of the input flow which hit the exponential phase of regen-
eration period of Z1(t). For the system S2 these points are those points
of regeneration of Z2(t) which hit the exponential phase of regeneration
period of X(t). The periods of regeneration for these sequence of points
of regeneration have finite means for both systems Si(i = 1, 2).

Now we may formulate the stability criterion:

Theorem 1 Let qi(t) be the number of customers at the system Si(i =
1, 2) at instant t. Then qi(t) is a stable process if and only if

ρi < 1.
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The proof of the Theorem is based on the relations between the auxiliary
process Z(t) and the real process of the number of service completions
up to the time t and results in [2,3].

For the system S1 stability criterion is

λX < µ(

m∑

j=1

1

m− j + 1
P(ζ1 ≥ j))−1.

This criterion is the same as obtained by Gillent and Latouche [4] for a
queueing system with a Poisson input flow and exponential distribution
of the service time.

For the system S2 we introduce the function h(n) =
n∑
k=1

P(ζ1 + . . .+

ζk = n), n ≤ m which is the renewal probability for the renewal process
for {ζk}∞k=1.

Then the transition probabilities for Ũ2(n) are defined as follows

Pji =
m−i∑

s=j+1

α̃jsh(m− s− i)βi,

P00 =

m∑

s=1

αsh(m− s) = h(m),

Pj0 =

m∑

s=j+1

α̃jsh(m− s),

where βi =
m∑

j=i+1

αj , α̃js =
αs

m∑
i=j+1

αi

. The class of states K2 for the process

Ũ2(n) is finite so it is always possible to find the limit distribution for
the process Ũ2(n) and, hence, λZ2 and stability criterion.

But in the case m > 2 servers it is quite difficult to estimate the
limit distribution so here we consider only the case when the number of
servers m = 2.

The stability criterion for the system S2 for the case m = 2 is

λX =
λZ2

Eζ
=

1

τ

2 + α− α2

(2 − α)(1 + α(1− α)) < 1.

The stability criterion for the system S1 for the case m = 2 is

λX =
λZ1

Eζ
= µ

2

3− 2α
< 1.
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We consider that the means of the service times for the both systems
are the same that is µ = 1

τ .

Hence
λZ2

λZ1
≥ 1. Therefore, the constant service time is better than

the exponential service time.
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Asymptotic properties of service and
control operations in tandem systems with

cyclic algorithms with prolongation
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Operations research is a field of mathematics which deals with finding
optimal way of operating on different objects. The nature of these opera-
tions might contain very complex stochastic grain. Once the objects are
customers or demands and the operation is service and control, queuing
theory methods can be used. Queuing theory approaches can be divided
into two groups. The first group of methods is classical and assumes ho-
mogeneity of all customers as well as that of all operations on the cus-
tomers. For the first time such assumptions were considered in the early
XX century by F. Johanssen, A.K. Erlang, A.Ya. Khinchine, F. Pol-
laczek, C. Palm, D. Kendall. During the second half of the XX century
this sort of customers and operations on them have been investigated
by A.N. Kolmogorov, B.V. Gnedenko, T.D. Saati, Yu.V. Prokhorov,
E.S. Ventsel et al.
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However, there are a lot of cases where homogeneity assumptions
do not hold: information flows processing in local-area computer net-
works and telecommunication networks, control of conflicting flows of
aircrafts at passage of intersecting air lanes, conflicting transport flows
control at intersections with complicated intersection geometry etc. The
second group of queuing theory methods deals with nonhomogeneous
customers and nonhomogeneous operations on these customers. This is
done via solving the following fundamental problems: 1) classification of
nonhomogeneous customers and description of flows of nonhomogeneous
customers; 2) formation and development of control algorithms of con-
flicting flows of nonhomogeneous customers. In this paper we describe
one of the problems that can be solved with second group of queuing
theory methods.

Fig. 1. A tandem of crossroads

Consider a real-life system of tandem of two consecutive crossroads
(Fig. 1). The input flows are flows of vehicles. The flows Π1 and Π5 at
the first crossroad are conflicting; Π2 and Π3 at the second crossroad are
also conflicting. Every vehicle from the flow Π1 after passing the first
road intersection joints the flow Π4 and enters the queue O4. After some
random time interval the vehicle arrives to the next road intersection.
Such a pair of crossroads is an instance of a more general queuing model
described below.

Consider a queuing system with four input flows of customers Π1, Π2,
Π3, and Π4 entering the single server queueing system (Π5 flow has no
effect on system behaviour and is omitted in remaining discussion). Cus-
tomers in the input flow Πj , j ∈ {1, 2, 3, 4} join a queue Oj with an un-
limited capacity. For j ∈ {1, 2, 3} the discipline of the queue Oj is FIFO
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(First In First Out). Discipline of the queue O4 will be described later.
The input flows Π1 and Π3 are generated by an external environment,
which has only one state. Each of these flows is a nonordinary Poisson
flow. Denote by λ1 and λ3 the intensities of bulk arrivals for the flows Π1

and Π3 respectively. The probability generating function of number of

customers in a bulk in the flow Πj is fj(z) =
∑∞

ν=1 p
(j)
ν zν, j ∈ {1, 3}.

We assume that fj(z) converges for any z ∈ C such that |z| < (1 + ε),

ε > 0. Here p
(j)
ν is the probability of a bulk size in flow Πj being exactly

ν = 1, 2, . . . . Having been serviced the customers from O1 come back
to the system as the Π4 customers. The Π4 customers in turn after ser-
vice enter the system as the Π2 ones. The flows Π2 and Π3 are conflict-
ing in the sense that their customers can’t be serviced simultaneously.
This implies that the problem can’t be reduced to a problem with fewer
input flows by merging the flows together.

In order to describe the server behavior positive integers d, n0, n1, . . .,
nd are fixed and a finite set Γ = {Γ(k,r) : k = 0, 1, . . . , d; r = 1, 2, . . . nk}
of states server can reside in is introduced. At the state Γ(k,r) the server
stays during a constant time T (k,r). We will assume, that for each fixed
k∗ cycle subset {Γ(k∗,r) : r = 1, 2, . . . n∗

k} = CN
k∗ ∪ CO

k∗ ∪ CI
k∗ , that is

consists of three disjoint sets called neutral, output and input sets of
states. In more details server is described in [1].

In general, service durations of different customers can be dependent
and may have different laws of probability distributions. So, saturation
flows will be used to define the service process. The saturation flow Πsat

j ,
j ∈ {1, 2, 3, 4}, is defined as a virtual output flow under the maximum
usage of the server and unlimited number of customer in the queue Oj .
The saturation flow Πsat

j , j ∈ {1, 2, 3} contains a non-random number

ℓ(k, r, j) > 0 of customers in the server state Γ(k,r).

The queuing system under investigation can be regarded as a cyber-
netic control system, it helps to rigorously construct a formal stochastic
model [2]. There are following blocks present in the system: 1) the ex-
ternal environment with one state; 2) input poles of the first type — the
input flows Π1, Π2, Π3, and Π4; 3) input poles of the second type — the
saturation flows Πsat

1 , Πsat
2 , Πsat

3 , and Πsat
4 ; 4) an external memory — the

queues O1, O2, O3, and O4; 5) an information processing device for the
external memory — the queue discipline units δ1, δ2, δ3, and δ4; 6) an
internal memory — the server (OY); 7) an information processing device
for internal memory — the graph of server state transitions; 8) output
poles — the output flows Πout

1 , Πout
2 , Πout

3 , and Πout
4 .
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Let us introduce the following variables and elements along with their
value ranges. To fix a discrete time scale consider the epochs τ0 = 0, τ1,
τ2, . . . when the server changes its state. Let Γi ∈ Γ be the server state
during the interval (τi−1; τi], κj,i ∈ Z+ be the number of customers in the
queue Oj at the instant τi, ηj,i ∈ Z+ be the number of customers arrived
into the queue Oj from the flow Πj during the interval (τi; τi+1], ξj,i ∈
Z+ be the number of customers in the saturation flow Πsat

j during the

interval (τi; τi+1], ξj,i ∈ Z+ be the actual number of serviced customers
from the queue Oj during the interval (τi; τi+1], j ∈ {1, 2, 3, 4}. The
server changes its state according to the following rule: Γi+1 = h(Γi,κ3,i)
where the mapping h(·, ·) is defined in paper [1]. Lets define function
ψ(·, ·, ·): ψ(k; y, u) = Cky u

k(1 − u)y−k. ψ(k; y, u) is probability of arrival

of k Π2-customers given O4 has y customers and server is in state Γ(k,r),
that is u = pk,r. If 0 6 k 6 y does no hold we put ψ(k; y, u) equal 0.
Mathematical model in more details can be found in work [3].

We now present several results regarding asymptotic behaviour of
described system. Consider stochastic sequences:

{(Γi(ω),κ3,i(ω)); i = 0, 1, . . .}, (1)

{(Γi(ω),κ1,i(ω),κ3,i(ω)); i = 0, 1, . . .}, (2)

{(Γi(ω),κ1,i(ω),κ3,i(ω),κ4,i(ω)); i = 0, 1, . . .}, (3)

which include number of customers κ1,i(ω), κ3,i(ω) and κ4,i(ω) in the
queues O1, O3 and O4 respectfully.

Theorem 1. Let Γ0 = Γ(k,r) ∈ Γ and κ3,0 = x3,0 ∈ Z+ be fixed.
Then the sequence (1) is Markov chain.

Theorem 2. Let Γ0 = Γ(k,r) ∈ Γ and (κ1,0,κ3,0) = (x1,0, x3,0) ∈ Z2
+

be fixed. Then the sequence (2) is Markov chain.

Theorem 3. For Markov chain (1) to have a stationary distribution
it is sufficient to satisfy the following inequalitiy

min
k=1,d

∑nk

r=1 ℓ(k, r, 3)

λ3f ′
3(1)

∑nk

r=1 T
(k,r)

> 1.

Theorem 4. For Markov chain (2) to have a stationary distribution
it is sufficient to satisfy the following inequalities

min
k=0,d

∑nk

r=1 ℓ(k, r, 1)

λ1f ′
1(1)

∑nk

r=1 T
(k,r)

> 1, min
k=1,d

∑nk

r=1 ℓ(k, r, 3)

λ3f ′
3(1)

∑nk

r=1 T
(k,r)

> 1.
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Theorem 1 and Theorem 3 concern the low-priority queue which is
also described in [1,3,4]. Theorem 2 and Theorem 4 concern primary
input flow queues which are referenced in [5].

Theorem 5. Assume assumptions of Theorem 4 and the inequality

min
k=0,d,r=1,nk

{pk,r} > 0.

Then the stochastic sequence (3) is bounded.
Proof Put Ai(w1, w3, w4, γ) = {ω : κ1,i = w1,κ3,i = w3,κ4,i =

w4,Γi = γ}. Let (γ, x3) ∈ Γ × Z+ and Γ(k̃,r̃) = h(γ, x3). Since
κ4,i+1 = κ4,i +min{ξ1,i,κ1,i + η1,i} − η2,i, one has:

E[κ4,i+1|Ai(w1, w3, w4, γ)] =

= E[w4 − η2,i +min {ξ1,i, w1 + η1,i}|Ai(w1, w3, w4, γ)] 6

6 E[w4 − η2,i + ξ1,i|Ai(w1, w3, w4, γ)] =

= w4 + ℓ(k̃, r̃, 1)− E[η2,i|Ai(w1, w3, w4, γ)].

From the definition of ψ(·; ·, ·) we get E[η2,i|Ai(w1, w3, w4, γ)] = w4pk̃,r̃.

Hence it is true that E[κ4,i+1|Ai(w1, w3, w4, γ)] 6 w4(1−pk̃,r̃)+ℓ(k̃, r̃, 1).
Using the law of total expectation one gets:

E[κ4,i+1] =

∞∑

w1=0

∞∑

w3=0

∞∑

w4=0

∑

γ∈Γ

E[κ4,i+1|Ai(w1, w3, w4, γ)]×

×P(Ai(w1, w3, w4, γ)) 6

∞∑

w3=0

∞∑

w4=0

∑

γ∈Γ

(w4(1− pk̃,r̃) + ℓ(k̃, r̃, 1))×

×P(Ai(w1, w3, w4, γ)) 6 (1 −min {pk̃,r̃})×

×
∞∑

w4=0

w4P(κ4,i = w4) + max {ℓ(k̃, r̃, 1)})
∞∑

w4=0

P(κ4,i = w4) =

= (1−min {pk̃,r̃})E[κ4,i] + max {ℓ(k̃, r̃, 1)}).

The sequence

M0 = E[κ4,0], Mi+1 = (1 −min {pk̃,r̃})Mi +max {ℓ(k̃, r̃, 1)})

dominates the sequence E[κ4,i+1] and under the theorem assumptions
is limited. It implies O4 queue size κ4,i to be limited. Since conditions
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of the Theorem 4 are satisfied then Markov chain (2) has stationary
distribution and queue sizes κ1,i and κ3,i are limited as well. QED.
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On the ruin probability of a joint-stock
insurance company in the Sparre Andersen

model

A.A. Muromskaya
Lomonosov Moscow State University, Moscow, Russia

Let us consider the Sparre Andersen risk model. According to this
model, the surplus of an insurance company at time t is as follows:

Xt = x+ ct−
Nt∑

i=1

Xi, t > 0, (1)

where x is the initial capital of the company, premiums are acquired
continuously at the rate c, Nt is a renewal process. The claim amounts
{Xi} are non-degenerate i.i.d. random variables with distribution func-
tion F (y) such that F (0) = 0. In its turn, the function G(y) is a distribu-
tion function of the intervals between the claim times {Tj}. In addition,
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the variables {Xi} and the process Nt are supposed to be independent
too.

One of the important results related to the Sparre Andersen risk
model is the determination of an upper bound for the ruin probability
of the company. Let τ = inf[t > 0 : Xt < 0] be the time of ruin of
the insurance company whose surplus at time t has the form (1). Then
ψ(x) = P (τ < ∞|X0 = x) is the probability of ruin. We also assume
that there exists a unique positive root R of the equation

∫ ∞

0

erydF (y)

∫ ∞

0

e−crtdG(t) = 1 (2)

called the adjustment coefficient or Lundberg’s exponent. The following
estimate for the ruin probability is valid in this case:

ψ(x) 6 e−Rx. (3)

This inequality is an analogue of the famous Lundberg’s inequality pro-
ved for the particular case of the Sparre Andersen risk model, namely, the
Cramer-Lundberg model, according to which Nt is a Poisson process [1].

However, it is worth noting that the classical Sparre Andersen risk
model does not take into account the fact that the insurance company
can be a joint-stock company, while dividend payment is of great impor-
tance in calculating the probability of ruin. The surplus of the insurance
company paying dividends is defined as Ut = Xt−Dt, where Dt denotes
the amount paid to shareholders as dividends by the time t. Dividends
are paid by the company in accordance with a barrier strategy with a
barrier level bt, namely, no dividends are paid whenever Ut < bt, and div-
idends are paid out to the shareholders with intensity c− dbt whenever
Ut = bt. If Ut > bt, then the total amount Ut − bt is immediately paid
as dividends (note that the inequality Ut > bt can hold only for t = 0).
The random variable T = inf[t > 0 : Ut < 0] is then the ruin time of
the joint-stock insurance company, and ψdiv(x) = P (T < ∞|U0 = x) is
its probability of ruin. Thus, of special interest are studies that focus on
the research of the function ψdiv(x). A key role in the research is played
by the choice of the barrier function bt and the choice of the distribu-
tion of the interclaim times. In the case when this distribution is expo-
nential, a number of interesting results have been obtained for various
functions bt (many of them are mentioned in the review article [2]). It
is known, for example, that if the barrier bt does not change over time,
then the probability of the company’s ruin will be equal to 1. However,
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very few papers ([3] and [4]) are devoted to the problems of searching
and estimating ψdiv(x) in the case when the distribution of the inter-
vals between the claim times {Tj} is more general than the exponential
one, and the barrier bt is not constant. In the article [3] we can find esti-
mates of the ruin probability ψdiv(x) for all distribution functions F (y)
and G(y) for which the adjustment coefficient R exists, and for a bar-
rier strategy with a step barrier function, according to which the bar-
rier level bt is equal to bi on half-intervals of the form [Ti−1, Ti), i > 1
(T0 = 0). In [4] it is assumed that the interclaim times follow a gene-
ralized Erlang(n) distribution i.e. these random variables can be repre-
sented as a convolution of n independent exponentially distributed ran-
dom variables with parameters λ1, . . . , λn. A linear barrier strategy with
barrier level bt = b+ at, where b > 0, 0 < a < c, is chosen as a dividend
strategy. Under the given conditions of the model, integro-differential
equations for the survival probability δdiv(x, b) = 1 − ψdiv(x, b) are de-
rived in [4], however, it turns out to be very difficult to solve the equa-
tions explicitly and the authors of [4] give only a detailed solution al-
gorithm for the case n = 2 and the exponential distribution of claims
{Xi}.

Thus, the ruin probability in models with barrier dividend strategies
with non-constant (and, in particular, linear) barrier functions bt has not
been fully explored to date. In this paper, we obtain an upper bound
for ψdiv(x, b) provided that the insurance company uses a linear barrier
strategy and the intervals between the claim times {Tj} have a gamma
distribution with the density function g(y) = λα

Γ(α)y
α−1e−λy, y > 0,

α > 1, λ > 0. Since ψdiv(x, b) = ψdiv(b, b) for b < x, we assume without
loss of generality that the initial capital x does not exceed b. We also
continue to suppose that there exists an adjustment coefficient R, which
is a positive root of the equation (2). In addition to the coefficient R, we
also need the coefficient Q, which is defined in the following lemma.

Lemma 1. There exists a unique root Q > 0 of the equation

∫ ∞

0

e−qydF (y)

∫ ∞

0

e−t(Ra+qa−qc)dG(t) = 1,

moreover Ra
c−a < Q < Ra+λ

c−a .

Let us now turn to the main theorem of the paper.

Theorem 1. The following inequality holds for the ruin probability
ψdiv(x, b) of a joint-stock insurance company using a linear barrier divi-
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dend strategy in the case of a gamma distribution of the interclaim times:

ψdiv(x, b) 6 e−Rx +Ke−(R+Q)beQx,

where

K =
2α−1(λ+Rc)α−1R

(λ+Ra+Qa−Qc)α−1Q
+

2α−1 ((λ +Rc)α − (λ +Ra)α)

(λ+Ra)α − (λ +Ra+Qa−Qc)α .

Theorem 1 implies inequality (3) in the case of absence of dividend
payments.
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On asymptotic insensitivity of reliability
systems∗
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In this talk we give a short review of classic results about strong and
asymptotic insensitivity of stochastic systems to input distributions of
their elements as well as some latest investigations on the topic.

Introduction and Motivation

∗This investigation has been supported with the RFBR grants No.17-07-00142 and
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Investigation of stability issues of output characteristics of different
systems to the changes in initial data, parameters or outside factors is a
key problem of all natural sciences. For stochastic systems stability often
means insensitivity or weak sensitivity of their output characteristics to
the shapes of their elements’ input distributions.

Some investigations by B.A. Sevast’anov (1957), I.N. Kovalenko
(1975), B.V. Gnedenko and A.D. Solov’ev (1964—1970) have been de-
voted to the strong and asymptotic insensitivity of stochastic models.
Recently some new results about asymptotic insensitivity of systems’ re-
liability characteristics have been found by authors with colleagues. They
have been represented at several conferences, partially published without
proofs in their proceedings (for the review see for example [1]). In cur-
rent talk a review of these investigations and some their generalisation
is proposed.

Problem setting and the notations

Consider a heterogeneous hot double redundant repairable system.
Life times of its components are supposed to be independent identically
distributed (i.i.d) random variables (r.v.) Ai (i = 1, 2) with exponen-
tial distribution with parameters αi (i = 1, 2). The repair times of com-
ponents Bi (i = 1, 2) are also supposed to be i.i.d. r.v.’s with absolute
continuous cumulative distribution functions (c.d.f.) Bi(x) (i = 1, 2) and
probability density functions (p.d.f.) bi(x) (i = 1, 2) correspondingly. De-
note by b̃(s) =

∫∞

0 e−sxb(x)dx the moment generation function (m.g.f.)
of r.v.’s Bi (its p.d.f Laplace Transform — LT).

Denote by E = {0, 1, 2, 3} the system set of states, which means:
0—both components are working, j (j = i, 2)—the j-th component is
under repair, and the other one is working, and 3 —both components
are in down states, system has failed. Denote also by J = {J(t t > 0)}
the process that takes value J(t) = j, if at time t the system is in the
state j ∈ E.

The main reliability characteristics of the system are its reliability
function:

R(t) = P{T > t}, (1)

where T = inf{t : J(t) = 3} means the system lifetime, and the steady
state probabilities (s.s.p)

πj = lim
t→∞

P{J(t) = j}. (2)

However there are no systems that exist for infinitely long time, so the
most interesting characteristics of the system reliability are so called
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quasi-stationary probabilities (q.s.p.), which are the probabilities of a
system to be in any state before its failure,

π̂i = lim
t→∞

P{J(t) = i|t 6 T } = lim
t→∞

πi(t)

R(t)
. (3)

To investigate the system’s reliability we introduce two-dimensional
Markov process Z = {Z(t) = (J(t), X(t)), t > 0}, where J(t) is the
system state, and an additional variable X(t) means the time, spent
by the process in the state J(t) after its last occurrence in it before
time t. At that the process state space will have the following form:
E = {0, (1, x), (2, x), (3, x)}, which meaning is evident. The process state
probabilities are denoted by π0(t), π1(t;x), π2(t;x), π3(t;x), and corre-
sponding limiting s.s.p., which existence is provided by the fact that
the process Z has a positive atom, by π0 = limt→∞ π0(t), πi(x) =
limt→∞ πi(t;x), (i = 1, 2, 3).

Reliability function

To calculate the system-level reliability the state 3 should be consid-
ered as an absorbing one. By using Kolmogorov’s forward system of par-
tial differential equations for the time dependent process probabilities
the following theorem can be proved.

Theorem 1. LT π̃(s) (i ∈ {0, 1, 2, 3}) and R̃(s) of the state probabil-
ities πi(t) (i ∈ {0, 1, 2, 3} and the reliability function R(t) of the system
are:

π̃0(s) =
1

s+ ψ(s)
,

π̃i(s) =
φi(s)

(s+ αi∗)(s+ ψ(s))
, (i = 1, 2)

π̃3(s) =

[
α1

s+ α1
φ2(s) +

α2(s)

s+ α1
φ1(s)

]
(s(s+ ψ(s)))−1,

R̃(s) =
(s+ α1)(s+ α2) + (s+ α1)φ1(s) + (s+ α2)φ2(s)

(s+ α1)(s+ α2)(s+ ψ(s))
, (4)

where i∗ = 2 for i = 1, i∗ = 1 for i = 2 and the following notations are
used

φi(s) = αi(1− b̃i(s+ αi∗)), (i = 1, 2), (5)

ψ(s) = φ1(s) + φ2(s). (6)
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As a consequence to the theorem the mean system lifetime can be
found as

m = E[T ] = R̃(0) =
α1α2 + α1(1− b̃1(α2))α2(1− b̃2(α1))

α1α2[α1(1− b̃1(α2)) + α2(1− b̃2(α1))]
. (7)

The above result demonstrates the evident dependence of the reli-
ability function on the components’ repair time distributions. However
under rare components’ failures this dependence becomes negligible.

Theorem 2. The reliability function of the system scaled to the
mean system lifetime m = E[T ] for q = max{α1, α2} → 0 converges to
the exponent

lim
q→0

P

{
T

m
> t

}
= e−t.

Steady state probabilities

For the renewable system different rules for the system repair are
possible. Consider one of them — the full system repair after its failure
during some random time, say B3 with c.d.f. B3(t), as a result of which
the system becomes as a new one and moves to state 0.

Theorem 3. The s.s.p. of the system with full repair are:

π1 =
α1

α2
(1− b̃1(α2))π0, (8)

π2 =
α2

α1
(1− b̃2(α1))π0, (9)

π3 = [α1(1 − b̃1(α2)) + α2(1 − b̃1(α2))]b3π0, (10)

where b3 = E[B3] =
∫∞

0 (1−B3(x))dx and π0 is:

π0 =

[
1 + (1− b̃1(α2))

(
α1

α2
+ α1b3

)
+ (1− b̃2(α1))

(
α2

α1
+ α2b3

)]−1

,

(11)

Quasi-stationary probabilities

When studying the system’s behavior during its life cycle the most
interesting characteristics are their q.s.p., which are defined by the for-
mulas (3). Using results of the theorem 1 one can prove the following
theorem.
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Theorem 4. The q.s.p. of the model under consideration has the
following form:

π̂0 =

[
1 +

α1

α2 − γ
(1− b̃1(α2 − γ)) +

α2

α1 − γ
(1 − b̃2(α1 − γ))

]−1

,

π̂1 = α1
(1 − b̃1(α2 − γ))(α1 − γ)

(α1 − γ)(α2 − γ) + α1φ1(−γ) + α2φ2(−γ)
,

π̂2 = α2
(1 − b̃2(α1 − γ))(α2 − γ)

(α1 − γ)(α2 − γ) + α1φ1(−γ) + α2φ2(−γ)
, (12)

where −γ is the root of the equation ψ(s) = −s.
All the above results demonstrate an evident sensitivity of the system

characteristics to the shape of its components’ repair time distributions.
However under rare failures of the components this sensitivity becomes
negligible.

Sensitivity analysis

The s.s.p. of the system under the full repair scenario are given
by the given above formulas (8). By using their Tailor expansion with
max{α1, α2} → 0 the following theorem can be proved.

Theorem 5. The asymptotic behavior of the s.s.p. for the system
with full repair under rare failures of its components are:

π0 ≈ [1 + ρ1(1 + α2b3) + ρ2(1 + α1b3)]
−1
,

π1 ≈ ρ1
1 + ρ1(1 + α2b3) + ρ2(1 + α1b3)

,

π2 ≈ ρ2
1 + ρ1(1 + α2b3) + ρ2(1 + α1b3)

,

π3 ≈ (ρ1α2 + ρ2α1)b3
1 + ρ1(1 + α2b3) + ρ2(1 + α1b3)

. (13)

For the q.s.p.’s analogous result also can be obtained by Tailor ex-
pansion of formulas (12) in the neighbourhood of points αi − γ when
q = max{αi, i = 1, 2} → 0 taking into account that γ < min{α1, α2}.

Theorem 6. Under rare failures of the considered system compo-
nents its q.s.p.’s have the form:

π0 ≈ (1 + ρ1 + ρ2)
−1 , π1 ≈

ρ1
1 + ρ1 + ρ2

, π2 ≈
ρ2

1 + ρ1 + ρ2
. (14)
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The results of these two last theorems show an asymptotic insensi-
tivity of s.s.p.’s and q.s.p.’s of the system states to the shapes of the
system components’ repair times.

Conclusions and further investigations

The problem of sensitivity analysis of redundant systems’ output re-
liability characteristics with exponentially distributed lifetimes of their
components to the shape of their repair time distributions is considered.
The generalization of the obtained results to the more complicated mod-
els with general distributions of the components lifetimes as well as to
the systems with dependent components’ failures are among the topics
of our further investigations.
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Introduction

The queuing theory as a modern area of applied probability theory was
developed in the framework of operations research, being one of the main
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tools for analysing the performance of telecommunication systems. The
queuing theory plays the special role in the performance analysis of the
future generations of telecommunication networks. For example, in 5th
generation network, despite its high bandwidth it is necessary to share
the finite amount of resources between different applications and users.

Queuing theory is currently developing precisely in this direction,
having as its basis [1-6], while the essential role is played by the results
obtained in the work on the mathematical tele traffic theory [7-10]. A
feature of this work is an attempt to apply the asymptotic methods to the
analysis of telecommunication networks [12-15]. Asymptotic behaviours
of the blocking probability and parameters of the Equivalent Random
Theory method was analysed in [13] for the case when both the number
of servers and the load tend to infinity. It is also interesting to establish
convergence for different types of input flow [15].

In this paper, we consider n - server loss system under the assump-
tion that the intensity of the input flow is proportional to n. We inves-
tigate the convergence of the blocking probability in this system to zero
at n→∞. A similar problem arises in the design of modern data trans-
mission systems [7, Chapter 2]. A specific of suggested asymptotic re-
sults is that we did not obtain accuracy formulas or solutions of opti-
mization problems for the transmission systems. Considered asymptotic
formulas allow to establish convergence.

Asymptotic relations

Consider queuing system An =M |M |n|0 with intensity of input flow
nλ and intensities of service at all n servers µ, ρ = λ/µ. System An is an
aggregation of n systems A1 = M |M |1|0. The number of customers in
the system An is described by the process of death and birth xn(t) with
birth and death rates λn(k) = nλ, 0 ≤ k < n, µn(k) = kµ, 0 < k ≤ n.

Denote Pn(ρ) the stationary blocking probability in the system An
at a given ρ. Let an, bn, n ≥ 1, be two real sequences. For n → ∞ we

assume that an � bn, if lim sup
n→∞

an
bn
≥ 1, let’s say an ∼ bn, if bn � an � bn.

Theorem 1. The following limit ratio is true: Pn(1) ∼
√

2

πn
, n → ∞.

Proof. Let ε > 0, consider the function f(x) = 1− x− exp(−(1 + ε)x).
The f(x) function satisfies the following relations: f(0) = 0, f(1) < 0,

f ′(x) > 0, 0 < x <
ln(1 + ε)

1 + ε
, f ′(x) < 0,

ln(1 + ε)

1 + ε
< x ≤ 1.
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Therefore, on the segment [0, 1] there exists a single x(ε), satisfying the
f(x(ε)) = 0 and means the inequalities 1−x ≥ exp(−(1+ ε)x), 0 ≤ x ≤
x(ε) < 1. Let pn(k) = lim

t→∞
P (xn(t) = k), 0 6 k 6 n, then in force [16,

Chapter 2, S 1]

pn(n− 1) = pn(n)
µ

λ

n

n
, pn(n− 2) = pn(n)

(µ
λ

)2 n(n− 1)

n2
, . . .

Hence, the stationary blocking probability in virtue of the integral the-
orems of recovery and the law of large numbers for the recovery process
[1, Chapter 9, S 4, 5] satisfies the equality

Pn(ρ) = pn(n) =




n∑

k=0

ρ−k
k−1∏

j=0

(
1− j

n

)


−1

, (1)

where
∏−1
j=0 equals 1. From Formula (1) we obtain the inequality

P−1
n (1) ≥

∑

0≤k≤nx(ε)

k−1∏

j=0

(
1− j

n

)
≥

∑

0≤k≤nx(ε)

k−1∏

j=0

exp(−(1 + ε)j/n) ≥

≥
∑

1≤k≤nx(ε)

exp(−(1 + ε)k2/2n).

This implies that

P−1
n (1) ≥

∫ nx(ε)

1

e−(1+ε)x2/2ndx =

√
n

1 + ε

∫ x(ε)
√
n(1+ε)

√
1+ε
n

e−y
2/2dy,

consequently

Pn(1)
√
n ≤ (1 + ε)

(∫ x(ε)
√
n(1+ε)

√
1+ε
n

e−y
2/2dy

)−1

→ (1 + ε)

√
2

π
, n→∞.

and so lim sup
n→∞

Pn(1)

√
πn

2
≤ 1 + ε.

Using Formula (1) and the inequality 1 − x log exp(−x), 0 ≤ x ≤ 1,
we obtain:

P−1
n (1) ≤

∑

1≤k≤n

e−k(k−1)/2n ≤
∑

1≤k≤n

e−(k−1)2/2n ≤
∫ ∞

0

e−x
2/2ndx,



Asymptotic analysis of complex stochastic systems 353

whence it follows that 1 ≤ lim inf
n→∞

Pn(1)

√
πn

2
. Obtained above inequal-

ities for upper and lower limits of leads to the statement of Theorem
1.

Analogously it is possible to obtain the following statements.

Theorem 2. At ρ < 1 following relations are valid

e−n ln2 ρ/2

√
2

πn

√
ρ

8
� Pn(ρ) � (e−n ln2 ρ/2)(ρ−1)/ ln ρ

√
2

πn

√
ln ρ

ρ− 1
. (2)

Remark. For ρ = 1 − γ, γ → 0, the upper and lower bounds for the

blocking probability Pn(ρ) are close because the multiplier
ρ− 1

ln ρ
→

1. Moreover, the multiplier n ln2 ρ most strongly affects the blocking
probability Pn(ρ).
Corollary. Let ρ = 1− n−γ , γ > 0, then Formulas (2) will be rewritten:

1

2

√
1

πn
� Pn(ρ) �

√
2

πn
, γ ≥ 1

2
,

1

2

√
1

πn
� Pn(ρ) exp

(
n1−2γ

2

)
�
√

2

πn
, γ <

1

2
.

Theorem 3. At ρ > 1, the following limit ratio is true

Pn(ρ)→ 1− µ/λ, n→∞.

Unification of multiserver loss systems

Suppose that we havem independent Poisson flows of customers with
intensities λ = λ1 = . . . = λm and parallel servers with the intensity of
service at each of them equal to µ.We assume that the service of the k-th
flow customer is realized on ck servers, 1 ≤ k ≤ m, and want to distribute

the servers between the flows so that the blocking probabilities P
(k)
n (1)

for each of the flow k = 1, . . . ,m are about the same. This problem arises
in the design of modern communication systems.

Let the number of servers in the k-th subsystem be nnk, based on
Theorem 1, require that the basic equations n1/c1 = . . . = nm/cm are
fulfilled. We rewrite these equations in the form

n2 = n1 · c2/c1, . . . , nm = n1 · cm/c1.
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Assume that the numbers c2/c1, . . . , cm/c1 are rational and rewrite them
as c2/c1 = p2/q2, . . . , cm/c1 = pm/qm, where pairs of positive integers
p2, ; q2; . . . ; pm, qm consist of mutually prime numbers. Then for the num-
bers n2, . . . , nm to be integers, it requires that number n1 is a multiple
of q2, . . . , qm. Therefore the number n1 should be divided by the small-
est common multiple of l of the numbers q2, . . . , qm. Thus, all possible
values of the numbers n1, . . . , nm, satisfying the basic equality, look like
this:

n1 = nL, n2 = np2L/q2, . . . , n2 = npmL/qm, n = 1, . . .

Let us consider now the case when the intensity of the input flows
λ1, . . . , λm differ and denote ρk = λk/µ, k = 1, . . . ,m. In this case, it is
natural to replace the base equality by the equality

(ln2 ρ1) · n1/c1 = . . . = (ln2 ρm) · nm/cm
and hold similar reviews.
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Branching walks with a finite set of
branching sources and pseudo-sources∗

E. Yarovaya
Lomonosov Moscow State University, Moscow, Russia

We present results for continuous-time branching random walks on
the lattice Zd, d ≥ 1, with a finite number of particle generation cen-
ters called branching sources. The goal of the study is to analyze phase
transitions for a branching random walk with different-type branching
sources without any assumptions on a variance of jumps for the under-
lying random walk.

Consider particles living on Zd independently of each other and of
their history. Each particle walks on the lattice Zd until it reaches a
source where its behavior changed. Branching sources are of three types,

∗Supported by the Russian Foundation for Basic Research (RFBR), project No.
17-01-00468.
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depending on whether branching or violation of symmetry of the walk
takes place or not. In sources of the first type, particles die or are born
with keeping the random walk symmetry, see, e.g., [1-3]. In sources of
the second type, walk symmetry is violated by increasing the degree
of dominance of branching or walk, see, e.g., [4]. Sources of the third
type should be called “pseudo-sources,” because in them only the walk
symmetry, without birth or death of particles, is violated. BRWs with r
sources of the first type, k of the second type, and m of the third type
are denoted BRW/r/k/m and introduced in [5].

In BRW/r/k/m more general multi-point perturbations of the self-
adjoint operator A generated of the symmetric random walk are used
than in BRW/r/0/0 or in BRW/0/k/0, see, e.g., [6]. This follows from the
statement, see [5], that the mean numbers of particles m1(t) = m1(t, ·, y)
at a point y ∈ Zd in BRW/r/k/m are governed by:

dm(t)

dt
= Ym1(t), m1(0) = δy, (1)

where

Y = A+

(
r∑

s=1

βs∆zs

)
+

(
k∑

i=1

ζi∆xi
A+

k∑

i=1

ηi∆xi

)
+




m∑

j=1

χj∆yjA


 .

(2)
Here, A : lp(Zd) → lp(Zd), p ∈ [1,∞], is a symmetric operator, ∆x =
δxδ

T
x , and δx = δx(·) denotes a column-vector on the lattice taking the

unit value at the point x and vanishing at other points, βs, ζi, ηi, and χj
are some constants. The same equation is also valid for a mean number of
particles (a mean for a particle population size) over the lattice m1(t) =
m1(t, ·) with the initial condition m1(0) = 1 in l∞(Zd). The operator (2)
can be written as

Y = A+

k+m∑

i=1

ζi∆ui
A+

k+r∑

j=1

βj∆vj . (3)

In each of the sets U = {ui}k+mi=1 , and V = {vj}k+rj=1 , the points are
pairwise distinct, but U and V may have a nonempty intersection. The
points from V \ U correspond to r sources of the first type; those from
U ∩V to k sources of the second type; and those from U \V to m sources
of the third type.

Denote the highest positive eigenvalue of the operator Y by λ0. We
assume that ζi ≥ 0 and βj ≥ 0 in (3). Under this assumption we obtain
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that if λ0 exits then λ0 simple strictly positive and guarantees the expo-
nential growth of the first moment m1 of the numbers of particles both
at an arbitrary point µt(y) and on the entire lattice µt =

∑
y∈Zd µt(y).

As in BRW/r/0/0, the same condition λ0 > 0 implies the exponential
growth of the higher-order moments. For all n ∈ N and x, y ∈ Zd, if:

m(n, x, y) = lim
t→∞

Exµ
n
t (y)

mn
1 (t, x, y)

= lim
t→∞

mn(t, x, y)

mn
1 (t, x, y)

,

m(n, x) = lim
t→∞

Exµ
n
t

mn
1 (t, x)

= lim
t→∞

mn(t, x)

mn
1 (t, x)

,

then, the limits

lim
t→∞

µt(y) e
−λ0t = ξψ(y), lim

t→∞
µt e

−λ0t = ξ, (4)

where ψ(y) is the eigenfunction corresponding to the eigenvalue λ0 and
ξ is a nondegenerate random variable, are valid for multiple sources
in the sense of moment convergence. Eq. (4) reflects the exponential
growth of the total number of particles both at an arbitrary point and
on the entire lattice with the parameter λ0. Additionally, by the Car-
leman criterion, if the growth rate m(n, x) is limited by the condition∑∞
n=1m(n, x)−1/(2n) = ∞, then the moments define the distribution ξ

uniquely. In this case, relations Eq. (4) are valid in the sense of con-
vergence in distribution, too. The proof of 4 based on joint work with
I. Christolubov supported by RFBR, project No. 17-01-00468.
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Convergence rate for some extended
Erlang–Sevastyanov queueing system∗

G.A. Zverkina
Moscow State University of Railway Engineering (MIIT),

V. A. Trapeznikov Institute of Control Sciences of
Russian Academy of Sciences, Moscow, Russia

Consider the queueing system with infinitely many servers. Let t1,
t2,. . . , tn,. . . (ti > ti−1) be the time moments of incoming of 1-th, 2-

th,. . .n-th customer correspondingly; τi
def
== ti − ti−1, t0

def
== 0. Let ξ1,

ξ1,. . . ξn be the service length of 1-th, 2-th,. . .n-th customer correspon-
dingly. The distribution of the random variables {τi}i∈N and {ξi}i∈N will
be described by the intensities, and these intensities will be dependent
on the full queueing system state.

Namely, the full queueing system state consists of changeable number

of variables: x
(0)
t

def
== t−max{ti : ti 6 t} (the time from the last arrival of

the customer), and x
(i)
t – the the elapsed time of service of i-th customer

(in order of input) from nt customers which are in the service at the
time t. So, the behaviour of the queueing system is described by the

stochastic process Xt =
(
nt, x

(0)
t ;x

(1)
t , x

(2)
t , . . . , x

(nt)
t

)
– for convenience,

the variable nt added here. The state space of the process Xt is

X def
==

∞⋃

i=0

Si,

where Si def
== {i}×

i∏
j=0

R+, i ∈ Z+; the set S0 is a set of idle states of the

system.

∗This research is supported by RFBR grant No 17-01-00633 A



Asymptotic analysis of complex stochastic systems 359

The intensity of input flow is λ(Xt), and the intensity of the service
of i-th customer from nt customers current in the system.

This means, that:

P





nt+∆ = nt + 1, x
(0)
t+∆ = x

(nt+∆)
t+∆ ∈ (0;∆),

and x
(i)
t+∆ = x

(i)
t +∆ for all i = 1, . . . , nt





= λ(Xt)∆ + o(∆);

P{nt+∆ = nt − 1} =
nt∑

i=1

hi(Xt)∆ + o(∆);

P





nt+∆ = nt − 1, and :

1. for all j < i, x
(j)
t+∆ = x

(j)
t +∆,

2. for all j > i x
(j)
t+∆ = x

(j+1)
t +∆





= hi(Xt)∆ + o(∆)

– for all i = 1, 2, . . . , nt;

P
{
nt+∆ = nt;x

(i)
t+∆ = x

(i)
t +∆ for all i = 0, . . . , nt

}
=

= 1−
(
λ(Xt) +

nt∑

i=1

hi(Xt)

)
∆+ o(∆).

In these conditions, the process Xt is regenerative, and its regener-
ative points are the times when Xt = (1, 0; 0), i.e. the jumps from the
idle state to the busy state.

In [1], this extended Erlang-Sevastyanov queueing system was studied
in the conditions:

0 < λ0 6 λ(Xt) 6 Λ <∞, hi(Xt) >
K

1 + x
(i)
t

, K > 2. (1)

In [1], the convergence rate of the distribution Pt of Xt to the sta-
tionary one P was estimated, namely:

If the conditions (1) are true, then there exists the calculated constant
C(Λ, λ0,K, k) such that for all k ∈ [0,K − 1) the inequality

‖Pt − P‖TV 6
C(Λ, λ0,K, k)

(1 + t)k

is true. The algorithm of the calculation of C(Λ, λ0,K, k) was given in
[1].
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Now, the generalization of this fact is proved.
Theorem. If

0 <
λ0

1 + x
(0)
t

6 λ(Xt) 6 Λ <∞, hi(Xt) >
K

1 + x
(i)
t

, K > 2,

then the distribution Pt of the process Xt weakly converges to the sta-
tionary distribution P, and for all k ∈ [0,K− 1) there exists computable
constant Ĉ(Λ, λ0,K, k) such that

‖Pt − P‖TV 6
Ĉ(Λ, λ0,K, k)

(1 + t)k
.

In the algorithm of the calculation of the constatnt Ĉ(Λ, λ0,K, k) the
coupling constant κ (see [1]) is less than one in [1].
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Continuous optimization problems

On existence of minima of lower
semicontinuous functions and solvability of

nonlinear equations∗

A.V. Arutyunov and S.E. Zhukovskiy
Peoples’ Friendship University of Russia, Moscow, Russia

In [1], the following sufficient condition for existence of minima of
functions defined on a metric space was proved.

Let (X, ρ) be a complete metric space, U : X → R be a lower semi-
continuous function bounded from below by some γ ∈ R, i.e. U(x) ≥ γ
∀ x ∈ X. Given k > 0, assume that

∀x ∈ X : U(x) > γ ∃x′ ∈ X \ {x} : U(x′) + kρ(x, x′) ≤ U(x). (1)

Then for every x0 ∈ X there exists a point of minimum x̄ ∈ X of the
function U such that U(x̄) = γ and ρ(x0, x̄) ≤ k−1(U(x0)− γ).

In the talk we discuss application of this result to equations in met-
ric spaces. We present sufficient conditions for a differentiable mapping
F : Rn → Rk to be surjective. In particular, this result is similar to
the Hadamard theorem on homeomorphism (see, for example, Theorem
5.3.10 in [2]).
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2. Ortega J.M., Rheinboldt W.C. Iterative solution of nonlinear equa-
tions in several variables. New York: Academic Press, 1970.

High-order methods for variational
inequities with coupled constraints

M. Jaćimović and N. Mijajlović
University of Montenegro, Podgorica, Montenegro

We will study high-order methods for solving a class of the varia-
tional inequalities with coupled constraints when the changeable set is
described by translation of a fixed, closed and convex set. We will present
continuous and iterative variants of the second-order gradient-type pro-
jection method, establish sufficient conditions for the convergence of the
proposed methods and derive a estimate of the rates of the convergence.
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Control of large dynamic systems using a
hierarchical distributed MPC approach

O.Y. Maryasin
Yaroslavl State Technical University, Yaroslavl, Russia

An approach, based on using predictive models for managing various
dynamic systems, is gaining much attention across the Western scientific
community. This approach has acquired the name of Model Predictive
Control (MPC) and has long proven itself in applications within such
areas as Chemistry and Petrochemistry. Lately, it has extended its use
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to such areas as Energy Engineering, Transport as well as some other
spheres.

To control large dynamic system consisting of multiple interconnected
subsystems, distributed versions of MPC are used, such as distributed
MPC and hierarchical distributed MPC [1]. Of these, only hierarchical,
distributed MPC allows to achieve a minimum of the global quality crite-
rion for the whole system, with due regard to the interrelations between
the subsystems. When implementing a hierarchical distributed MPC-
algorithm, within each step of its implementation, there arises the prob-
lem of coordinated solution for the mathematical programming prob-
lems for each of the subsystems. For the criterion of optimality in the
form of the norm l2, these are going to be the problems of quadratic
programming.

The authors propose a method for solving the global mathematical
programming problem, performed at each step of the MPC algorithm,
based on the decomposition method via resource sharing [2]. The authors
prove that under certain assumptions on sets of admissible solutions
for local problems, if the local optimization problems have a solution,
then the coordination problem will have an admissible optimal solution.
Since the target function of the coordinating task may turn out to be
non-differentiable at individual points, the Bundle method is used to
solve it. If random factors influence the fulfillment of constraints in local
problems, then a one-step stochastic programming problem with rigid
and / or soft constraints can be put in place [3].

The authors used the proposed method for solving the problem of
managing energy consumption and the microclimate of large multi-zone
buildings. The mathematical model of the microclimate of a large multi-
zone building is based on the equations of thermal and material bal-
ance, and is described by a system of ordinary differential equations.
To ensure the required climate in the building, various types of energy
resources, including renewable ones, can be used. For each type of en-
ergy resources, there are restrictions for both individual zones and the
entire building. Therefore, the energy input for managing the microcli-
mate within a building will depend on the consumption of energy re-
sources for other, including domestic, needs. Since the consumption of
energy resources for domestic needs is accidental, the restrictions on the
consumption of energy resources for managing the climate will be acci-
dental as well.

The results of numerical experiments showed the advantages of using
the method for controlling the microclimate of large multi-zone buildings
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proposed by the authors. The availability of various types of energy
resources allows, for example, in case of a sharp increase in the household
needs consumption of thermal energy during peak hours, to increase the
input of electricity or gas to maintain the required microclimate. At the
same time, on the whole, a minimum level of energy input is secured,
with regard to the implementation of global constraints and the cost of
energy resources at current tariffs.
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Game-theoretic models

Collective action and the evolution
of social norm internalization

S. Gavrilets
National Institute for Mathematical and Biological Synthesis,

Center for the Dynamics of Social Complexity, Knoxville, TN, USA

Human behavior is strongly affected by culturally transmitted norms
and values. Certain norms are internalized (i.e., acting according to a
norm becomes an end in itself rather than merely a tool in achieving
certain goals or avoiding social sanctions). Humans’ capacity to inter-
nalize norms likely evolved in our ancestors to simplify solving certain
challenges – including social ones. Here we study theoretically the evo-
lutionary origins of the capacity to internalize norms. In our models, in-
dividuals can choose to participate in collective actions as well as pun-
ish free riders. In making their decisions, individuals attempt to maxi-
mize a utility function in which normative values are initially irrelevant
but play an increasingly important role if the ability to internalize norms
emerges. Using agent-based simulations, we show that norm internaliza-
tion evolves under a wide range of conditions so that cooperation be-
comes “instinctive.” Norm internalization evolves much more easily and
has much larger effects on behavior if groups promote peer punishment
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of free riders. Promoting only participation in collective actions is not
effective.

Typically, intermediate levels of norm internalization are most fre-
quent but there are also cases with relatively small frequencies of “over-
socialized” individuals willing to make extreme sacrifices for their groups
no matter material costs, as well as “undersocialized” individuals com-
pletely immune to social norms. Evolving the ability to internalize norms
was likely a crucial step on the path to large-scale human cooperation.

Analysis of political processes and corruption

Optimal majority thresholds for different
distributions in voting in a stochastic

environment
V.A. Malyshev

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of
Sciences, Moscow, Russia

There is voting paradox consisting in the fact that democratic deci-
sions taken by the majority systematically reduce social wealth if propos-
als are generated by the stochastic environment. It has been described
in [1] (the ”pit of losses” paradox). The simplest approach to ”neutral-
ize” this nuisance is increasing the majority threshold (the percentage
of society that should support a proposal to accept it). However, soci-
ety can miss many profitable proposals using an excessively high ma-
jority threshold in a favorable environment. In this paper, we show how
to choose the optimal majority threshold to maximize average capital
increment of a member of the society.

We use the ViSE (Voting in Stochastic Environment [2]) model. The
society consists of n participants (egoists). Every participant supports
the proposals that increase his/her own capital. The behavior of the vot-
ers corresponds to the Downsian concept [3]. A proposal of the environ-
ment is a vector of proposed capital increases of the participants. The
proposals are successively put to a general vote. If the proposal is sup-
ported by a proportion of the society exceeding the majority threshold,
then it is accepted (the voting procedure is ”α-majority” [4, 5, 6]) and
the participants’ capitals receive their increments. Otherwise, the capi-
tal values remain the same. In accordance with the ViSE model the cap-
ital increments (that form the proposal of the environment) are the real-
izations of independent identically distributed random variables. A very
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similar model with randomly generated proposals is presented in [7].
We obtain the expressions for the optimal majority threshold for dif-

ferent distributions (a general expression and its specializations for the
normal, continuous uniform, and symmetrized Pareto distributions) in
such a kind of society. Moreover, we show that there is no ”pit of losses”
(a negative average capital increment) in the case of the optimal major-
ity threshold. In an unfavorable environment (with a negative expected
value), the threshold is usually greater than 0.5 and less than 0.5 in
a favorable one. The curves of the optimal threshold are different for
different distributions. This work presents some generalization of [1].
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The typical models for congested traffic

The physics of empirical nuclei for
spontaneous traffic breakdown in free flow

at highway bottlenecks

B.S. Kerner1, M. Koller2, S.L. Klenov3, H. Rehborn2, and M. Leibel4
1Physik von Transport und Verkehr, Universität Duisburg-Essen, 47048

Duisburg, Germany
2Daimler AG, 71063 Sindelfingen, Germany

3Moscow Institute of Physics and Technology, Department of Physics,
141700 Dolgoprudny, Moscow Region, Russia

4Karlsruhe University of Applied Sciences, 76133 Karlsruhe, Germany

Based on an empirical study of real field traffic data measured in
1996–2014 through road detectors installed on German freeways [1], in
this presentation we reveal physical features of empirical nuclei for spon-
taneous traffic breakdown in free flow at highway bottlenecks. A micro-
scopic stochastic three-phase traffic model of the nucleation of sponta-
neous traffic breakdown presented in the talk explains the empirical find-
ings. It turns out that in the most cases a nucleus for the breakdown oc-
curs through an interaction of one of waves in free flow with an em-
pirical permanent speed disturbance localized at a highway bottleneck
(Fig. 1). The wave is a localized structure in free flow, in which the total
flow rate is larger and the speed averaged across the highway is smaller
than outside the wave. The waves in free flow appear due to oscillations
in the percentage of slow vehicles; these waves propagate with the aver-
age speed of slow vehicles in free flow. Any of the empirical waves ex-
hibits a two-dimensional asymmetric spatiotemporal structure: Wave’s
characteristics are different in different highway lanes.
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road detectors on three-lane freeway A5-South in Germany on April 15,

1996 (Monday).
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Asymptotic analysis
of complex stochastic systems

Moment asymptotics for branching random
walks with immigration∗

D. Han1, Yu. Makarova2, S. Molchanov1,3, and E. Yarovaya2
1University of North Carolina at Charlotte, Charlotte, NC, USA,

2Lomonosov Moscow State University, 3Higher School of Economics ,
Moscow, Russia

The evolution of populations with birth, death and migration can be
described in terms of branching random walks, see details, e.g., in [2].

We consider a symmetric continuous-time branching random walk
with generation of particles at every point of a multidimensional lattice
and infinite number of initial particles. We allow immigration in our
model. It can help to stabilize the population when the birth rate is less
than the mortality rate. Such a model may describe the demographic
situations associated with immigration in different Europian countries.
This approach was suggested by Han, Molchanov and Whitmeyer in [1],
but only for the case of the binary splitting, i.e. when one particle can
produce one offspring at the moment of birth.

In [3] we considered the case when particles can produce an arbitrary
number of offsprings and investigated the asymptotic behaviour of the
first two moments of particle numbers as t → ∞. In this paper, we
present analysis of high-order moments. These results make it possible
to obtain the limit theorem on behavior of the numbers of particles in
the branching random walk with immigration.

The subject of our study is the particle field n(t, x), t > 0, x ∈ Zd. In
the initial moment t = 0 we assume that n(0, x) are independent identi-
cally distributed random variables with finite exponential moments. The
evolution of the field includes four opportunities.

Firstly, each particle can jump from the point x to the point x + z
with probability a(z). We assume that a(z) = a(−z),∑z 6=0 a(z) = 1 and
a(0) = −1. The intensity of jumps is denoted by κ. Then the probability
to jump from the point x to the point x + z during the small time dt
is κa(z)dt. Moreover, we assume that the random walk is irreducible
with finite variance of jumps. Secondly, each particle can die with the

∗Yu. Makarova and E. Yarovaya were supported by the Russian Foundation for
Basic Research (RFBR), project No. 17-01-00468. S. Molchanov was supported by
the Russian Science Foundation (RSF), project No. 17-11-01098.
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mortality rate µ. Thirdly, each particle, independently on others, can
produce n new offsprings (or we can say that it produces n − 1 new
particles and still stays at the same point on the lattice). Let bn, n > 2,
be the intensity to produce n offsprings and β :=

∑∞
n=2(n−1)bn. Finally,

we allow immigration. It means that at any point on the lattice, during
a small time interval (t, t + dt), a new particle can come from outside
with the probability kdt, where k is the rate of immigration.

We consider the moments mn(t, x1, ..., xn) =
E (n(t, x1) · ... · n(t, xn)). In [7] the asymptotics of the first two
moments m1(t, x1) and m2(t, x1, x2) were obtained as t→∞. Our main
result is the asymptotic behavior of mn(t, x1, ..., xn), as t → ∞, for
every n ≥ 3, k > 0 and µ > β.

Based on the results for the moments it is shown that for t→∞ the
limit sequence of moments {mn(t, x1, ..., xn)}∞n=1 uniquely determines
the limit distribution of some random variable.
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